ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

Continuous Learning of HPC Infrastructure Models using Big Data Analytics and In-Memory processing Tools

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Continuous Learning of HPC Infrastructure Models using Big Data Analytics and In-Memory processing
Tools / Beneventi, Francesco; Bartolini, Andrea; Cavazzoni, Carlo; Benini, Luca. - ELETTRONICO. - (2017),
pp. 7927143.1038-7927143.1043. (Intervento presentato al convegno 20th Design, Automation and Test
in Europe, DATE 2017 tenutosi a SwissTech Convention CenterSwisstech, Lausanne; Switzerland; nel 27 -
31 March 2017) [10.23919/DATE.2017.7927143].

Availability:

This version is available at: https://hdl.handle.net/11585/613826 since: 2019-12-08

Published:
DOI: http://doi.org/10.23919/DATE.2017.7927143

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)

24 April 2024

http://doi.org/10.23919/DATE.2017.7927143
https://hdl.handle.net/11585/613826

This is the final peer-reviewed accepted manuscript of:

F. Beneventi, A. Bartolini, C. Cavazzoni and L. Benini, "Continuous learning of HPC
infrastructure models using big data analytics and in-memory processing tools," Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp.
1038-1043.

The final published version is available online at:

http://doi.org/10.23919/DATE.2017.7927143

Rights / License:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
http://doi.org/10.23919/DATE.2017.7927143

Continuous Learning of HPC Infrastructure Models
using Big Data Analytics and In-Memory
processing Tools

‘ Francesco Beneventi’, Andrea Bartolini'¥, Carlo Cavazzoni* and Luca Benini'$
"Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Italy
{francesco.beneventi, a.bartolini, luca.benini} @unibo.it
§Integrated Systems Laboratory, ETH Zurich, Switzerland {barandre, Ibenini} @iis.ee.ethz.ch
fCineca, Italy {c.cavazzoni}@cineca.it

Abstract—Exascale computing represents the next leap in the
HPC race. Reaching this level of performance is subject to several
engineering challenges such as energy consumption, equipment-
cooling, reliability and massive parallelism. Model-based opti-
mization is an essential tool in the design process and control
of energy efficient, reliable and thermally constrained systems.
However, in the Exascale domain, model learning techniques
tailored to the specific supercomputer require real measurements
and must therefore handle and analyze a massive amount of data
coming from the HPC monitoring infrastructure. This becomes
rapidly a big data” scale problem. The common approach
where measurements are first stored in large databases and then
processed is no more affordable due to the increasingly storage
costs and lack of real-time support. Nowadays instead, cloud-
based machine learning techniques aim to build on-line models
using real-time approaches such as “’stream processing”’ and ”’in-
memory”’ computing, that avoid storage costs and enable fast-
data processing. Moreover, the fast delivery and adaptation of the
models to the quick data variations, make the decision stage of
the optimization loop more effective and reliable. In this paper we
leverage scalable, lightweight and flexible IoT technologies, such
as the MQTT protocol, to build a highly scalable HPC monitoring
infrastructure able to handle the massive sensor data produced
by next-gen HPC components. We then show how state-of-the art
tools for big data computing and analysis, such as Apache Spark,
can be used to manage the huge amount of data delivered by
the monitoring layer and to build adaptive models in real-time
using on-line machine learning techniques.

I. INTRODUCTION

It is expected that exascale computing systems will have
thousands of nodes each embodying hundreds of cores, large
memory hierarchies and featuring a wide range of parallel
accelerators, as well as a complex inter-node communication
system. Such a complexity and variety of components re-
quire large efforts to guarantee efficiency in parallel system
programming, application execution and power consumption
[1], [6], [13]. Moreover the increased number of components
inevitably grows the hardware failure risk putting serious con-
cern about exascale system reliability and MTTF [4]. In this
scenario it is clear that the real-time evaluation of the applica-
tions performance, together with the accurate measurement of
the node energy consumption, are of fundamental importance.
Monitoring infrastructure are widely used in the HPC field at
any level. The main usage of the monitoring data is oriented
to the HPC facility management such as HW diagnostic for
failure prevention, resource availability, capacity utilization,
cooling systems, energy consumption, billing and application
performance [5], [15], [16]. The fast growing demand of
performance and data volume, dictated by the impending
exascale milestone, require a facility management that can

