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Combining Learning and Optimization for Transprecision

Computing

Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, Michela Milano
DISI/DEI University of Bologna

Abstract

The growing demands of the worldwide IT infras-
tructure stress the need for reduced power con-
sumption, which is addressed in so-called transpre-
cision computing by improving energy efficiency at
the expense of precision. For example, reducing the
number of bits for some floating-point operations
leads to higher efficiency, but also to a non-linear
decrease of the computation accuracy. Depend-
ing on the application, small errors can be toler-
ated, thus allowing to fine-tune the precision of the
computation. Finding the optimal precision for all
variables in respect of an error bound is a complex
task, which is tackled in the literature via heuris-
tics. In this paper, we report on a first attempt to
address the problem by combining a Mathematical
Programming (MP) model and a Machine Learn-
ing (ML) model, following the Empirical Model
Learning methodology. The ML model learns the
relation between variables precision and the out-
put error; this information is then embedded in the
MP focused on minimizing the number of bits. An
additional refinement phase is then added to im-
prove the quality of the solution. The experimen-
tal results demonstrate an average speedup of 6.5%
and a 3% increase in solution quality compared
to the state-of-the-art. In addition, experiments
on a hardware platform capable of mixed-precision
arithmetic (PULPissimo) show the benefits of the
proposed approach, with energy savings of around
40% compared to fixed-precision.

1 Introduction

The energy consumption of computing systems
keeps growing and, consequently, considerable re-
search efforts aim at finding energy-efficient so-

lutions. A wide class of techniques belongs to
the approximate computing [XMK16] field, which
has the goal of decreasing the energy associated
with computation in exchange for a reduction in
the quality of the computation results. In this
area, a wide range of techniques have been de-
signed, from specialized HW solutions to SW-based
methods[Mit16]. In recent years, a new paradigm
called transprecision computing emerged[MSea18,
opr], where errors are not merely “tolerated” as
byproducts, but rather SW and HW solutions
are designed to provide the desired computation
quality. Floating-point (FP) operations are a
common target for transprecision techniques, as
their execution and related data transfers repre-
sent a large share of the total energy consump-
tion for many applications involving a wide nu-
merical range[KMBC14, CBB+17]. For instance,
Tagliavini et al. developed FlexFloat [TMea18], an
open-source SW library that allows to specify the
number of bits used for the mantissa and the expo-
nent of an FP variable: using a smaller number of
bits decreases the precision, thus saving energy.

With the possibility to fine-tune the precision of
application variables comes the challenge of finding
the best setup. This can be framed as an opti-
mization problem, solvable by paradigms such as
Mathematical Programming (MP). The idea is to
search for the minimal number of bits that can
be assigned to each variable without incurring in
a computation error larger than a target. This
method requires to analytically express the non-
linear relation between precision and the compu-
tation error, not a trivial task [MTDM17]. Static
analysis of the effect of variables precision is bur-
densome, and most current approaches have severe
limitations[DK17, CBB+17]. A possible solution is
to learn, rather than directly express, this relation
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via ML models. We could then embed this knowl-
edge in the optimization model and solve it. This
notion is the core idea of Empirical Model Learning
(EML)[LMB17], a technique to enable combinato-
rial optimization over complex real-world systems.

In this paper, we propose a novel optimiza-
tion method to find optimal variable precision in
a transprecision computing setting, based on the
EML methodology. The main contributions of this
work are:

1. A novel approach, called SmartFPTuner,
that combines ML models (predicting the error
associated with variable precision) and an MP
optimization model (finding the optimal pre-
cision under a constraint on the error) – this
method provides a 55% reduction in solution
time w.r.t. state-of-the-art (SoA) tools;

2. An extended model, called SmartFPTuner+,
that trades off quickness for quality and merges
the optimization approach with the SoA algo-
rithm, obtaining a 6.5% speedup over the SoA
and a 3% increase in solution quality.

SmartFPTuner enables a significant improve-
ment in execution time that allows integrat-
ing this approach into compilation toolchains,
but in some cases it produces solutions of
lower quality and with marginal energy benefits;
SmartFPTuner+ bridges this gap, always provid-
ing good execution time and high-quality solutions
at the same time. Further experiments on PULPis-
simo, an ultra-low-power platform provided with a
mixed-precision HW FP unit, show additional en-
ergy savings around 40%.

The rest of the paper is organized as follows.
Section 2 discusses the related work in FP preci-
sion tuning. Section 3 introduces the proposed ap-
proach. Sections 5 and 4 show experimental results
on precision tuning and energy efficiency, respec-
tively. Finally, Section 6 provides conclusion and
future directions.

