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Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In
the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis
of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the
symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular
mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a
common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury.
Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target
multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of
neurodegenerative diseases.

1. Introduction

Neurodegenerative diseases define diversified chronic disor-
ders related to the progressive motor, sensory, and perceptual
dysfunctions which lead to cognitive and behavioural defi-
cits. In these pathologies, the selective neuronal cell loss
appears in the adulthood, within different areas of the brain
[1]. Neurodegenerative diseases are usually divided into two
main groups, chronic and acute disorders [2]. In particular,
Alzheimer’s disease (AD), Parkinson’s disease (PD), Hun-
tington’s disease (HD), amyotrophic lateral sclerosis (ALS),

and so forth, share a plethora of features like oxidative stress,
glycation, abnormal protein deposition, inflammation, and
progressive neuronal loss [3–5]. It is interesting to highlight
that, several years later traumatic brain injury (TBI) or
stroke, patients have shown an increased incidence of neu-
rodegenerative chronic diseases [6–9]. In particular, after
TBI, many patients show motor and cognitive manifesta-
tions similar to those observed in AD and PD patients
[10–12]. During the last century, a growing research inter-
est has been addressed to the identification of mechanisms
and risk factors leading to the complex etiopathogenesis of

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2020, Article ID 8363245, 18 pages
https://doi.org/10.1155/2020/8363245

https://orcid.org/0000-0002-8415-3711
https://orcid.org/0000-0001-6627-7078
https://orcid.org/0000-0002-9564-214X
https://orcid.org/0000-0001-9999-2780
https://orcid.org/0000-0002-6827-7327
https://orcid.org/0000-0002-3980-0043
https://orcid.org/0000-0002-5481-7572
https://orcid.org/0000-0001-5650-760X
https://orcid.org/0000-0003-0349-7772
https://orcid.org/0000-0001-6494-5968
https://orcid.org/0000-0001-7857-4512
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8363245


neurodegenerative diseases, including not only genetic,
vascular, and metabolic but also lifestyle-related factors,
which often coexist and interact with each other [13–15].

In view of the complex multifactorial nature of neuro-
degenerative diseases, interventions that simultaneously
target multiple risk factors and disease mechanisms at an
early stage of the diseases are most likely to be effective.
Among the matrix of factors which could delineate the
possible pathogenesis of neurodegenerative diseases, aging
is the primary risk, and also, cerebrovascular diseases, dia-
betes, and inflammation define steps in this inexorable
complex cascade [16]. The effects of the different risk fac-
tors depend on the patient’s age at treatment, indicating
that the timing of preventive interventions needs to be
carefully considered.

Inflammation is one of the key connectors linking vascu-
lar abnormalities and neurodegeneration. Indeed, inflamma-
tion, especially of the endothelium, is central to the initiation
and progression of a broad spectrum of age-related neurode-
generative diseases [17], and it has been demonstrated to
clearly affect the expression of Brain-Derived Neurotrophic
Factor (BDNF) within the brain [18]. Neuroinflammation
is a key factor in both acute and chronic conditions [19–
21]. In the central nervous system (CNS), cellular infiltration
in response to inflammation, infection, and injury is weaker
and delayed than in other tissues, but microglia, and the
expression and release of classical inflammatory mediators,
such as acute-phase proteins, eicosanoids, complement, and
cytokines, can be induced rapidly [22–24].

Moreover, redox signalling dysregulation has been recog-
nized as a contributing factor in several age-related diseases
and is responsible for endothelial dysfunction in the majority
of pathophysiological conditions [25, 26]. Several studies
established that radical detoxification pathways are key
homeostatic mechanisms associated with vasoprotection in
aging and chronic degenerative diseases [27–29]. In addition,
oxidative stress is also correlated with the impairment of
blood glucose regulation [30].

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and
nuclear factor-κB (NF-κB) are two interconnected master
regulators of cellular responses to oxidative stress and
inflammation, respectively [31]. Recently, several studies
demonstrated that dysfunctions in redox homeostasis are
a common mechanism in cardiovascular, neurological,
and metabolic diseases [32, 33]. However, oxidative stress
was hitherto not pharmacologically targetable, and the
only strategy tested so far, using antioxidants, was unsuc-
cessful or even harmful. Interestingly, small molecules,
now become available, are able to interact with specific
targets and useful for therapeutic proof-of-concept studies.
In this view, the importance of investigating the complex
interrelated molecular mechanisms behind neurodegenera-
tive disease onset and progression appear undeniable. In
an attempt to characterize the complex network of molec-
ular mechanisms underpinning acute and chronic neuro-
degeneration, this review is focused on the disturbance in
redox homeostasis, as common mechanism behind five
pivotal risk factors: aging, oxidative stress, inflammation,
vascular injury, and glycation.

2. The Role of Aging and Oxidative Stress in
Chronic Neurodegenerative Diseases

AD is the leading cause of dementia worldwide, accounting
for 60–70% of cases (http://www.who.int/mediacentre/
factsheets/fs362/en/), although increasing evidence shows
that mixed brain pathologies (AD and vascular) account for
most dementia cases in the old age [34, 35]. Previous inter-
vention efforts focused on the management of single risk fac-
tors with relatively modest findings.

Undoubtedly, aging is the primary risk factor for neuro-
degenerative diseases, and age-related changes in cellular
function predispose to the pathogenesis of different patho-
logical conditions, as AD. The EU population aged 65 and
over is expected to double by 2030 and to triple by 2050
[36]. Aging not only makes patients more susceptible to neu-
rodegenerative diseases but also impairs self-repair abilities.
The number of people living with neurodegenerative diseases
worldwide is currently estimated at 50 million (http://www
.who.int/mediacentre/factsheets/fs362/en/).The economic-
social burden of neurodegenerative diseases is devastating
not only for the patients but also for their families and care-
givers. Indeed, the huge cost of the diseases will challenge
health systems to deal with the predicted future increase of
prevalence. Thanks to the advances in molecular biology,
our knowledge of aging and cognitive decline constantly
increases. Many signalling pathways involved in the regula-
tion of aging and lifespan have been identified, and recent
studies have demonstrated the involvement of these signal-
ling pathways in age-related cognitive decline [37, 38]. These
pathways may represent important targets to develop novel
and effective disease-modifying drugs to treat, delay, or pre-
vent age-related neurodegenerative diseases.