proactively react to failure events, thermal emergencies and
unexpected high power consumption phases. Predictive models
represent one of the tool that can help in optimal design
choices and fast decision making [16]. In the design stage,
models help operators to optimally tune and size data-centers
components for a given energy and performance budget. Mod-
els can be used also during the data-center operational lifetime.
When cross coupled with a monitoring infrastructure, they
use real-time data to build predictions about energy efficiency,
reliability, and availability of the whole system given a certain
workload scenario as input [3], [16]. As an example authors
in [3], [12] show that power capping techniques can take
advantage of workload based power models to efficiently
schedule jobs in power constrained systems. However, final
performance (energy/cooling efficiency and capacity gain) are
bounded by the accuracy of the model itself.

Common techniques to build models are composed of
several steps. (i) Data measurement: relevant sensor data are
collected and saved in storage system as databases. (ii) Model
computation: offline regressive algorithms or machine learning
approaches are used to generate the mathematical model. (iii)
Model validation: this stage asserts the model quality and
usability. From the exascale point of view, the model design
flow described above opens several challenges: (i) The huge
number of components to be monitored dramatically grows
the data to be measured and stored, bringing to high storage
costs. (ii) Models learned offline often lack accuracy and suffer
non-linear effects when applied to on-line applications and
the operating-point is too far from the dataset used in the
learning stage. (iii) Validation of the model can be made only
taking into account past measured data; future unknown events
may generate unwanted and erroneous model outputs, and thus
producing wrong predictions.

From the previous analysis it is clear that off-line model
learning techniques are not effective in providing fast re-
sponses to the extreme huge number of events that can happen
in an exascale system. In contrast, on-line model learning
techniques can be the answer to fast model adaptability and
thus high accuracy. However, new challenges arise as the
handling and elaboration in real time of massive quantity of
data. ”Big data” and “fast data” are hot topics today in the
scientific community [7] that is involved in the development
of tools capable to ingest and elaborate enormous quantity of
real-time data in a streaming fashion [11].

In this paper we adopt Apache Spark, one of the emerging
framework for cluster-based computing with stream processing

and in-memory computing capability, as a tool for the on-line
model learning stage. The monitoring infrastructure founda-
tions instead are based on the Message Queuing Telemetry
Transport (MQTT) technology, which guarantees scalable and
flexible data sharing [8]. Moreover, we present a full machine
learning pipeline, oriented to build models for HPC infras-
tructures, including both the monitoring layer and the learning
stage. Our contributions are:

o A scalable and lightweight MQTT-based monitoring in-
frastructure, which has the task of collecting meaningful
sensor data from all the relevant HPC hardware com-
ponents and software applications. The collector compo-
nents exploit the MQTT protocol to exchange data with
the upper layers of the monitoring framework and have
specialized functions to access the multitude of sensors
infrastructure present in the HPC nodes, such as in cores
PMU, IPMI, GPU and many others.

e A complete Spark back-end architecture as a streaming
application able to interfacing to the monitoring layer
and build models on-line. The overall infrastructure is
completely reusable for the learning of different kinds of
models, thanks to the flexibility derived by the MQTT
protocol semantic.

o In this work, we specialized the learning algorithm to
build the power model of the CPUs in the node as a use
case.

o Characterization of the performance of the system both
in a single and multi-node setting, with meaningful use
cases of online modeling.

The paper is organized as follow. Section II shows the
related work. Section III introduces the monitoring framework
which will feed the data to the big data analytic engine which
is presented in Section IV. Finally Section V quantifies the
framework performance in a practical use-case.