2 Related Work

Several works in recent years proposed specific al-
gorithms for FP variable precision tuning [GJea16,
RGNea16, GRG18]. The current SoA is the par-
allel algorithm called fpPrecisionTuning, proposed

by Ho et al.[HMWA17]; it is an automated tool
that fine-tunes the number of bits to be assigned
to FP variables while respecting the constraint on
the desired maximum error (for brevity, we refer
to this algorithm as FPTuning in the rest of the
paper). The algorithm searches for the best solu-
tion by running the application to be tuned with
different precision levels; a binary search algorithm
explores the precision ranges.

Many works have tried to analyze the error intro-
duced by tuning FP variables[RGNea16, MTea17,
CBB+17]. While promising, these approaches suf-
fer from some limitations: they mostly work at
the single-expression level and cannot handle whole
benchmarks; those dealing with entire programs
(e.g., [RGNea16]) are orders of magnitudes slower
than methods such FPTuning ; they consider only
very few precision levels (e.g., single or double pre-
cision).

Finding optimal parameter values for a given al-
gorithm is a well-known area of research. For ex-
ample, Hutter et al. propose a Sequential Model-
based optimization for general Algorithm Config-
uration (SMAC, [HHLB11]), an automated proce-
dure for algorithm configuration that explores the
space of parameter settings. The approach relies on
building regression models that describe the rela-
tionship between the target algorithm performance
and the configuration. Our problem can be cast
in the SMAC scheme if we treat the precision of
the variables as the algorithm configurations to be
explored and the desired target error as a bound
on the algorithm performance. We applied SMAC
to our problem, but the preliminary attempts were
computationally expensive, and the resulting qual-
ity lower than problem-specific techniques. Costa
et al. developed RBFOpt [CN18], an open-source
library for optimization with black-box functions.
The method iteratively refines a kernel-based sur-
rogate model of the target function, which is used
to guide the search. Our task can be seen as a
black-box optimization problem by considering the
precision values as the decision variables and the
error as the black-box function.

Empirical Model Learning is a relatively new
research area, with many potential applications
[BLMB12]. We are particularly interested in
two specific works, namely: I) Lombardi et al.
[BLMB11], which shows how to embed a neural-
network-based model in a combinatorial problem,
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and II) Bonfietti et al. [BLM15], integrating De-
cision Trees (DT) and Random Forest (RF) mod-
els within an MP problem. In our approach, we
use their contributions to embed the ML models
for predicting the error associated with the vari-
able precision.

3 Proposed Approach

3.1 Problem Description

We consider numerical benchmarks where multi-
ple FP variables take part in the computation of
the result for a given input set, which includes a
structured set of FP values (typically a vector or
a matrix). The number of variables with control-
lable precision in a benchmark B is nB

var; these
variables are the union of the original variables of
the program and the additional variables inserted
for handling the intermediate results. For exam-
ple, if in the original program we have an instruc-
tion V1 = V2 + V3 involving three FP variables,
the set B contains four FP variables, three cor-
responding to the Vi variables plus the temporary
one added to match the precision of the sum be-
fore the assignment (i.e., the precision at which the
operation is performed). Adopting this approach,
each variable is free to contribute to multiple ex-
pressions with different precision; practically, HW
arithmetic units require operands of the same type,
and this requirement can be satisfied with the ad-
ditional variable.

Our problem consists of assigning a precision
to each FP variable while respecting a constraint
on the computation error. Assigning a precision
means deciding the number of bits for the man-
tissa; the exponent dictates the extension of dy-
namic range and is set according to the actual types
available on the target HW platform. In the rest
of the paper, we refer to the reduction in output
quality due to the adjusted precision (reduction
w.r.t. the output obtained with maximum preci-
sion) as error. If O indicates the result computed
with the fine-tuned precision and OM the one ob-
tained with maximum precision, we compute the

error E as: E = maxi
(oi−oMi )2

(oMi )2
This error met-

ric has been adopted by the current SoA algorithm
for precision tuning [HMWA17], and it is one of
a broad set of metrics proposed for transprecision

computing[MSea18, opr].
In this approach, we focus on the single input set

case: we assume a fixed input set to be fed to the
benchmark, and we look for the best solution given
that precise input set. Consequently, the optimal
solution for an input set may not respect the er-
ror constraint for other ones. This requirement is
not an issue for the comparison with the SoA as it
makes the same assumption; our future work aims
at overcoming this limitation.

We selected a subset of the applications stud-
ied in the context of transprecision computing[opr],
chosen because they represent distinct problems
and capture different patterns of computation. At
this stage, we do not consider whole applications
(i.e., training a deep neural net) but we focus on
micro-benchmarks that are part of larger applica-
tions (i.e., convolution operations, matrix multipli-
cations, etc.). In particular, we chose the following
benchmarks:

� FWT, Fast Walsh Transform for real vectors,
from the domain of advanced linear algebra
(nFWT

var = 2);

� saxpy, a generalized vector addition with the
form yi = a × xi + yi, basic linear algebra
(nsaxpy

var = 3);

� convolution, convolution of a matrix with a
11× 11 kernel, ML (nconv

var = 4);

� dwt, Discrete wavelet transform, from signal
processing (ndwt

var = 7);

� correlation, compute correlation matrix of in-
put, data mining (ncorr

var = 7).