Unfortunately, to date, no effective treatments are avail-
able to slow or stop the death and malfunction of neurons
in the brain that cause disease symptoms and make the dis-
ease fatal. In this view, discovering new strategies and drugs
to slow down the onset and the progression of neurodegener-
ative diseases is a primary goal, and it could have significant
social and economic impacts. β-Amyloid (Aβ) plaque depo-
sitions and neurofibrillary tangle (NFT) accumulation not
only are referred to as neuropathological hallmarks of AD
but also have been widely implicated and described in the
healthy aging process [39–41]. The chronic increase of oxida-
tive stress has been recognized as a key contributing factor in
aging and in several age-related diseases. Indeed, the “oxida-
tive stress theory of aging” considers the functional impair-
ments associated with aging, due to the accumulation of
oxidative damage to lipids, DNA, and proteins by reactive
oxygen species (ROS) and reactive nitrogen species (RNS).
However, the exact mechanism by which oxidative stress
induces aging is still not defined. Perhaps, the enhanced
levels of ROS and RNS lead to cellular senescence, which
involves the secretion of soluble proinflammatory factors
and degradative enzymes [42]. In this area, S-nitrosylation,
a covalent reaction of a nitric oxide (NO) group with a reac-
tive cysteine thiol group on target proteins, has emerged as
the principal mechanism exerting NO bioactivity [43]. S-
Nitrosylation regulates protein function and can mediate
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either protective or neurotoxic effects depending on the
action of the target protein [44]. Under physiological con-
ditions, NO production induced by GMPc activation gen-
erates mitochondrial biogenesis through peroxisome
proliferator-activated receptor γ (PPARγ) coactivator. In
contrast, increased nitrosative stress can result in defects
in mitochondrial function. For example, S-nitrosylation
affects mitochondrial respiration by inhibiting complexes
I and IV [45]. Interestingly, Cho et al. demonstrated that
S-nitrosylation of Drp1 mediates Aβ-induced disruption
of mitochondrial dynamics, contributing to synaptic injury
and neuronal damage [46]. Thus, protein modifications
produced by RNS may impair mitochondrial health and
further induce synaptic dysfunction and neuronal death.
Indeed, another feature of AD brains is mitochondrial dys-
function [47, 48], characterized by an increase in mito-
chondrial membrane permeability and loss of membrane
potential and associated with the release of cytochrome c
[49, 50]. Interestingly, Antequera et al. [51] found a reduc-
tion in the expression levels of mitochondrial complexes I
and III. They speculate that this mitochondrial dysfunction
is probably because Aβ-related mitochondrial dysfunction
is exacerbated by aging and may be one of the mecha-
nisms explaining the pronounced accumulation of AD
pathology with aging. The hypothesis is that the increasing
levels of Aβ and the aging process in AD patients could be
considered responsible for the senescent phenotype involv-
ing also endothelial cell (EC) dysfunction and character-
ized by increased oxidative stress [42]. In a recent study,
Zhu et al. showed that in an aging mouse model
(SAMP8), the cognitive impairment, inflammation, and
oxidative stress were efficiently counteracted by the treat-
ment with ligustilide, the most biological active component
present in Angelica sinensis, a perennial plant that belongs
to the Umbelliferae family [52]. Several studies have
shown the ability of ligustilide to cross the blood-brain
barrier (BBB) and to reach the CNS where the active
could exert its antiapoptotic and antioxidative effects [53,
54]. The fundamental role of oxidative stress in neurode-
generative disorders is recognized, and, also in the early
stages, it is possible to observe a significant increase of
ROS production [55]. When this phenomenon is effi-
ciently reduced, also the cognitive impairment and the
inflammatory processes are successfully counteracted [56,
57]. Indeed, there is a close relationship among oxidative
stress, aging, and inflammation.

During aging, the chronic oxidative stress enhances the
loss of homeostasis, involving in particular the regulatory
systems, as the immune response. This condition activates
the inflammation that, in turn, increases oxidative stress gen-
erating a vicious circle [58]. A recent study has shown that
increased levels of biomarkers for oxidative stress are related
to high levels of inflammatory cytokines, and both are
ascribed to poor cognitive performance in aged patients
[59]. Several studies have shown that cognitive decline is
slower when endogenous antioxidant systems, as glutathione
peroxidase (GSH-Px), are high. On the contrary, high levels
of GSH accelerate cognitive impairment in aged patients
[55, 60]. This is a controversial event, because GSH is known

as an endogenous protection against intracellular oxidative
stress. An explanation could be that, as GSH is a substrate
of GSH-Px, the increasing of GSH levels may be due to the
increase of oxidative stress related to the reduction of GSH-
Px activity [61]. The increased level of oxidative stress was
observed also in human peripheral blood mononuclear cells
isolated from individuals with mild cognitive impairment
and from 3-month-old 3xTg-AD male mice, which was
probably due to the increased levels of the Nrf2 and reduced
superoxide dismutase 1 (SOD1) mRNA in the brain cortex
[62]. It is known that Nrf2 is referred to as the principal reg-
ulator of the cellular response to oxidative and toxic insults,
modulating the expression of hundreds of genes responsible
for the immune and inflammatory responses, cellular metab-
olism and metabolic regulation, and even cognitive dysfunc-
tion and addictive behaviour [63]. The regulation of Nrf2 is
complex and controlled not only by the repressor protein
Kelch ECH associating protein 1 (Keap1) but also by other
signalling pathways, including glycogen synthase kinase 3
(GSK-3), NF-κB, NOTCH, and AMP kinase [60, 64, 65].
Due to the role of Nrf2 deregulation in neurodegenerative
diseases, Nrf2 inducers are currently under investigation.
The AT-Nrf2-knockout mouse model, which combines amy-
loidopathy and tauopathy with Nrf2 deficiency, presents
increased markers of oxidative stress and neuroinflammation
in the brain tissue compared to wild-type mice [66]. Fur-
thermore, young adult AT-Nrf2-knockout mice have shown
deficits in spatial learning and memory and reduced long-
term potentiation. Transcriptomic analysis has shown that
Nrf2-knockout mouse brains share 7 and 10 of the most
dysregulated pathways with aging humans and AD brains,
respectively [66].