II. RELATED WORK

There are today several tools available for monitoring
a computing-cluster with different focuses. Ganglia [10] is
widely used by system administrators to monitor the system
status and resource usage and spot out maintenance problem.
For these reasons, it has not been designed for precise sam-
pling time and accurate measurements and thus cannot be used
for fine-grain monitoring and application profiling. In addition
the internal monitored data redundancy and the polling mea-
surement approach impose trade-offs between scalability and
granularity. Profiling libraries [2] provides APIs for accessing
architectural events and physical run-time parameters directly
from the computing nodes and monitored resources. While this
approach is suitable for application profiling, it comes with a
intrinsic overhead and an induced-perturbation in the observed
system. The msr-safe [14] kernel module in Intel CPUs allows
to directly access the performance counter registers enabling
customized and low-intrusive monitoring frameworks. How-
ever, when targeting monitoring of large-scale systems the
communication protocols become a limiting factor. In recent
years the MQTT protocol has emerged as a lightweight and
scalable data-exchange protocol. It is characterized by a small
packet header composed of only two bytes. It implements
the publisher-subscriber communication protocol and allows to
trade-off latency, overhead and transmission quality by mean
of three QoS levels [8]. Several frameworks for real-time data
analytics are emerging to address the fast processing of big

data [11]. Apache Spark offers, among others, both batch
and streaming processing capabilities, several interfaces for
different data sources, a full and well supported machine learn-
ing library (MLIib) and the support of several programming
languages for the application development. To the best of our
knowledge this is the first work which combines an MQTT
based monitoring framework in HPC computing systems with
big data analytics and in-memory processing using Spark to
delivery a scalable and flexible real-time model learning tool
for large-scale green HPC systems.

III. MONITORING FRAMEWORK

In this section, we give a high-level description of the
monitoring infrastructure. In the next sections we will describe
in detail the relevant components used for this paper.

52 o Model
I N
Grafana Spark

MQTT Broker

on

Spark
Streaming

Visualizati
storage and
processing

Fig. 1. Model-learning framework

A. System overview

The model-learning framework described in this paper is
composed of several components. With the help of the hier-
archical view showed in Fig.1 we can distinguish four main
groups. Starting from the bottom:

Sensor collectors: These are the low-level components
having the task of reading the data from the several sensors
scattered across the system and deliver them, in a standardized
format, to the upper layer of the stack. These software com-
ponents are composed of two main objects, the MQTT API
and the Sensor API object. The former implements the MQTT
protocol functions and it is the same among all the collectors
while the latter implements the custom sensor functions related
to the data sampling and is unique for each kind of collector.
Considering the specific sensor API object, we can distinguish
collectors that have direct access to hardware resources like
PMU, IPMI, GPU, MIC, 12C and PMBUS and collectors that
sample data from others applications as batch schedulers (PBS
and Slurm) and tools as perf, PAPI, and PCM.

Communication layer: The framework is built around the
MQTT protocol. MQTT implements the publish-subscribe
messaging pattern and requires three different agents to work:
(i) The publisher, having the role of sending data on a
specific topic. (ii) The subscriber, that needs certain data so
it subscribes to the appropriate topic. (iii) The broker, that
has the functions of (a) receiving data from publishers, (b)
making topics available to subscribers, (c) delivering data to
subscribers. The basic MQTT communication mechanism is
as follows. When a publisher agent sends some data having a
certain topic as a protocol parameter, the topic is created and
available at the broker. Any subscriber to that topic will receive

the associated data as soon as it is available to the broker. In
this scenario, collector agents have the role of publishers.

Visualization, storage and processing: Data published by
the collectors is currently used for three main purposes:
(1) Real time visualization using web-based tools (Grafana).
(i1) Short-term storage in NoSQL databases (Cassandra) use-
ful both for visualization and for batch processing (Apache
Spark). (iii) Real time data processing (Spark Streaming). We
developed the adapters to interface Grafana and Cassandra
to the MQTT broker and thus to the data published by the
collectors. The adapters are MQTT subscriber agents that
establish a link between the communication layer and every
specific tool. Apache Spark instead has its own MQTT receiver
that however, as we will see in the following sections, we
slightly modified to improve the data management.