� BScholes, estimates the price for a set of op-
tions applying Black-Scholes equation, from
computational finance (nBScholes

var = 15);

� Jacobi, Jacobi method to track the evolution
of a 2D heat grid, from scientific computing
(nJacobi

var = 25).

We stress out that this is a complex problem,
especially the relationship between variable preci-
sion and error. First, the error measure is very
susceptible to differences between output at max-
imum precision and output at reduced precision,
due to its maximization component. Secondly,
the precision-error space is non-smooth, non-linear,
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non-monotonic, and with many peaks (local op-
tima). In practice, increasing the precision of all
variables does not guarantee to reduce the error.
This effect is due to multiple factors, such as the
impact of rounding operations and the effects of
numerical stability on the control flow[DK17]. For
instance, suppose to increase only the precision of a
variable involved in the condition of an if statement
with a constant FP value. Since the modification
does not consider this dependence, a rounding of
the variable (when its value is near the constant)
can trigger different code branches and produce un-
expected results on the output.

3.2 Approach Description

We propose an optimization model based on three
components: 1) an MP model, 2) an ML model to
predict the error associated with a precision config-
uration, and 3) an ML model to classify configura-
tions in two macro-classes based on the associated
error (i.e., small or large). The two ML models
are embedded in the MP model and represent the
knowledge about the relationship between variables
precision and output error.

The MP model finds the optimal bit configu-
ration according to the prediction of the two ML
models; to assess the quality of the configuration,
we execute the benchmark with the corresponding
precision. For this purpose, we employed FlexFloat
[TMea18], that allows us to run a benchmark spec-
ifying the precision of each FP variable. The task
of the ML models is very hard since their goal is
to learn a complex function. Hence, the solution
found by the MP can be unfeasible; namely, it does
not respect the constraint on the target error, due
to the gap between estimated and actual error. To
fix this problem, we introduce a refinement loop:
we test the MP solution by running the benchmark
with the specified precision; if the solution is un-
feasible, we search for a new one. The wrong one
(the configuration plus its actual error) is added to
the training set of the ML models, which are then
retrained, and cut from the pool of possible solu-
tions of the MP (via a set of constraints). A new
MP model is then built based on the refined ML
models, and a new search begins; this loop goes on
as long as a feasible solution is found. The overall
approach is depicted in Figure 1.

Figure 1: Scheme of the Approach

3.2.1 ML Models

As a first step, we created a collection of data sets
containing examples of our benchmarks run at dif-
ferent precision, with the corresponding error val-
ues. The configurations used in each data set were
obtained via Latin Hypercube Sampling[Ste87], to
explore the design space efficiently.

The majority of configurations lead to small er-
rors, from 10−1 to 10−30, as the output with fine-
tuned variables does not differ drastically from the
target one. However, in a minority of cases lowering
the precision of critical variables generates errors
higher than 100. Formally, the errors roughly fol-
low a long-tailed distribution: this can be observed
by plotting the histogram of the logarithmic error
log(E), as done in Figure 2 for four of our bench-
marks. Benchmarks with fewer variables (such as
saxpy and conv) have a regular trend, with loga-
rithmic errors always smaller than 0. When the
number of variables increases, for instance with the
corr benchmark (green bars), the majority of errors
still have a logarithm smaller than 0; however, we
can notice two spikes around 10 and after 20. The
situation gets even more complicated with BScholes
(blue bars); in this case a vast number of configu-
rations correspond to significant errors. This kind
of output distribution makes it very difficult for a
single model trained in a classical fashion (e.g., for
minimum Mean Squared Error) to provide consis-
tently good predictions.
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Figure 2: Prediction errors distribution in logarith-
mic scale

Overly large error values are usually due to nu-
merical issues arising during computation (e.g.,
overflow, underflow, division by zero, or not-a-
number exceptions). This intuitively means that
the large-error configurations are likely to follow a
distinct pattern w.r.t. the configurations having a
lower error value. Accordingly, it makes sense to
split the prediction task into two specialized mod-
els: a classifier MLC to screen large errors, plus
a regressor MLR to evaluate those configurations
not ruled-out by the classifier. The MLC needs
to make a distinction between normal error and
large error configurations. We trained this model
by labeling each error in our data set with a class
field c, equal to 1 if the error of the example is
greater than a threshold (0.9 in our experiments),
and equal to 0 otherwise. Configurations classified
with class c = 1 can be discarded by the training
set of the regression model.