3. Neuroinflammation and Aging: Role of Acute
Injury and Impact on Neurotrophins

Among the principal causes of acute brain injury, TBI and
stroke are the most relevant. TBI is a highly complex disorder
caused by both primary and secondary injury mechanisms
[67, 68]. Primary injury mechanisms result from the
mechanical damage of neurons, axons, glia, and blood vessels
as a result of shearing, tearing, or stretching. Secondary
injury mechanisms include a wide variety of processes
such as depolarizations and disturbances of ionic homeo-
stasis [69], release of neurotransmitters (e.g., glutamate
excitotoxicity) [70], mitochondrial dysfunction [71], neu-
ronal apoptosis [72], lipid degradation [73], and initiation
of inflammatory and immune responses [7, 74].

Likewise, strokes can be classified into two main types:
ischemic or haemorrhagic. In the first case, the neurological
dysfunction is caused by focal cerebral, spinal, or retinal
infarction. The haemorrhagic stroke can be classified as sub-
arachnoid haemorrhage (SAH), with haemorrhage from a
cerebral blood vessel, aneurysm, or vascular malformation
located into the subarachnoid space, or as intracerebral
haemorrhage (ICH), when a weakened blood vessel within
the brain bursts, allowing blood to leak and increasing intra-
cranial pressure, causing damage to the brain cells surround-
ing the blood [75–77].

3Oxidative Medicine and Cellular Longevity



Posttraumatic neuroinflammation is characterized by
oxidative stress, glial cell activation, leukocyte recruitment,
and release of inflammatory mediators [74], as hereafter
reported. High ROS levels cause lipoperoxidation of cell
membrane, leading to dysfunction of mitochondria and oxi-
dizing proteins [78]. After injury, endogenous inflammatory
responses are activated to protect the damaged area from
invasion of pathogens and to restore injured cells. In this
condition, the complement system is activated, followed by
the invasion of monocytes, neutrophils, and lymphocytes
through the BBB [79], with consequent production of prosta-
glandins, proinflammatory cytokines, free radicals, and sev-
eral inflammatory elements. Microglia are the primary
innate immune cells in the CNS and represent the first line
of defence following brain injury [80]. On the other hand,
when microglia become overactivated or reactive, they can
induce detrimental neurotoxic effects by releasing multiple
cytotoxic substances, including proinflammatory cytokines
and oxidative metabolites [81]. Further, the release of proin-
flammatory cytokines and other soluble factors by activated
microglia can significantly influence the subsequent activa-
tion of astrocytes [82].

Upon activation, astrocytes upregulate several neuro-
trophic factors (e.g., BDNF) that protect against cell injuries
[83]. In addition, astrocytes play a crucial role in regulating
excitotoxicity by reducing neuronal glutamate levels [84].
These alterations may lead to secondary neurological disease,
such as ischemia and epilepsy [85]. After injury, neutrophils
are the first immune cells that undergo conformational
changes and migrate through the endothelial vessel wall to
invade the damaged tissue [86]. Following an ischemic
injury, neutrophils cause secondary injury by releasing pro-
inflammatory factors, ROS, proteases, and matrix metallo-
proteinases (MMPs) [87]. These toxic factors impair EC
membrane and basal lamina leading to the increase of BBB
permeability [23]. In addition, leukocytes potentiate ischemic
injury blocking erythrocytes’ flow and then activating the
production of proteases, MMPs, and ROS that can signifi-
cantly damage blood vessels and brain tissues. Finally, infil-
trated leukocytes infiltrated further exacerbate neuronal
injury by activating proinflammatory factors in and around
the penumbra and the infarct core [23, 88, 89]. Cytokines
upregulate the expression of cell adhesion molecules
(CAM) [90, 91], as the intracellular adhesion molecule 1
(ICAM 1) in the ischemic core which leads to BBB disruption
[23]. The three major proinflammatory cytokines are tumor
necrosis factor-alpha (TNF-α), interleukin 1β (IL-1β), and
IL-6 that contribute to the inflammatory response after brain
injury [92, 93]. Under certain stimuli, TNF-α is synthesized
and released by astrocytes, microglia, or neurons and is
involved in the BBB permeability and in the modulation of
synaptic transmission and plasticity [94–96]. After the for-
mation of an inflammasome, IL-1β can activate NF-κB via
toll-like receptors (TLRs) allowing the nuclear factor to
transactivate genes associated with cytokines, chemokines,
and other proinflammatory mediators. In addition, IL-1β
can prime the endothelium for increased leukocyte adher-
ence and edema formation [97]. Additionally, Yang and col-
leagues demonstrated that IL-6 serves as an amplification

signal for the inflammatory response and motor coordina-
tion deficits after brain injury [98].

Age at injury is likely to influence the way the brain is
able to repair itself as a result of developmental status, extent
of cellular senescence, and injury-induced inflammation [99–
102]. Hoane and colleagues and Sohrabji showed that aging
increased tissue loss compared to young animals following
TBI and also state that aging is the principal risk factor for
ischemic stroke [103, 104]. This is probably due to the func-
tional changes that happened in the BBB as a result of brain
injury, including decreased trafficking of peripheral immune
cells into the brain parenchyma and increased oxidative
stress and inflammatory mediator release that lead to an
amplification of the inflammatory response in the injured
brain [105]. For this reason, the understanding of cell-
specific changes in an aging brain will be critical for the
development of next-generation drug therapies.

As the molecular mechanism of aging in mice is similar
to that in humans [95], mouse models have been often used
in the field of neurodegenerative diseases associated with
aging [106]. In particular, studies have been conducted to
better focus on major risk factors for PD, reportedly associ-
ated with aging [107]. In this regard, Crupi et al. already
reported about PDmodelled on old mice by 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP). In particular, old
MPTP-intoxicated mice (21 months old) and young
MPTP-intoxicated mice (3 months old) were both subjected
to behavioural testing and brain processing eight days after
MPTP administration [108]. The authors demonstrated a
more significant nigrostriatal dopamine (DA) degeneration
than that observed in young MPTP-treated mice. Moreover,
anxiety-like behaviour was more evident in MPTP-treated
old mice. In this context, the aim of the authors was to define
a time window for applying therapeutic treatment to effec-
tively counteract neurodegenerative processes associated
with age-related diseases. As a matter of fact, current thera-
pies do not address neuroinflammation but, though neuroin-
flammation may worsen PD disease progress, they are
focused on ameliorating the symptoms of DA loss rather
than the mechanisms underlying DA neuron damage [109].