User applications: Finally, in the upper layer of the stack,
there are all the other applications that can be built on top of
the layers below, as infrastructure monitoring, model learning,
process control, data analytics and so on.

B. CPU power modeling

The focus of this work is to show how, the general-purpose
infrastructure described in section III-A, can be specialized
to do on-line model learning using big data processing tools
and real time measured data. In this section, we introduce the
model that we will use as a test case.

As a proof of concept, we implemented an on-line learning
pipeline to determine the parameters of a simple power model
of a computing node CPUs. More in detail, the target machine
is a classical dual CPU node based on an Intel Haswell
processor with N, = 16 total cores (8 per CPU). We use the
following equation to formalize the model of the CPU power:

Ne—1
Pogor1 = Y, (ai+biIPS)f; (1)
i=0
where Pyre041 is the sum of the CPUO and CPUI package
power, a; and b; are the fitting parameters, while IPS; and f;
are respectively the instructions per second and the frequency
of the i-th core. The dynamic power of the core is mainly
modeled by the term b-IPS - f where the IPS is used as a proxy
to track the core switching activity. As can be seen, this model
neglects a constant term that should model the power when
f=0. This condition however is not directly measurable in our
case since, during its normal operation, the CPU frequency
range is between 1.2GHz and 3.2GHz, so the term a-f takes
into account the core power when it is in idle state.

C. Data measurements

As described in equation (1), the model relies on the per-
core frequency, IPS and per-CPU package power consumption.
To measure these quantities we used the PMU sensor collector.
This component is a per-node daemon process that accesses
the PMU of each core and samples, at a given Ty, rate,
the performance counters using low level MSR read/write
operations. It is also capable of accessing the RAPL registers
available in the Intel processors to collect the per-CPU power
consumption data. The PMU collector, at the end of the
sampling stage, delivers each metric to the MQTT broker
under a hierarchical topic structure: for the per-core metrics it
is <organization name>/<cluster name>/<node
name>/pmu/core/<core number>/<metric
name> while, in the case of per-CPU metrics, it is

<organization name>/<cluster name>/<node

name>/pmu/cpu/<cpu number>/<metric name>.

The payload of the MQTT message is in both the cases:
<value>; <timestamp>. The MQTT broker is a dacmon
process that can run on non-computing nodes as login nodes
to minimize infrastructure intrusiveness. Now that the data is
available at the broker, as a temporal sequence of samples, it
can be ingested and processed by the computing engine. In
the next section we will describe how MQTT data is loaded
into Spark and how is preprocessed for the learning stage.

IV. SPARK
A. Spark

In this work we use Apache Spark version 1.6.1, and more
precisely the Spark Streaming extension, to process in real
time the data available on the MQTT broker. Spark Streaming
is built on top of Spark (core) so we first introduce its
basic concepts. Finally, we explain the basic Spark Streaming
building blocks and how it is interfaced with the MQTT
monitoring infrastructure.

Spark is a general-purpose analytics computing engine for
very large-scale data processing. What is unique in Spark
is its ability to share data between processing steps due its
in-memory computing architecture. The Resilient Distributed
Dataset (RDD) [17] is at the core of the Spark framework. A
RDD is a data structure that collects partitions. Each partition
contains a subset of the original data loaded into Spark. The
key concept is that data is processed serially within a partition
and each partition can be processed in parallel. Once the
data is loaded into Spark and become an RDD, the data is
partitioned implicitly (accordingly to the numbers of cores
present in the Spark cluster) or based on user parameters.
Thus, the number of parallel workers that execute in a Spark
cluster are strictly related to the number of partitions in each
RDD. Spark is provided with some fundamental extensions: (i)
SparkSQL: This allows Spark to efficiently accesses SQL and
NoSQL databases for batch processing. (ii) Spark GraphX:
This library enables graph processing on connected entities.
(iii) Spark Streaming: This adds the real-time data processing
capabilities to Spark. (iv) SparkMLIib: This is a collection
of machine learning algorithms tailored on the Spark data
processing model.