MLR has the task of predicting the output error
for an assignment of precision values. We quickly
noticed that any ML model we tried struggled with
discerning between small and relatively close er-
rors (i.e., 10−20 and 10−15); therefore, we opted
to predict the negative of the logarithm of the er-
ror, thus magnifying the relative differences and
dramatically improving the ML model accuracy.
MLC and MLR will be used in the MP model with
the aim to, respectively, avoid large-error configura-
tions and enforce the bound on the precision of the

variables. Together, the two models offer a more
robust prediction, but still not a perfect one.

3.2.2 MP Model

The MP model assigns a precision value to each
variable in the benchmark, and it minimizes the
total number of bits while respecting the upper
bound on the error. We have an integer decision
variable xB

i ,∀i ∈ {1 . . . nB
var}, namely for each vari-

able of the benchmark. The decision variables rep-
resent the number of bits assigned to the variable
xi ∈ {nbitmin . . . nbitmax}. Then we have a contin-
uous variable e that represents the error predicted
by MLR; as specified earlier, the predicted error
is the negative log of the actual error. Finally, we
have a variable c ∈ {0, 1} which stands for the out-
put of the classifier MLC . The decision variables
xi and the e and c variables are connected by a
set of constraints that encode the MLC and MLR

models, generated via the EML library EMLlib1.
We then add the constraint that forces the solver

not to choose precision values leading to large er-
rors, namely we require c = 0. We bound the (pre-
dicted) error to be below a given target (Etarget,
again expressed as log) and then we minimize the
total number of bits assigned to the variables:

min z =

nB
var∑
i=1

xi (1)

s.t. e ≥ Etarget (2)

s.t. c = 0 (3)

It is important to notice that the constraints
described by Equations (1-2) depend on EML
methodology, as they encapsulate the empirical
knowledge obtained through the ML models. The
actual formulation of these constraints has been
omitted due to space limitations, as embedding an
ML model can require up to hundreds of even thou-
sands of constraints. Nevertheless, the full imple-
mentation of the MP model is available on a public
code repository 2. Generally speaking, the number
of constraints added due to the embedding of ML
models inside MP optimization problems strongly
depends on the number of variables in a bench-
mark, ranging from 38 in the case of FWT to 4235

1https://github.com/emlopt/emllib
2https://github.com/oprecomp/StaticFPTuner
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in the case of Jacobi (for an intermediate bench-
mark such as dwt the number of additional con-
straints is equal to 513). We refer to several works
already published[BLMB12, LG13, LG16, BLM15]
and the publicly available code for details on how
ML models can be embedded in MP models as a
set of additional constraints.

An additional set of constraints derives from the
dependency graph of the benchmark, which speci-
fies how the program variables are related. For in-
stance, consider again the expression V1 = V2 +V3;
this corresponds to four precision levels that need to
be decided xi, i ∈ [1, 4]. The first three precision-
variables x1, x2, and x3 correspond to the preci-
sion of the actual variables of the expression, re-
spectively V1, V2, and V3; the last variable x4 is
a temporary precision-variable introduced with the
FlexFloat API to handle the (possibly) mismatch-
ing precision of the operands V2 and V3 (FlexFloat
performs a cast from x2 and x3 to the intermedi-
ate precision x4). Each variable is a node in the
dependency graph, and the relations among vari-
ables are directed edges, as depicted in Fig. 3; an
edge entering a node means that the precision of
the source-variable is linked to the precision of the
destination-variable.

Figure 3: Example of Dependency Graph

From this graph, we can extract additional con-
straints for the MP model; these constraints greatly
prune the search space, thus massively reducing the
time needed to find a solution. We focus on two
types of relations: I) assignment (e.g., x4 → x1),
and II) expression-induced cast (e.g., x2, x3 → x4),
meaning that the result of an expression involving
multiple variables has to converge to the precision
associated to the additional variable x4.

In assignment expressions, we impose that the
precision of the value to be assigned needs to be
smaller or equal to the precision of the result, in
our example: x4 ≤ x1. Assigning a larger num-
ber of bits to the value to be assigned x4 would

be pointless since the final precision of the expres-
sion is ultimately dependent on the precision of
the result variable (x1). For relations of the sec-
ond type, we instead bound the additional vari-
able to have a precision equal to the minimum pre-
cision of the operands involved in the expression
(x4 = min(x2, x3)).

4 Experimental Results: Pre-
cision Tuning

In this section we provide the implementation of the
approach for the selected benchmarks, providing an
evaluation of execution time and solution quality.

4.1 ML Models

The current version of the EML library supports
two types of ML models, Decision Trees (DT) and
Neural Networks (NN): We considered both these
techniques in our exploration. The DT and NN
models are implemented, respectively, with scikit-
learn ML Python module and with Keras and Ten-
sorFlow. The NNs are trained with Adam [KB14]
optimizer with standard parameters; the number of
epochs used in the training phase is 100, and the
batch size is 32.