As neurodegenerative diseases, associated with inflam-
mation and oxidative stress, may develop as a consequence
of brain trauma, studying the onset of neurodegeneration in
MPTP mouse models, in young and aged animals, can be
considered a good basis. In this context, Calabrese et al. state
that peripheral and/or central inflammatory stimuli, affecting
the brain, could induce inflammatory changes leading to PD
symptoms and progression [107].

The abnormal neuroinflammatory response and oxida-
tive stress may have a detrimental impact on neuroplasticity,
the ability of the brain to perceive and respond to an external
or internal stimulus through an adaptive mechanism, which
is compromised in several neurodegenerative disorders
[110]. This CNS capability to shape its structure and function
for a proper coping relies on the integrated involvement of
different molecular systems, among which the neurotrophic
factors plays a crucial role. Indeed, it is well known that the
diversity and specialization of the CNS resident cellular pop-
ulations are due to many complex processes. Proliferation,
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differentiation, growth, migration, synaptic formation, and
modification are mainly carried on by neurotrophic factors,
in particular by neurotrophins (NTs). NTs are a group of
polypeptide growth factors secreted by different brain cell
populations, such as microglia cells, oligodendrocytes, astro-
cytes, and neurons. The NT family comprehends different
but similar polypeptides: the nerve growth factor (NGF),
BDNF, NT-3, and NT-4/5, as well as the more recent NT-6
and NT-7. Their activity is mediated by the binding to spe-
cific transmembrane receptors, the tropomyosin receptor
tyrosine kinases (Trk receptors) and the p75 NT receptor.
NTs have different binding affinities for specific receptors:
NGF binds to TrkA, BDNF and NT-4 to TrkB, and NT-3
to TrkC, whereas all four NTs can bind to the p75 receptor.
Furthermore, the association of p75 with Trk receptors can
increase the selective affinity of the second ones for each
respective NT [111, 112]. Nowadays, the role of NTs for the
survival of developing neurons is well consolidated [113,
114]; however, in the last decades, the focus of the research
has moved on their function as mediators of neural and syn-
aptic plasticity in the adult brain. In particular, BDNF has
emerged for its role in a wide range of neurophysiological
processes, peculiar activity-dependent regulation, and
because of its abundance in brain regions involvement in
neuroplasticity throughout the lifespan. The wide spectrum
of activity in which BDNF is involved relies to its complex
genetic structure that has been characterized in detail [115,
116]. BDNF gene contains multiple promoters that drive
the expression of several transcripts bearing different non-
coding exons. Interestingly, different isoforms of BDNF are
expressed in different subcellular compartments; for exam-
ple, exon IV mRNAs have been detected in the soma and
dendrites while exon III expression is restricted to the cell
body [117]. It is important to note that the transcripts that
target the dendritic area may promote fast local translation
of the pro- and mature BDNF, producing an effect strictly
linked to the synaptic structure and activity [118, 119]. The
synthesis of the mature BDNF is likewise a complex process,
involving different precursor isoforms and different possible
pathways to reach the mature form. The pro-BDNF protein,
indeed, can be cleaved both in the intracellular space, in
the intracellular secretory vesicles, or after secretion,
through distinct mechanisms. Pro-BDNF is also an active
precursor, which is able to bind the p75 neurotrophin
receptor and the sortilin receptor, while mature BDNF
binds p75 receptor and, preferentially, TrkB [120]. Upon
binding with BDNF, TrkB initiates dimerization and auto-
phosphorylation. Once phosphorylated, TrkB activates a
series of intracellular pathways: the phosphatidylinositol
3-kinase/protein kinase B- (PI3K/Akt-) related pathways,
which exert antiapoptotic and prosurvival activities and
modulate N-methyl-D-aspartate receptor- (NMDAR-)
dependent synaptic plasticity [121–123]; the PI3K/Akt/-
mammalian target of rapamycin (mTOR) cascade that,
through regulation of protein synthesis and cytoskeleton
development, enhances dendritic growth and branching
[124, 125]; the mitogen-activated protein kinase (MAPK)/-
Ras signalling cascade that regulates protein synthesis dur-
ing neuronal differentiation [126]; and many others.

Given the crucial physiological role that BDNF exerts
through the above-described mechanisms on several pro-
cesses known to be compromised in neurodegenerative dis-
orders, such as neuronal survival and cognition, several
clinical and preclinical studies have investigated the impact
of the risk factors for these diseases on BDNF function, in
particular focusing on the influence of aging. The obtained
results clearly underline a relationship not only between
aging and deficit in neuroplasticity but also between BDNF
alteration and frailty, the fragility that may underline neuro-
degenerative diseases in the elderly [127]. Indeed, it is impor-
tant to note that some individuals are able to reach advanced
age with the cognitive functions mainly intact whereas others
develop a condition of frailty, characterized by an increased
general vulnerability probably due to microtraumas and det-
rimental events accumulated during life. Furthermore, even
the high-functioning elder people who experience an acute
injury (such as TBI or stroke), a stress, or an infection
become at higher risk to develop a transient or permanent
cognitive impairment, which may in turn result in dementia
and other symptoms of neurodegenerative diseases. To the
current knowledge, the cognitive impairment observed in
the aged population is due—at least in part—to structural
and physiological changes in the brain. During aging, these
processes undergo a physiological decline, and structural
changes in neurons and spines as well as alterations in neuro-
transmitter receptor expression and changes in electrophysi-
ological properties occur, causing an increased vulnerability
to neurobiological diseases [128].

In the attempt to explain what is observed during aging, a
negative correlation between BDNF serum levels and aging
has been found in healthy subjects [129]. Moreover, the hip-
pocampal volume of 142 healthy subjects between 59 and 81
years old has been measured and correlated with serum
BDNF levels and memory performances finding that increas-
ing age was associated with smaller hippocampal volumes,
reduced levels of serum BDNF, and poorer memory perfor-
mances [130]. Furthermore, a postmortem study on healthy
subjects aged between 16 and 96 years confirmed the negative
correlation between BDNF and age in the orbitofrontal cor-
tex and showed that the expression of synapse-related genes
belonging to the BDNF network was downregulated with
age as well [131]. Among the mechanisms that may affect
the BDNF system during aging, an abnormal activation of
the immune/inflammatory system is thought as an important
candidate. Indeed, it is well known that the inflammatory
response may affect neuroplasticity during development
and adulthood [132]. Moreover, during aging, the immune
system undergoes a dysregulation that leads to a chronic sys-
temic inflammation, with increased levels of cytokines, che-
mokines, proinflammatory enzymes, and transcription
factors [133, 134].