B. Spark Streaming

To enable real-time processing, Spark Streaming introduces
the concept of Discretized Stream (DStream). A DStream is
a temporal sequence of RDDs created by dividing the input
stream of data in small batches. Thus, the transformations
executed on a DStream are executed on every RDD using the
Spark (core) engine. Transformations produce other DStreams
containing modified RDDs. DStream supports output opera-
tions, analogous to the actions for RDDs, that enable the trans-
fer of the processing results to external systems or filesystems.

In Fig.2 is summarized the basic Spark Streaming architec-
ture coupled with the MQTT monitoring infrastructure. The
Spark user program executes on the driver process. It sends
tasks to executors that run on the worker nodes distributed
along the cluster. The input receiver is a special task that
connects with external data sources to receive streaming data.
The Spark framework provides, among others, a basic MOQTT
receiver that subscribes to topics and returns messages. How-
ever the current version of this component implements a very

Driver Program Worker

Executor
Long Task

Input Receiver
(MQTT)

Streaming

Input stream
Context

BROKER
(mMQrT)

Data replicated to
another worker node

Worker

Spark
Context

Executor
Tasks to process

K Task mart
received data

publisher
Output results
Task

Cache

Fig. 2. Spark Streaming architecture and the MQTT interface

basic subset of the MQTT functionality. We modified the orig-
inal MQTT receiver adding some features such as the “topic
name” (associated to the received message) in the returned data
structure. We will see later how this information is essential
for the data flow management into Spark. The receiver divides
the input stream in blocks forming the sequence of RDDs. At
every batch interval the driver instantiates tasks on the workers
to process these blocks of data. Finally, the results are sent
out from Spark. We implemented a MQTT publisher object
that is created only once on the worker nodes and is reusable
among different tasks. The publisher takes the results of the
processing stage and sends them back to the MQTT broker,
making data available to other external components, such as
data visualization systems or databases. In the next section,
we will describe the model learning application that is built
on top of the software architecture described above.

BROKER
(MQTT)

Core IPS
1PS[0..N]

Package power
Poxgl0:-Nepy]

Core frequency
l0..N]

marT
receiver
CreateStream()

marT
receiver
CreateStream()

marT
receiver
CreateStream()

Data
Ingestion

Union

Maqtt

DStream

P —

_

Map() GroupByKey()

Mapping and
filtering

LabeledPoints() Window()

g
/StandardScaler() 3

Label = sum(P;,[0..Npy])
Features =

Spark Streaming
Feature
assembly

[F[0..N 1, (F*IPS)[0..N,]]

StreamingLRegressionWithSGD()

Model
P(f,IPS)=(a+b*IPS)*f

Training

Publisher

Model
delivery

Fig. 3. Spark Streaming driver program for model learning

C. Model learning application

In this section, we describe the main steps involved in the
model training using the Spark Streaming API. We also show
how the hierarchical structure of the topic namespace can be
used to easily manage the Spark data-flow and build scalable
algorithms. To train the power model (1) we used SparkMLIib,
the scalable machine learning library built around the Spark
framework. This ensures high performances since algorithms

well exploits the in-memory computing capabilities of Spark.
For the training of on-line models the SparkMLIib library
provides the StreamingLinearRegressionWithSGD() API. It
essentially implements a streaming linear regression using the
Stochastic Gradient Descent (SGD) method. This algorithm
solves the following optimization problem:

min f(w) (2)

weRd

where w is the vector of weights having d components and

1

fw) ==Y L(w:xi,y) 3)
i=1

S|

where x; € R? is the training vector or features and y; € R? is
the data we want to predict or labels. The loss function is:

L(w;Xj,y;) = %(WTX *y)z 4)
In the streaming regression algorithm, at each sample of the
input stream, the optimization algorithm executes ¢ iterations
to update the weights w as: w1 := w() — Yf'wi Where 7 is
the step-size or learning rate hyper-parameter and f”,,; is the
stochastic subgradient. 7