We opted to implement MLR with a NN. After
an empirical evaluation, we realized that both NN
and DT guaranteed similar prediction errors but
with different model complexities: with the NN,
few simple layers were needed to reach small errors
while good DTs had to be very deep (between 40
and 50 levels). Since the size of a DT (and its en-
coding) grows exponentially with depth, having so
many layers caused issues when constructing the
MP model; these issues are solved by the more
straightforward structure needed by NN models.
Our NN is composed of one input layer (number
of neurons equal to nB

var), three dense hidden lay-
ers (with size 2 × nB

var, 2 × nB
var, and nB

var), and a
final output layer of size 1; all layers employ stan-
dard Rectified Linear Units (ReLU), except for the
output layer that is linear.

As noted before, we are not interested in
having perfect error prediction accuracy in this
phase, as SmartFPTuner handles wrong predic-
tions through the refinement phase. Creating a
training set needs considerable time, as it requires
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the execution of multiple configurations. Hence,
we use a relatively small training set (1k examples);
empirical experiments revealed that more extensive
training sets marginally increase the prediction ac-
curacy but not enough to justify the increase in the
creation time. The average, normalized error with
this training set size and NN is around 8%, though
it varies significantly from benchmarks with fewer
variables (e.g., 4% for saxpy) to more complex ones
(17% for Jacobi).

For MLC , after a preliminary evaluation, we set-
tled for using DTs since they provide higher accu-
racy than NNs even with modest depth (15 in our fi-
nal implementation); averaging on all benchmarks,
the MLC accuracy for DT and NN implementa-
tions are, respectively, 97% and 82%.

4.1.1 Data set size and prediction error

Since generating the data set used for the ML tasks
has non-negligible costs (each benchmark has to be
run with many configurations), understanding the
impact of the data set size on the prediction error
is crucial. Figure 4 shows the effect of the training
set size on the prediction error, measured as RMSE
(one line for each benchmark). As expected, the er-
ror decreases when the training sets contain more
examples; however, after a certain size, the gains
become marginal (around 4 or 5 thousand exam-
ples).

Figure 4: Data set size impact on RMSE

4.1.2 Error Classification

For our classifier, after an empirical evaluation we
settled for using a Decision Tree (DT): this proved
to reach better accuracy w.r.t. NNs, even with
modest depth (20 in our final implementation).
Table 1 compares the prediction accuracy of DT
and NN classifiers (same topology as the regressor
one) for different data set sizes. The DTs models
neatly outperform NNs, strengthening our conjec-
ture that normal errors and large errors indeed fol-
low different patterns. Furthermore, increasing the
training set size does not dramatically improve the
performance of the classifier; smaller training sets
(around 1000 examples) can be used with good re-
sults.

4.2 MP Results

We now examine the solutions found
bySmartFPTuner. All the experiments were
performed using a quad-core processor (Intel i7-
5500U CPU 2.40 GHz) with 16 GB of RAM. The
MP model was solved using IBM ILOG CPLEX
12.8.0, via the Python API.

4.2.1 Comparison with the State-of-the-
Art

We compare our approach with the SoA technique
for our problem, the FPTuning algorithm. FPTun-
ing proceeds by testing several precision configura-
tions via binary search; the algorithm is highly par-
allelized and leads to solutions which are very close
to the optimal one, but it has a considerable draw-
back, namely it has to run the benchmark multiple
times to find a feasible solution (we can see it as a
variant of a generate-and-test method).

We can highlight two main advantages of
SmartFPTuner. First, it is more flexible com-
pared to a specific algorithm and more expressive,
as more sophisticated constraints can be enforced.
For instance, we can constrain the precision of the
variables to assume values available on real HW
implementations (typically, the only allowed val-
ues are 16, 32, and 64 bits). Moreover, the MP
can be easily extended for architecture-specific op-
timization (vectorial instruction sets) and for han-
dling more complex objectives (e.g., minimize the
number of casting operations). Secondly, once the
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Benchmark
NN DT

Data set sizes Data set sizes
100 500 1k 2k 8k 100 500 1k 2k 8k

saxpy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
convolution 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FWT 0.850 0.860 0.660 0.677 0.980 0.996 0.997 0.996 0.998 0.998
correlation 0.750 0.790 0.795 0.825 0.962 0.996 0.998 0.995 0.991 0.996
dwt 0.650 0.860 0.930 0.618 0.965 0.991 0.987 0.989 0.992 0.991
BScholes 0.700 0.600 0.675 0.677 0.827 0.983 0.984 0.981 0.985 0.988
Jacobi 0.750 0.810 0.800 0.800 0.836 0.906 0.916 0.919 0.912 0.918

Average 0.740 0.784 0.772 0.719 0.914 0.974 0.976 0.976 0.976 0.978

Table 1: MLC Accuracy Results: DT VS NN

ML models have been trained and embedded, the
MP model can be used multiple times, relying only
on the solver without the need to perform addi-
tional benchmark runs. For example, this can be
exploited to characterize the error/precision Pareto
front, whereas FPTuning would need to start ab
initio every time. Considering the current lim-
itations of SmartFPTuner, it does not always
find good solutions compared to FPTuning ; on the
contrary, the solutions of SmartFPTuner usually
have a higher number of bits.