The “inflammaging” state does not rule out the brain, as
the peripheral circulating small molecules—such as cytoki-
nes—can penetrate the CNS through the BBB inducing a
cerebral state of neuroinflammation that can be further
amplified by the activation of microglia [135]. In this context,
it has been demonstrated that the activity of macrophages is
specifically modified during aging, suggesting also a possible
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role for oxidative stress [136, 137]. Under physiological con-
ditions, microglia cells are in an apparent resting state in
which they actively survey the CNS environment, ready to
intervene when a detrimental stimulus occurs. Specifically,
they undergo the activation state, with morphological
changes and production of cytokines and of proliferative
and macrophagic factors [138] following—when the threat
(infection or damage) has been removed—to another state,
characterized by a gene profile able to promote tissue repair
and reconstruction, through the production of anti-
inflammatory cytokines, growth factors, and NTs such as
BDNF [139]. During aging, microglia cells undergo a series
of modification such as telomere shortening and cellular dys-
trophy, which lead to its senescence. In a postmortem study,
Streit et al. observed significantly more dystrophic changes in
microglia of aged individuals (68-year-old) than in the youn-
ger ones (38-year-old) [140]. Interestingly, it has been
described that dystrophic or senescent microglia might
undergo age-dependent degeneration losing its neuroprotec-
tive functions, thus increasing the risk of developing a neuro-
degenerative disease [141]. Using flow cytometry in mice,
Ritzel et al. identified a significant population of side
scatter-high microglia in the aged brain that display func-
tional abnormalities when compared to young microglia,
including higher production of ROS and proinflammatory
cytokines, increased mitochondrial content, and poor phago-
cytic ability [142]. Furthermore, aged microglia cells adopt a
proinflammatory state due to a decrease in the resting signal-
ling by neurons and astrocytes [143]. As a result, external
stimuli (e.g., stress, trauma, and infection) can easily switch
the aged brain into a state of mild chronic neuroinflamma-
tion, making the brain more prone to apoptotic signalling
[144–146], leading to loss of volume and cognitive impair-
ment [147] (Figure 1).

In particular, preclinical studies demonstrated that ele-
vated hippocampal levels of IL-1β impair the performances
in behavioural paradigms commonly used to examine
hippocampus-dependent memory [148, 149]. Numerous
studies in rodents confirmed these observations, demonstrat-
ing impairments in hippocampus-dependent contextual
tasks following intraperitoneal (i.p.) [150] or intrahippocam-
pal injection of IL-1β [151] and elevations in endogenous IL-
1β evoked by infections [150–152] or psychological and
physical stressors [153, 154].

As previously mentioned, this aging-dependent low-
grade chronic inflammation is thought to contribute to the
reduction of BDNF levels observed in the older population.
Guan and Fang, in a preclinical study, demonstrated that a
peripheral injection of lipopolysaccharide (LPS), a strong
cytokine inducer, causes a reduction of the protein levels of
BDNF in different cortical regions as well as in the hippo-
campus of adult rats [155]. These observations have been
confirmed also in mice, where reduced protein levels of
pro-BDNF, mature BDNF, and BDNF mRNA levels have
been found in synaptosomes three days after the LPS i.p.
injection [156]. A similar result was observed in aged animals
five days after the inflammatory challenge. Specifically,
Cortese et al. exposed aged rats to E. coli i.p. administra-
tion to induce a peripheral inflammatory response finding
reduced levels of mature BDNF and TrkB activation in
comparison to aged rats treated with vehicle as well as
to young rats exposed to E. coli [157]. Furthermore, the
central administration of a receptor antagonist for IL-1
simultaneously to the E. coli injection was able to block
the observed reduction of BDNF [158], as well as the asso-
ciated long-term memory impairment caused by the E. coli
injection [159]. In line with these observations, the infu-
sion of the proinflammatory cytokine IL-1β into the

Activation of astrocyte and microglia
Invasion of monocytes,

neutrophils and lymphocytes

Release of inflammatory mediators
Imbalance of oxidative stress/antioxidant defense

Alterations of ionic channels

Depolarizations of ionic homeostatis,
release of neurotransmitters,

mitochodrial dysfunction,
lipid degradation

Neurodegeneration

Impairments in hippocampus-dependent process
leading to loss of volume and cognitive impairment

Abnormal activation of the immune system

Reduction of BDNF

Figure 1: Contribution of inflammation, oxidative damage, and reduction in NT levels to neurodegeneration in aged brain after injury.
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hippocampus decreased the induction of BDNF gene
expression induced by contextual fear conditioning [158].

4. Mechanisms of Neurodegeneration
Associated with Endothelial Cell Dysfunction

Vascular risk factors such as age, diabetes, hypertension, and
hypercholesterolemia often overlap with neurodegenerative
risk factors in older patients, and vascular dysfunction is rec-
ognized as a determinant in several neurodegenerative dis-
eases such as AD, cerebral amyloid angiopathy (CAA), PD,
and ALS [160–163]. The BBB integrity, as part of the neuro-
vascular unit (NVU), is essential to maintain adequate brain
perfusion and brain functionality and to preserve normal
neurological functions. Oxidative stress plays a critical role
also on pathological BBB impairment and on the cerebrovas-
cular dysfunction observed in neurodegenerative diseases.

AD is characterized by an excessive deposition of Aβ pro-
tein that destabilizes vascular integrity, promoting vascular
leakage. Loss of vessel integrity manifests with EC detach-
ment from basal membrane, double-barreling of the vessel
walls, and aneurysm formation. These events often result in
blood extravasation to the perivascular space and in the initi-
ation of an inflammatory response, which characterizes neu-
rodegenerative diseases. Several studies have clearly shown
that pathological concentrations, in the range of micromolar,
of different Aβ peptides, in particular the shorter vasculotro-
pic Aβ1-40 variant and the Aβ mutants, are associated with
distinct hereditary phenotypes of CAA and impair angiogen-
esis and vascular maintenance by increasing cellular oxida-
tive stress. The vascular damage induced by Aβ includes
alteration of vascular tone, impairment of vascular remodel-
ling, and loss of barrier functions, as well as suppression of
the intrinsic angiogenic properties of the endothelium.