We need to map our power model (1) to the optimization
problem described above in order to use the SparkMLIib API.
The weights vector is formed as w = [ao,...,an,,bo,...,Dn,]
while, assuming to have f = [fy,...,fx,.] as the vector of the
per-core frequencies and IPS = [IPSy,...,IPSy,] as the vector
of the per-core IPS, the final features vector is:

x = [fo, .., I, (£-IPS)g, ..., (£ TPS) y | (5)
and the corresponding labels are:
Nepy—1
v="Y Py 6)
i=0

The MLIib API provides the LabeledPoints object, com-
posed by the labels and the features vectors. It is used as
input dataset to the learning algorithms implemented in the
library. One of the main tasks of the Spark driver program is to
transform the stream of data, arriving from the MQTT broker,
into an ordered sequence of LabeledPoints objects that are
going to feed the learning algorithm. The Spark program used
for the model learning is described in Fig. 3 and is composed
by the following stages:

Data ingestion: In this first step, the program creates
the MQTT receivers that subscribe to the selected top-
ics and receive messages. In this stage, we leverage the
wildcards provided by the MQTT protocol to easily sub-
scribe to the per-core metrics. For example, assuming the
topic hierarchy defined in Section III-C, using dummy
names as example, we can subscribe to the frequency top-
ics of all the cores of the node named “node001” using
"AAA/BBB/node001/pmu/core/+/freg" as a topic in
the MQTT receiver. Doing the same for the remaining metrics,
the modified version of the MQTT receiver returns a DStream
containing objects formed as <topic name>; <message>.
The <topic name> field is critical because contains the
metric name and the core number information needed to
correctly build the feature vector. The <message> field
contains the MQTT payload that, in our system is defined
as <value; timestamp> corresponding to the metric.

Mapping and filtering: In this stage, we ensure that the
messages are temporally consistent. Using a sequence of
transformations, we create a unique DStream of key-value
objects grouped and sorted by key (timestamp).

Feature assembly: In this step we build the labels and
features vectors (LabeledPoints) as defined in (5). To properly
build the vectors, we use the core index information and the
feature names stored in the topic name fields of the object.

Scaling: We standardize the features before passing the data
to the learning algorithm. Due to the large variance of the
measured values, especially for the IPS feature, the algorithm
performance can decrease. We scaled all the feature to unit
variance before the training. The features variance is calculated
on a time window of one hour of data at each interval of the
streaming algorithm.

Training: Finally the model is trained using the algorithm
described in this section.

Model delivery: At each streaming batch interval, the result-
ing model parameters are published to the MQTT broker. Any
external system that needs an updated model can subscribe to
the corresponding topic and receive the parameters in a timely
fashion.

Service Nodes

Computing Nodes

Sensors Collectors

<
elalsleels[zlel«[2] |
. E!!!llﬂ!!!lnl

' BROKER
‘ (marm)

BROKER
(marm)

HPC Cluster

BROKER
(marm)

Fig. 4. Scalable model learning infrastructure

V. RESULTS

In this section we analyze the accuracy, scalability and
overhead of the proposed modeling framework. We first cre-

100

T T
=0 Ts=1ms
80 [{ =—O— Ts=10ms
—0— Ts=1s

CPU (%)

O O

Vv v A v \ Y

0 16 32 48 64 80 96 112 128 144
Noisy Subscribers (#)

Fig. 5. Broker process overhead

ated a test environment following the architecture showed
in Fig. 4 and using a mini-cluster composed by 8 nodes of
a working production system (Galileo at Cineca) as a case
study. Each node is equipped with two 8-cores Intel Haswell
CPUs (E5-2630 v3 @ 2.40GHz) and 128Gb of DRAM. We
instrumented the mini-cluster with the MQTT monitoring
infrastructure installing on each node the "PMU collector”
while the "Broker” and the ”Spark cluster” were installed on a
service node (Intel Haswell E5-2670 v3 @ 2.30GHz, 24 cores
and 128Gb DRAM).