Table 2 provides an overview of the compari-
son for all benchmarks. The values reported are
computed over all error targets considered, namely
10−30, 10−25, 10−20, 10−15, 10−10, 10−7, 10−5,
10−3, 10−1. Each column from 2-6 corresponds
to a benchmark; the last one on the right is the
average on all benchmarks. The first row reports
the difference (as a percentage) in solution quality
between SmartFPTuner and FPTuning, in terms
of the number of bits in the solution; a minus
sign indicates that our method outperforms FP-
Tuning. The time required to find a solution by
SmartFPTuner includes two components: I) the
time needed to create the data set to train the ML
models and II) the actual solution time, that is
the time required to train and integrate the ML
models, solve the MP model and eventually re-
peat the process in case the solution found does
not respect the bound on the error. The second
row in Table 2 reports the time difference between
SmartFPTuner and FPTuning, computed exclud-
ing the time needed to create the training sets; in-
cluding it would not be fair, as after the data set is

created it can be reused multiple times and differ-
ent error targets (it can be used to train different
ML models to be integrated via EML). Definitely,
the cost for data set creation becomes negligible
over repeated calls of SmartFPTuner.

The time required to found solutions by FP-
Tuning varies considerably depending on the er-
ror given as a target (tighter bounds require longer
times), hence the relative differences reported in
Tab. 2 are more effective for comparing the ap-
proaches. However, it could be useful to provide
some actual numbers to give the order of magni-
tude. For each benchmark and computed as aver-
age among all error targets, the solution time (in
seconds) required by FPTuning are the following:
FWT 24.3, saxpy 38.5, convolution 81.9, correla-
tion 180.9, dwt 81.8, BlackScholes 1512.3, Jacobi
3409.6.

Concerning the solution quality, FPTuning out-
performs us (except for saxpy), since our solutions
have a higher number of bits (15% on average).
Conversely, SmartFPTuner is markedly quicker,
as attested by the average decrease in solution-time
of around 55%.

4.3 Extended Approach:
SmartFPTuner+

As noted in the previous section,
SmartFPTuner is extremely fast but pro-
duces low-quality solutions, as, generally speaking,
higher numbers of bits lead to greater energy
consumption. We decided then to extend our
approach by combining our method with FPTun-
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FWT saxpy convolution dwt correlation BlackScholes Jacobi Avg.
SFPT vs FPT – N. Bits (%) 14.1 -1.0 3.7 22.6 14.7 22.3 29.8 15.2
SFPT vs FPT – Time (%) -62.4 -14.0 -33.5 53.7 -79.5 -80.2 -65.1 -55.4

SFPT+ vs FPT – N. Bits (%) 4.7 -3.9 0.1 0.7 -1.0 -1.7 -4.7 -3.0
SFPT+ vs FPT – Time (%) -8.2 9.1 9.1 -5.8 -8.3 -22.6 -18.9 -6.51

Table 2: Comparison between SmartFPTuner(SFPT in the table), SmartFPTuner+(SFPT+) and
FPTuning (FPT)

ing. FPTuning algorithm can be decomposed
into two phases: (i) a search for an initial
solution satisfying the error target and (ii) a
refinement that iteratively improves the solution
(by lowering the precision through a heuristic),
until two consecutive solutions have the same
total number of bits. We propose an extended
approach SmartFPTuner+ that exploits FPTun-
ing ’s refinement phase 3 to improve the initial
solution found by SmartFPTuner. In practice,
SmartFPTuner+ starts from the initial solution
quickly found by SmartFPTuner and then im-
proves it by attempting to decrease the precision
of the variables with the heuristic algorithm
introduced by FPTuning (a variant of binary
search).

The final two rows of Table 2 show the results.
The time needed by SmartFPTuner+ to find a so-
lution contains an additional component w.r.t. to
SmartFPTuner, namely the time required to im-
prove the initial solution. SmartFPTuner+ re-
mains faster than FPTuning (although the gap
is reduced, average speedup of around 6.5%) for
all but two benchmarks, which are the ones with
low number of variables (saxpy and convolution).
These “easier” benchmarks can be quickly run
multiple times; thus, the FPTuning approach is
less penalizing – with applications with more vari-
ables SmartFPTuner+ is still significantly faster,
an encouraging sign for the extension of our ap-
proach to more complex programs. More im-
portantly, SmartFPTuner+ also outperforms the
SoA in terms of solution quality; the improvement
is relatively small (3%), but this is remarkable
nonetheless, as experiments performing an exhaus-
tive search on small benchmarks reveal that FP-
Tuning finds solutions very close to the optimal
ones.