Donnini et al. demonstrated that the Aβ1-40 peptide and
its Dutch E22Q variant cause a premature senescent pheno-
type in ECs in both zebrafish embryos and human ECs
[164]. Aβ1-40 peptide also causes mitochondrial impairment
and reduces the aldehyde dehydrogenase-2 (ALDH2) detox-
ifying enzymatic activity in ECs, resulting in cell membrane
disorganization and permeability defects [165]. Similarly,
the Aβ1-42 peptide has been reported to induce endoplasmic
reticulum stress in rat brain ECs, subsequently leading to vas-
cular derangements [166]. The molecular mechanisms of
these multiple Aβ-induced effects on ECs are complex and
may include direct and indirect interaction with angiogenic
growth factors, including vascular endothelial growth factor
(VEGF) and fibroblast growth factor-2 (FGF-2).

FGF signalling is a prominent pathway involved in the
maintenance of integrity in quiescent vasculature. Solito
et al. showed that Aβ1-40 and its arctic E22G and Dutch
E22Q variants downregulate FGF-2 production and FGF-2-
induced Akt activation. Moreover, Aβ1-40 and its variants
inhibit FGF-2 binding to heparin and FGF receptor 1 phos-
phorylation, both in vivo and in vitro [167, 168]. Of note,
the disruption of vascular integrity by the Aβ1-40-induced
deregulation of the FGF-2 signalling pathway can be rescued
forcing overexpression of FGF-2 in ECs. Indeed, ECs overex-
pressing FGF-2 displayed extraordinary resistance to Aβ1-40-

induced injuries. The FGF-2 mechanism responsible for
reversing damages involves the downstream enhancement
of Akt and the endothelial nitric oxide synthase (eNOS) acti-
vation [167].

Several studies showed that Aβ also affects VEGF signal-
ling. The VEGF receptor-2 mRNA and the protein levels are
significantly decreased after Aβ1-40, both in EC and in the
brains of AD mouse models [169]. Patel et al. showed that
Aβ1-42 inhibits VEGF-induced migration of ECs, competing
with the VEGF for the binding with its receptor VEGFR
[170]. Moreover, cell culture studies revealed that Aβ at path-
ological concentrations acts as a VEGF antagonist, inhibiting
VEGF-induced tyrosine phosphorylation of VEGFR-2, as
well as VEGF-stimulated phosphorylation of Akt and eNOS
in ECs [170–172].

The Aβ precursor protein (APP) is expressed in several
tissues and cells, such as the brain, kidney, platelets, and vas-
cular endothelium of cerebral and peripheral blood vessels.
Interestingly, several studies showed a vascular function of
APP and/or Aβ on ECs [173]. In cultured cerebral and
peripheral ECs, nanomolar (nM) concentrations, similar to
the physiological level of either Aβ1-40 or Aβ1-42 peptides,
promote angiogenesis by increasing growth, migration, and
tube branching [174, 175]. Thus, oxidative stress is induced
in ECs by high concentrations of Aβ peptide, which accumu-
lates in the vessels of BBB and in the brain parenchyma.
However, physiological levels of Aβ are also required for
the endothelial homeostasis, and increasing evidence high-
lights in several organs the importance of APP and its metab-
olites in supporting the function of the vascular tissue [173,
176]. The evidence that clinical trials aimed at targeting Aβ
with immunotherapy have failed and, in some cases, have
been harmful recalls the physiological role of Aβ and its pre-
cursor protein APP in the vasculature. More studies are
needed to elucidate why ECs express high levels of APP
and Aβ and what the functional role of these molecules is
at a vascular level.

As we know, oxidative stress and mitochondrial dysfunc-
tions are key actors in neurodegenerative disease. The mito-
chondrial enzyme ALDH2 has been shown to have a
critical role in the neurotoxic mechanisms of these patholo-
gies [177–179]. The mitochondrial disorder may promote
the production of ROS, which increases the susceptibility of
the cell to oxidative stress. One of the consequences of exces-
sive oxidative stress is the overproduction of toxic aldehydes
by lipid peroxidation from the mitochondrial membranes.
Reactive aldehyde accumulation may inhibit ALDH2 and
trigger mitochondrial dysfunction leading to a higher
aldehyde-induced damage in both vasculature and neural tis-
sues. The ALDH superfamily plays a crucial role in many
biological processes including development and detoxifica-
tion pathways in the organism [180]. In particular, mito-
chondrial ALDH2 is crucial in the oxidative metabolism of
toxic aldehydes in the brain, such as catecholaminergic
metabolites (DOPAL and DOPEGAL) and 4-hydroxy-2-
nonenal (4-HNE), the principal product of the lipid peroxi-
dation process [178]. Recent studies have demonstrated that
inhibition of ALDH2 activity significantly impairs EC func-
tions, promoting senescence [181–183]. Lack of ALDH2
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activity reduces cell proliferation and migration and
increases cellular permeability in ECs. Although the mecha-
nisms of action has not been fully elucidated, these studies
suggest that the accumulation of endogenous reactive alde-
hydes such as 4-HNE and ROS production are the main
causes of endothelial dysfunction [181, 182].

In AD and PD, the increase of oxidative stress, in part
due to the formation of Aβ plaques and NFTs, can also be
attributed to a failure of the detoxifying activity of
ALDH2. This hypothesis is supported by the correlation
between ALDH2 loss-of-function mutations and a higher
incidence of AD [180]. Moreover, ALDH2 knockout
mouse models exhibit both neuronal and vascular patho-
logical changes associated with AD [183, 184]. In turn,
Aβ peptide toxicity can also impair mitochondrial ALDH2
activity [165]. Interestingly, this study shows that activa-
tion of ALDH2 has a protective role in endothelium
against Aβ1-40 insult [165]. Treatment with ALDH2-spe-
cific-activator, Alda-1, significantly protects mitochondria
function and reduces neuronal cell death in animal models
of parkinsonism [178, 180, 185]. Due to its crucial role in
maintenance of mitochondrial normal function, the use of
ALDH2 activators would protect both vessels and neurons
from neurotoxicity; thus, ALDH2 activation may represent
a therapeutic target to treat neurodegenerative diseases.