Broker overhead: We used Mosquitto [9] as a MQTT
broker. It is a single thread user space process and we
measured its overhead (CPU usage) in different scenarios.
In Fig. 5 we considered a progressive number of concurrent
clients (Noisy Subscribers) that publish messages at different
sampling rates. It results that its overhead, for sampling rates
greater than 1 second, is negligible and has a low sensitivity to
the increase of the clients number. Considering these results,
the broker process can be executed also on the target node
when low latency in the MQTT packets is required. We
measured the latency considering two cases: broker running on
the frontend and on the computing node. Figure 6 shows the

MQTT Latency

200 T T
/A Broker@Node
S 150 - [] Broker@Frontend i
°
c
Q
2
$ 100 - 1
o
2
E s0r H 1
0
0 3 7 1 14

Noisy Subscribers (#)
Fig. 6. MQTT packets latencies

delay of a MQTT packet (40 byte) delivered by the broker. We
considered the worst cases (on the x-axis) of multiple “’noisy
subscribers” that concurrently publish messages on the broker
to increase its overhead and to measure their influence on the
packets latency. As expected, the latency is more than halved
when the broker is executed on the node but, in this case,
the broker workload should be taken into account. Though
Mosquitto is a single thread process, it offers the opportunity
to link more broker processes together (bridging), sharing the
same topics namespace and thus allowing a scalable broker
infrastructure.

PMU collector overhead: The overhead of this component
is critical since it executes on the cores of the target nodes and
should have the lowest possible intrusiveness in the system.
It is a single thread process. We measured its CPU usage at
different sampling intervals, obtaining the results showed in
Fig. 7. For instance, considering a sampling rate of 20ms, the
overhead is less than 10% of the usage of a single core, while
for the case of 1 second it decreases to less than 1%.

1072 107" 100 10"
Sampling Time (Seconds)

Fig. 7. PMU collector overhead

Model accuracy: We evaluated the accuracy of the model
learning application described in Section I'V-C. In this test, we
executed eight learning applications (Spark jobs) one for each
node of the target mini-cluster, in order to train one power

model per node in real-time. The submitted programs are
exactly the same for each job, except for the “node name” field
in the MQTT topic. The sampling rate of the PMU collectors
is Tgamp = 2 seconds. In Fig. 8a is showed the evolution

140

120

100

o
=]
[S]

a
o
o

Frequency
L

Actual
= Prediction
I

0 200 400 600 800
Samples

0 i
-50 -40 -30 -20 -10 0O 20 30 40 50
I(:)rror (\}\9)

I
1000 1200

Fig. 8. Measured power vs. model prediction

of the model output compared to the real measurements.
The Figure highlights the transition between two different
workload phases running on the node. The on-line training
algorithm is capable to capture in real-time these behaviors
and quickly adapts the model parameters as showed in Fig. 9.
The accuracy of the model is depicted in Fig. 8b denoting in
this case an average error of 0.0254W.

0.2

e
o

Parameters Values
o

o
o
5}

|
0 200 400 600 800 1000 1200
Samples

Fig. 9. Power model parameters

Spark overhead: Finally we evaluated the resource needed
by the Spark jobs in terms of CPU and DRAM usage of
the service node. At every sampling interval Ty, new data
arrive in the Spark cluster and, as a consequence, a new set of
tasks is scheduled and executed by the computing engine. In

100 T T T

Memory Usage
==0O=— CPU Usage b

80

60 - b

(%)

40F 1

“ M b
—0O I N

0
1 2 3 4 5 6 7 8
Spark Jobs (#)

Fig. 10. Resources used by the model learning applications

Fig.10 we considered the cases with an incremental number of
learning applications concurrently running (x-axis). The error
bars in the plot show the minimum and the maximum CPU
usage corresponding to the idle and computing stages, while
the point in the middle represents their average value.