3https://github.com/minhhn2910/fpPrecisionTuning

4.3.1 Transfer Learning

As mentioned before, at the moment we are mainly
interested in a preliminary evaluation and the com-
parison with the SoA, hence we considered a sin-
gle input set for all previous experiments. But at
the same time, we want to hint at an additional
benefit that can be obtained with the optimization
model w.r.t. FPTuning. Our ML models can learn
some of the latent proprieties that characterize the
benchmarks (their precision-error function); some
of these relationships may hold for different input
sets. On the contrary, FPTuning focuses exclu-
sively on the problem at hand. Hence, the solu-
tions found by our approach can be more “robust”
for different input sets w.r.t. the FPTuning solu-
tions. In a sense, we want to understand if the
solution found for a given input set is transferable
to different ones.

We tested this hypothesis in this fashion: I) we
generated 30 different input sets for each bench-
mark; II) we found the best configurations for a
fixed input set Si using both SmartFPTuner and
FPTuning and for a given error target; III) fi-
nally, we run the benchmark with the config-
uration just found but feeding it with the re-
maining input sets (hence 29 separate runs), and
we checked if the configuration satisfies the error
target also for other input sets. For these ex-
periments, we considered SmartFPTuner rather
than SmartFPTuner+ since the focus is on
the solution found by the combination of MP
and ML models, without the added “noise”
introduced by the heuristic refinement phase
of SmartFPTuner+ (the FPUtning-inspired im-
provement over the first solution found by
SmartFPTuner). The different input sets are vec-
tors of randomly generated numbers. The solutions
for our approach were obtained using data sets of
training size equal to one thousand. Table 3 re-
ports the results. Each row corresponds to an er-
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ror target; the final one is the average among all
targets. For each benchmark, we compute the per-
centage of input sets that presented an error lower
than the target with the configuration found with
Si (excluded from this computation); lower values
are preferable since they imply that the configura-
tion for Si is more robust. Blacksholes and Jacobi
are not reported for space limitations. Columns
FPT and Opt (two for each benchmark) indicate,
respectively, the results with FPTuning and with
SmartFPTuner. The last two columns report the
average values computed among all benchmarks.

From the table we can see that the “transfer-
ability” of the solutions strongly depends on the
particular benchmark; for example, convolution so-
lutions are very robust to different input sets, while
the contrary happens for dwt. For all benchmarks
except FWT, SmartFPTuner is more robust com-
pared to FPTuning ; this holds true also if we con-
sider all error targets (bold values in the last two
columns highlight the method with the more robust
solution for a given target). These observations
suggest that our approach is capable of learning
part of the underlying patterns that characterize
an application and thus can obtain solutions that
can be reused on different input sets.

However, we are aware that the case of different
input sets should be explored in more detail – this
is a preliminary approach that we plan to improve
in future works. For example, this issue could be
dealt with by training the ML models on multiple
samples, representative of the target application;
the ML model may optionally output a probability
distribution rather than a single prediction.

5 Experimental Results: En-
ergy Efficiency

5.1 Deployment & Setup

Our target platform is PULPissimo4, an open-
source 32-bit microcontroller based on the RISC-
V instruction set architecture (ISA). This platform
supports the R32IMFC ISA configuration, featur-
ing extensions for integer multiplication and divi-
sion (“M”), single-precision FP arithmetic (“F”)
and compressed encoding (“C”). The core also in-

4https://github.com/pulp-platform/pulpissimo

cludes a smallFloat unit (SFU)[MRT+18], which
provides a set of non-standard ISA extensions to en-
able operations on smaller-than-32-bit FP formats.
This unit supports two IEEE standard formats,
single-precision (binary32 ) and half-precision (16
bit) ones, and two additional formats, namely bi-
nary8 and binary16alt. The first is an 8-bit format
with low precision (3-bit mantissa), and the second
is an alternative 16-bit format featuring a higher
dynamic range (8-bit exponent). The SFU also
supports a vectorial ISA extension which makes use
of SIMD sub-word parallelism by packing multiple
smaller-than-32-bit elements into a single register;
this is a key feature to reduce energy consumption
since it allows to optimize the circuitry of the HW
unit and reduce the memory bandwidth required to
transfer data between memory and registers.