5. Advanced Glycation Endproducts Mediated
Neurotoxicity and Their Influence on
Redox Metabolism

Neurodegeneration-mediated neurotoxicity can be induced
by glycation reactions. Early glycation adducts mainly consist
in Amadori products generated by the rearrangement of a
Schiff base, resulting from the reversible reaction between a
carbonyl group and protein amino group, mainly from lysine
or arginine residues [186]. Even though the formation of
Schiff bases is a reversible process, early glycation adducts
can further rearrange through cyclization, oxidation, dehy-
dration, or condensation reactions, leading to irreversibly
bound adducts known as advanced glycation end-products
(AGEs) [187, 188] often responsible for protein cross-links
[189]. Since glycation is a nonenzymatic process, proteins
characterized by a slow turnover are those that more easily
accumulate AGEs [187]. In human tissues, AGE formation
was first studied in relation to high blood sugar levels and
diabetes, but more recently, other compounds such as glycer-
aldehyde, glycolaldehyde, glyoxal, and methylglyoxal have
been recognized responsible for glycation reactions [190].

Methylglyoxal (MG), an α-ketoaldehyde, can occur as
glycolysis by-product, but it is also present in foods (espe-
cially cooked and baked), beverages (mainly those fermen-
ted), and cigarette smoke, and it is considered the most
potent precursor of AGE formation [191, 192]. In fact, it
results 20,000 times more reactive than glucose in glyca-
tion reaction [193]. More than 20 different AGEs have
been identified in foods and in human tissues. The most
important ones are represented by pyrraline, pentosidine,
carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL),

and methylglyoxal-lysine dimer (MOLD) [194, 195]. Due
to MG and other carbonyl reactivity and toxicity, eukary-
otic organisms have developed specific enzymes to detoxify
them. The glyoxalase system, in fact, is composed of
glyoxalases I and II and combines α-ketoaldehydes to
GSH to produce D-hydroxyacids [196]. Other enzymes
and proteins contribute to counteract glycation; indeed,
fructosamine-3-kinase catalyses fructosamine phosphoryla-
tion determining protein deglycation [197], and aldose
reductase contributes to α-oxoaldehyde reduction [198].

Beside diabetic complications, AGE accumulation in
blood and tissues has been related to many chronic and
degenerative diseases, such as neurodegenerative and car-
diovascular diseases, atherosclerosis, and cancer, to induce
cell signalling impairment, oxidative stress, and inflamma-
tion, as well as protein aggregation and cross-links [16]. In
this context, AGE accumulation, oxidative stress, and
inflammation are related to AGE ability to bind specific
receptors called RAGE. Indeed, the activation of the
AGE pathway can deregulate gene transcription, the sig-
nalling between cells and the extracellular matrix, and
blood proteins, leading them to bind to RAGE on macro-
phages that, in turn, increase the release of growth factors
and proinflammatory cytokines [199].

RAGE belongs to the immunoglobulin superfamily and
is found in numerous tissues such as cardiac, vascular,
pulmonary, and brain tissues. Moreover, their expression
increases during aging, cancer, cardiovascular diseases,
AD, PD, and other neurodegenerative diseases [200–205].
Although they were first described as AGE binding recep-
tors, many other ligands have been discovered, such as
S100 family molecules as well as high-mobility group pro-
tein 1, known to be involved in inflammation and Aβ
aggregation processes [206–208].

As soon as AGEs and other ligands accumulate, RAGE
expression is induced [209] and elevated levels have been
described in all the aforementioned pathological conditions
and aging [203, 204].

AGE-RAGE binding activates numerous signalling path-
ways related to inflammation, oxidative stress, and apoptosis.
RAGE activation has been demonstrated to induce NF-κB,
which in turn is responsible for an increased expression of
proinflammatory cytokines [210] and for the activation of
the MAPK signalling pathway through the phosphorylation
of extracellular signal-regulated kinases (ERK1/2), p38, and
JNK, leading to inflammation, proliferation, and apoptosis
[211]. Moreover, AGE-RAGE binding results in oxidative
stress by the induction of the prooxidant enzyme NADPH
oxidase (NOX2) [212]. RAGE is not the only group of recep-
tors able to bind AGEs. In fact, AGER1-3 are involved in
AGE detoxification by binding them on the cell surface and
regulating their endocytosis to reduce oxidative stress,
RAGE, and inflammation [213]. Interestingly AGERs are
downregulated in many chronic diseases and in the presence
of high AGE concentration [214, 215].

It is well known that AGE accumulation and oxidative
stress play a central role in the pathogenesis of neurodegener-
ative diseases [216]. The brain, despite its high metabolic rate
and oxygen consumption, is characterized by poor
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antioxidant defences; indeed, it presents weak expression of
antioxidant enzymes as well as low levels of GSH and other
antioxidants [217]. These aspects make the brain particularly
prone to oxidative damage. In this context, AGEs play a dual
role, since their formation is increased in oxidative condi-
tions and because they promote oxidative stress [218]. AGE
accumulation has been observed in brains affected by AD
and PD as well as other neurodegenerative disorders [219].
Both Aβ plaques and NFT present AGE-induced protein
cross-links, and Aβ aggregation is accelerated and stabilized
in the presence of AGEs [220]. Besides their role in the stabi-
lization of both Aβ and NFT, AGEs have been implicated
also in their formation. Ko et al. demonstrated that AGEs
induce APP expression, and also, glycated tau protein
induces oxidative stress [221, 222]. Moreover, Aβ has been
recognized as a RAGE ligand; Aβ-RAGE binding contributes
to the disease progression by inducing neuroinflammation
and oxidative stress [223]. AGEs have been demonstrated
to contribute also to the aggregation of α-synuclein, a protein
rich in lysine residues, to form Lewy bodies, a well-known
biomarker of PD (Figure 2) [224, 225].

Beside pharmacological approaches, mainly focused on
targeting RAGE [223, 226], a natural substance approach
appears promising. Vitamin B1, being a coenzyme of
transketolase, contributes to its activity and reduces the
accumulation of glycolytic intermediates responsible for
glycation’s reactions [227]. Some flavonoids and other
polyphenols have been proposed as safe candidates to
delay the progression of AGE-mediated inflammatory dis-
eases [228]. Some polyphenol-rich extracts, such as pome-
granate, have been demonstrated to inhibit glycation or to
trap MG in cell-free in vitro systems [229, 230].