VI. CONCLUSION

In this paper, we introduced a scalable model-learning
framework tailored for the upcoming exascale HPC systems.
We presented the main building blocks, starting from the
monitoring infrastructure, based on scalable and lightweights
communication protocols, until the application layer. As a use
case, we showed how is possible to train on-line models using
Apache Spark, a real-time distributed in-memory analytics
engine, that processes data coming from the HPC equipment.
The application implemented in this paper can be largely
reused to train a broad range of complex models, replacing
the basic model used in this work as a test case. Moreover,
we showed how the flexibility of the MQTT protocol alleviates
the complexity of the data flow management, augmenting the
overall modelling capabilities. Finally, we evaluated the accu-
racy, overhead and scalability issues of the main framework
components, such as the sensor data collector, the message
broker and the stream processing engine.

VII. ACKNOWLEDGMENTS

This work was supported, in parts, by the FP7 ERC Advance project MUL-
TITHERMAN (g.a. 291125), by the EU H2020 FETHPC project ANTAREX
(g.a. 67623) and by the EU H2020 FETHPC project Exanode (g.a. 671578).

REFERENCES

[1] S. Ashby et al. The Opportunities and Challenges of Exascale Comput-
ing: Summary Report of the Advanced Scientific Computing Advisory
Committee (ASCAC) Subcommittee. Technical report, (ASCAC), 2010.

[2] S. Benedict. Energy-aware performance analysis methodologies for HPC
architectures: An exploratory study. Journal of Network and Computer
Applications, 35(6):1709 — 1719, 2012.

[3] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini.

Predictive Modeling for Job Power Consumption in HPC Systems, pages

181-199. Springer International Publishing, Cham, 2016.

F. Cappello. Fault Tolerance in Petascale/ Exascale Systems: Current

Knowledge, Challenges and Research Opportunities. Int. J. High

Perform. Comput. Appl., 23(3):212-226, Aug. 2009.

[5] C. Conficoni, A. Bartolini, A. Tilli, G. Tecchiolli, and L. Benini. Energy-
aware cooling for hot-water cooled supercomputers. In Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition,
pages 1353-1358. EDA Consortium, 2015.

[6] J. Dongarra et al. The International Exascale Software Project roadmap.
Int. J. High Perform. Comput. Appl., Jan. 2011.

[71 C. K. Emani, N. Cullot, and C. Nicolle. Understandable big data: A
survey. Computer science review, 17:70-81, 2015.

[8] S. Lee, H. Kim, D. k. Hong, and H. Ju. Correlation analysis of mqtt
loss and delay according to qos level. In The International Conference
on Information Networking 2013 (ICOIN), pages 714-717, Jan 2013.

[9]1 R. Light. Mosquitto-an open source mqtt v3. 1 broker, 2013.

[10] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed

monitoring system: design, implementation, and experience. Parallel

Computing, 30(7):817 — 840, 2004.

S. J. Morshed, J. Rana, and M. Milrad. Open source initiatives and

frameworks addressing distributed real-time data analytics. In 2016

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pages 1481-1484, May 2016.

O. Sarood et al. Maximizing throughput of overprovisioned HPC data

centers under a strict power budget. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, pages 807-818. IEEE Press, 2014.

J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology

challenges. In International Conference on High Performance Comput-

ing for Computational Science, pages 1-25. Springer, 2010.

K. Shoga, B. Rountree, M. Schulz, and J. Shafer. Whitelisting msrs with

msr-safe. In 3rd Workshop on Exascale Systems Programming Tools, in

conjunction with SC14, 2014.

H. Shoukourian et al. Monitoring power data: A first step towards

a unified energy efficiency evaluation toolset for HPC data centers.

Environmental Modelling & Software, 56:13 — 26, 2014.

A. Srbu and O. Babaoglu. Towards data-driven autonomics in data cen-

ters. In Cloud and Autonomic Computing (ICCAC), 2015 International

Conference on, pages 45-56, Sept 2015.

M. Zaharia et al. Resilient distributed datasets: A fault-tolerant ab-

straction for in-memory cluster computing. In Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementation,

pages 2-2. USENIX Association, 2012.

[4

=

(11]

(12]

[13]

[14]

[15]

[16]

[17]