The software ecosystem5 of the PULP project in-
cludes a virtual platform and a compiler (based on
GCC 7.1). The virtual platform is cycle-accurate
and provides detailed execution statistics, includ-
ing instruction and cycle counters, used to evaluate
the energy consumption of the benchmarks. The
power numbers have been obtained through sim-
ulation of the post-layout design set to 350 MHz
using worst-case conditions (1.08 V, 125◦C), as de-
tailed in [MRT+18]. Finally, the compiler pro-
vides an extended C/C++ type system to make
use of the smallFloat types using additional key-
words (float8, float16 and float16alt). The GCC
auto-vectorizer has been extended to enable the
adoption of the vectorial ISA extension; whenever
reduced-precision variables can be used, our bench-
marks take great advantage of this feature.

5.2 Experimental Evaluation

The energy savings are measured as the energy
obtained by running a benchmark with all single-
precision variables (the baseline) over the energy
obtained with the mixed-precision configuration
found by SmartFPTuner+; values higher than 1
indicate energy gains, as the mixed-precision ap-
proach leads to lower energy consumption than the
baseline. Table 4 reports the results. Each line
corresponds to an error bound, and the last line
summarizes the average on all targets; each column
reports the energy gain compared to the baseline.

5https://github.com/pulp-platform/pulp-sdk
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Target
FWT saxpy convolution dwt correlation All Benchmarks

FPT Opt FPT Opt FPT Opt FPT Opt FPT Opt FPT Opt
0.1 10.3 44.8 0 0 17.2 0 62.1 79.3 68.9 10.3 31.7 26.9
10−2 17.2 89.6 0 0 72.4 0 65.5 62.1 68.9 13.8 44.8 33.1
10−3 41.4 41.4 0 0 0 0 65.5 86.2 68.9 10.3 35.2 27.6
10−5 0 3.4 0 0 6.8 24.1 75.9 51.7 79.3 62.1 32.4 28.3
10−7 0 65.5 62.1 0 0 17.2 55.2 37.9 10.3 24.1 25.5 28.9

10−10 0 0 0 0 0 0 86.2 62.1 0 20.7 17.2 16.6
10−12 0 0 0 0 0 27.6 62.1 3.4 3.4 0 13.1 6.2
10−15 0 0 0 0 0 0 82.7 44.8 0 17.2 16.5 12.4
10−20 0 0 86.2 0 0 0 96.5 68.9 0 0 36.5 13.8
10−25 0 0 6.9 0 0 0 7.7 0 24.1 0 7.8 0

Average 6.9 24.5 15.5 0 9.6 6.9 72.4 55.2 32.4 15.9 26.1 19.4

Table 3: Transfer Learning Results

Error Target FWT saxpy convolution dwt correlation BlackScholes Jacobi Avg. over all benchmarks

10−1 1.00 3.99 1.35 1.00 1.08 1.54. 2.90 1.84

10−2 1.00 2.26 1.35. 1.00 1.00 1.52 2.90 1.58

10−3 1.00 2.00 1.27 1.00 1.00 1.29 1.74 1.33

10−4 1.00 1.90 1.22 1.00 1.00 1.08 1.82 1.29

10−5 1.00 2.00 1.22 1.00 1.00 1.06 1.77 1.29

10−6 1.00 1.13 1.30 1.00 1.00 1.00 1.78 1.17

10−7 1.00 1.00 1.00 1.00 1.00 1.00 1.78 1.11

Avg. 1.00 2.04 1.25 1.00 1.00 1.21 2.09 1.37

Table 4: Energy gains measured as energy consumed with single-precision over energy with
SmartFPTuner+

Overall, the results are extremely promis-
ing: the average energy gain obtained with
SmartFPTuner+ is 1.37 (around 40%), and in the
benchmarks showing energy savings the compiler
was able to apply automatic vectorization to the
code thanks to the precision-reduction enabled by
our tool. However, the gains are not homogeneous,
as for some benchmarks there is no energy sav-
ing w.r.t. the baseline (FWT, dwt, correlation); in
these cases, the discrete precision levels offered no
margin for energy gain – more fine-grained mixed-
precision levels could improve this situation and
will be investigated in future works. The results
clearly show that, as expected, less strict bounds on
the computation accuracy can ensure higher gains
since in these cases the variable precision can be
reduced more markedly.

6 Conclusion

In this paper we propose a novel approach for solv-
ing the problem of tuning the precision of FP vari-
ables in numerical applications. Our method com-
bines ML models and an MP optimization model,

exploiting the Empirical Model Learning paradigm.
The experimental results reveal that the proposed
model is very fast but, generally speaking, pro-
duces low-quality solutions. Hence we combine our
method with a refinement algorithm from the liter-
ature, thus obtaining an approach that thoroughly
outperforms the SoA.

Moreover, we demonstrate the quality of our
approach by measuring the energy gains obtained
via static precision tuning on a virtual platform
that emulates precision-tunable HW, revealing
energy savings around 40% with the static tuning
of FP variables.
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