Epigallocatechin gallate (EGCG) demonstrated to exert
protective effects in vitro against AGE toxicity in neuronal
cells. Lee and Lee showed, in SH-SY5Y cell culture, that 5-
10μM of EGCG treatment counteracts oxidative stress, by
inducing superoxide dismutase (SOD) and catalase (CAT),
decreases MG levels and AGE formation, and downregulates
RAGE expression [231]. In an in vivo rat model of AD, res-
veratrol (Res) has been found able to decrease RAGE expres-
sion at the hippocampus level and to exert anti-inflammatory
effects as demonstrated by the decrease of NF-κB protein
expression [232]. Other studies have related Res anti-
inflammatory properties to the induction of sirtuin 1 (SIRT1)
protein, as demonstrated by Wang et al. in an in vivo rat
model of AD. In SH-SY5Y cell culture, Res treatment coun-
teracts oxidative stress and apoptosis induced by AGEs
[201, 233, 234]. Recently, quercetin has been demonstrated
to counteract dietary AGE-induced cognitive impairment in
old ICR mice by inhibiting ERK1/2 and tau protein phos-
phorylation [235]. Angeloni et al. demonstrated that sulfo-
raphane (an isothiocyanate from Brassica vegetables)
protects SH-SY5Y neuronal cells against MG-induced dam-
age by inhibiting the activation of caspase-3 enzyme and
reducing the phosphorylation of ERK1/2, JNK, and p38 sig-
nalling pathways.

Moreover, sulforaphane was able to counteract oxidative
stress and to increase intracellular GSH levels and the expres-
sion, and activity, of glyoxalase 1 [236, 237]. Bioactive sub-

stances from Olea europaea, such as oleocanthal and
hydroxytyrosol, are able to counteract the glycation processes
[238, 239]; moreover, oleocanthal treatment improves GSH
intracellular content and counteracts oxidative stress in
neuron-like cell culture [240]. Recently, Angeloni et al. ana-
lysed the relationship between oleocanthal and AD suggest-
ing that, besides its effects to interfere with tau protein
hyperphosphorylation and aggregation and its ability to
induce Aβ efflux and clearance, it might counteract AD’s
progression by reducing glycation in the brain, thanks to its
positive effect on the GSH level, and to its ability to decrease
oxidative stress [241].

Regardless of neurodegenerative diseases, the possibility
to counteract the glycation processes and AGEs’ toxicity
using bioactive substances has recently been corroborated
by the fact that activators of the Nrf2 signalling pathway have
been able to induce the expression of genes involved in car-
bonyl stress resistance. It has recently been shown in SH-
SY5Y cell cultures that the activation of Nrf2 by carnosic acid
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Figure 2: The vicious circle of the principal pathways involved in
RAGE activation. AGE-RAGE binding activates different
signalling pathways, in particular MAPK, PI3K, and NOX2,
inducing inflammation, apoptosis, and oxidative stress. Moreover,
the increased levels of NF-κB induced the expression of RAGEs.
The inflammatory response is also enhanced by the disruption of
tight junctions at NVU that compromises also the BBB integrity.
Oxidative stress is increased also by the high level of NF-κB and
by the consequent increment of MMP2-9. In aging, elevated ROS
levels are not efficiently counteracted by endogenous antioxidative
defences, and, as a consequence, AGE formation is increased.
AGEs not only stabilize Aβ oligomers and NFT but also increase
their formation. In addition, Aβ oligomers can also bind RAGE
and activate the inflammatory/oxidative cascade. Finally, Aβ
oligomers can trigger the impairment of mitochondrial ALDH2,
leading to endothelial dysfunction and BBB leakage.
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causes an increase in the expression of factors involved in the
synthesis of GSH and allows the detoxification of MG
through the glyoxalase system, thus protecting the cells from
MG-induced carbonyl stress [242].

In the light of these perspectives, it is now possible to
speculate that the aforementioned protective effects of natu-
ral bioactive molecules against glycation and AGE’s toxicity
might be, at least in part, due to the modulation of Nrf2 as
a key regulator of the inflammatory response and the oxida-
tive damage related to neurodegeneration.

6. Conclusions

Neurodegenerative diseases have shown to share similar
features. Although they have not been well characterized
yet, oxidative stress, inflammation, excitotoxicity, and neu-
ronal loss seem closely related in the evolution and pro-
gression of both chronic and acute conditions. Because
of the high rate of oxygen consumption and the low
detoxification mechanisms, the brain is an organ exten-
sively exposed to oxidative stress [243]. The complex
structure and functions of the brain still do not permit
to clearly describe how neurodegeneration could evolve.
The urgent need to study the intricate molecular mecha-
nisms behind the onset and progression of neurodegener-
ative disease appears undeniable, in order to design more
effective therapeutic strategies.

In this scenario, an intervention able to slow down or
arrest the evolution of pathology could be the keystone in
the treatment of these pathologies. A neuroprotective strat-
egy interfering with the inflammatory response and oxidative
stress may modulate positively the progressive impairment of
the patients’ quality of life. Neuroprotection could work in
synergy with the endogenous defences, quenching ROS for-
mation or restoring the antioxidant GSH system and its
related enzymes and not less important slowing down the
progressive neuronal death.

In the present review, we describe the complex network
of molecular mechanisms underpinning acute and chronic
neurodegeneration, focusing on the disturbance in redox
homeostasis, as a common mechanism behind five pivotal
risk factors: aging, oxidative stress, inflammation, glycation,
and vascular injury. Aging is the primary unchangeable risk
factor, and it is characterized by an extensive stress condition
that enhances the loss of homeostasis, involving in particular
the immune and inflammatory responses, which, in turn,
increases oxidative stress generating a vicious circle [58].

Considering the complex multifactorial nature of neu-
rodegenerative diseases, a preventive strategy able to
simultaneously target multiple risk factors and disease
mechanisms at an early stage is most likely to be effective
to slow/halt the progression of neurodegenerative diseases.
The holistic approach to neurodegeneration in the present
review, taking into account and integrating several com-
mon risk factors, will provide critical insights that will
most likely contribute to significant advances in the quest
for new preventive pharmacological strategies to neurode-
generative disorders.
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