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ABSTRACT
The deployment of Quantized Neural Networks (QNN) on advanced
microcontrollers requires optimized software to exploit digital sig-
nal processing (DSP) extensions of modern instruction set architec-
tures (ISA). As such, recent research proposed optimized libraries
for QNNs (from 8-bit to 2-bit) such as CMSIS-NN and PULP-NN.
This work presents an extension to the PULP-NN library target-
ing the acceleration of mixed-precision Deep Neural Networks,
an emerging paradigm able to significantly shrink the memory
footprint of deep neural networks with negligible accuracy loss.
The library, composed of 27 kernels, one for each permutation of
input feature maps, weights, and output feature maps precision
(considering 8-bit, 4-bit and 2-bit), enables efficient inference of
QNN on parallel ultra-low-power (PULP) clusters of RISC-V based
processors, featuring the RV32IMCXpulpV2 ISA. The proposed so-
lution, benchmarked on an 8-cores GAP-8 PULP cluster, reaches
peak performance of 16 MACs/cycle on 8 cores, performing 21×
to 25× faster than an STM32H7 (powered by an ARM Cortex M7
processor) with 15× to 21× better energy efficiency.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Computing methodologies → Machine learning.
KEYWORDS
Embedded Systems, Quantized Neural Network, Low power Archi-
tectures

1 INTRODUCTION
An increasing amount of Internet-of-Things (IoT) applications ac-
quire data from low-power sensors and transmit it wirelessly after
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some forms of compression. Machine Learning (ML) algorithms,
and in particular Convolutional Neural Networks (CNNs), provide
an effective solution for these applications thanks to their capa-
bility to squeeze raw sensor data in a much more dense format
(e.g., classes or extracted high-level features). As such, a recent
trend lies into deploying deep learning functionality on embedded

microcontrollers (MCU), which are the de-facto standard compute
platform for IoT end-nodes thanks to their flexibility, low-power,
and low-cost.

On the other hand, the computing power and memory footprint
ofMCUs is often not suitable for implementing state-of-the-art mod-
els. A recent trend in embedded CNNs to reduce both computational
cost and memory footprint of CNNs is quantization [5][3]. This
approach, representing the network weights and features with 8-bit
or even smaller data types, such as 4-bit or 2-bit, has demonstrated
the capability to reduce the memory footprint of state-of-the-art
networks [9], with negligible accuracy loss. Optimized software li-
braries for Quantized Neural Networks (QNNs) have been proposed
by the industry by means of CMSIS-NN library [7], targeting 16-bit
and 8-bit QNNs on Cortex-M microcontrollers; as well as by the
research community, such as PULP-NN, an open-source library tar-
geting RISC-V processors, and supporting heavily quantized CNNs
working on 8-bit, 4-bit, 2-bit, or 1-bit data [2]. To further reduce the
memory footprint, recent works show how mixed-precision quan-
tization can achieve better performance compared to symmetrical
quantization of input feature maps (ifmaps), weights, and output
feature maps (ofmaps). For example, applying this approach on a
MobileNetV1 CNN achieves 7× memory footprint reduction, while
incurring an accuracy loss of only 4% [1] with respect to the 32-bit
integer representation.

With this aim, we propose an extension to the PULP-NN open-
source library, which includes 27 convolution kernels, one for every
permutation of ifmaps, weights, and ofmaps quantization level,
for 8-bit, 4-bit and 2-bit, overtaking the limitations of the current
open-source library supporting symmetrical quantization only. Our
solution can reach 16 MACs per cycle on octa-core execution on
the GreenWaves Technologies GAP-8 [4] processor, up to 25× and
46× faster with up to 45× and 21× less energy than the execution
on a STM32H7 and STM32L4, which are commercial MCUs based
on an ARM Cortex M7 and M4 core respectively.

2 BACKGROUND
2.1 QNNs and Mixed-Precision QNNs
A QNN is defined by mapping all real-valued tensors involved in a
DNN layer (weightsw, ifmaps x, ofmaps y) to integers. In this work



we focus on layer-wise linear quantization, where each real-valued
tensor t in the range [𝛼t, 𝛽t) is built such that:

t = 𝛼t + Yt · 𝐼𝑁𝑇 (t) (1)

where 𝐼𝑁𝑇 (t) is an 𝑁 -bit integer-valued tensor with the same di-
mensionality of t, and Yt = (𝛽t − 𝛼t)/2𝑁 . We further constrain
𝛼x = 𝛼y = 0 for ifmaps and ofmaps. A QNN of this kind can be
trained efficiently by means of linear quantization-aware train-
ing [6], which produces a QNN using real-valued tensors of the
form of Eq. 1. The application of linear layers (e.g., convolutional
and dense), normalization (e.g., batch-norm) and activation (e.g.,
ReLU) in a QNN can then be mapped to a linear operation combined
with a pointwise normalization/activation, working directly on the
integer-valued tensors:

𝐼𝑁𝑇 (y) = quant
(
linear

(
𝐼𝑁𝑇 (w), 𝐼𝑁𝑇 (x)

) )
(2)

Notice that the accumulator 𝜑 � linear
(
𝐼𝑁𝑇 (w), 𝐼𝑁𝑇 (x)

)
is still

integer-valued, but requires in general more bits than its inputs
(i.e., Y𝜑 will be smaller than Yx and Yw). quant normalizes 𝜑 with
an affine transformation of parameters ^ and _, then collapses its
values, “converting” it to a representation with less bits (i.e., with
bigger Yy) 1:

𝐼𝑁𝑇 (y) = quant(𝜑) = clip[0,𝛽y)
( ⌊ (

^ · 𝐼𝑁𝑇 (𝜑) + _
)
· Y𝜑/Yy

⌋ )
(3)

In mixed-precision QNNs, the number of bits used for w, x and
y is not constrained to be the same. This class of QNNs have been
shown [1] to better fit embedded constraints while incurring in a
less severe accuracy hit than non-mixed-precision QNNs; massive
memory gains can be exploited on tensors and layers that are less
sensitive to strong quantization while still keeping more sensitive
ones at a higher precision. Here, we focus on 2-, 4- and 8-bit quanti-
zation forw (signed), x and y (unsigned), while we always consider
32 bits for the accumulator 𝜑 (signed).

2.2 PULP-NN
The software solution we propose is built upon an open-source
Parallel Ultra-Low-Power (PULP) cluster of eight RISC-V based
processors 2. The cores feature a 4-stage in-order pipeline and the
RV32IMC ISA, extended with efficient digital signal processing cus-
tom instructions, namely XpulpV2. A detailed description of these
extensions can be found in [8]. The key elements of a PULP clus-
ter are a low-latency multi-banked Tightly Coupled Data Memory
(TCDM), enabling shared-memory parallel programming models
such as OpenMP or OpenCL, and an Event Unit which manages syn-
chronization and thread dispatching, enabling low-overhead and
fine-grained parallelism, guaranteeing high efficiency for parallel
workloads. In this work, we leverage a commercial embodiment of
the PULP architecture fabricated in CMOS 55nm called GAP-8 [4].

The PULP-NN library, extended in this work to support mixed-
precision QNNs, relies on the Height-Width-Channel (HWC) data
layout and on an execution flow optimized to target resource-
constrained MCUs. A layer is run as a combination of three phases:

1The^ and _ parameters can be integrated directly in the ladder function, resulting in a
quant function that produces 𝐼𝑁𝑇 (y) by comparing 𝜑 with a set of 2𝑁 thresholds [9].
2https://github.com/pulp-platform/pulp

Figure 1: Concept scheme of Mixed-Precision Approach.

void pu l p _nn_ i n t 4 _ t o _ i n t 8 ( in t8_ t ∗ Src , in t8_ t ∗Out )
{

in t8_ t bex t 1 = bext ( Src , 4 , 0 ) ;
in t8_ t bex t 2 = bext ( Src , 4 , 4 ) ;
in t8_ t bex t 3 = bext ( Src , 4 , 8 ) ;
in t8_ t bex t 4 = bext ( Src , 4 , 12 ) ;
∗ ( ( v4s ∗ ) Out ) = pack ( bext1 , bext2 , bext3 , b ex t 4 ) ;
Out ++ ;
bex t 1 = bext ( Src , 4 , 16 ) ;
b ex t 2 = bext ( Src , 4 , 20 ) ;
b ex t 3 = bext ( Src , 4 , 24 ) ;
b ex t 4 = bext ( Src , 4 , 28 ) ;
∗ ( ( v4s ∗ ) Out ) = pack ( bext1 , bext2 , bext3 , b ex t 4 ) ;

}

Figure 2: Example of code of efficient bit extraction using
XpulpV2 extension.

the im2col step re-arranges the 3D input features of the current
layer into a 1D vector, the linear part of the layer is implemented
through aMatrix Multiplication (MatMul) kernel, while a final stage
of quantization, named QntPack, implements the quant function of
Eq. 2, compresses the MatMul result into the desired precision and
then stores back the ofmap.

The MatMul loads the quantized weights from four different
filter banks and the input features from two different im2col buffers
into the register file from the TCDM. Exploiting the data locality of
the loaded features and weights within the register file enables com-
puting two spatially adjacent output features of four consecutive
output channels in each run of MatMul inner loop, optimizing the
execution of the kernel. Further details can be found in [2]. Since
the results ofMatMul need to be accumulated into higher precision
variables, they need to be compressed back to the desired output
precision. While for 8-bit output features scaling and clamp oper-
ations can be used [7], an effective solution for sub-byte outputs
consists of a thresholding-based procedure [1, 5]. This operation
compares an input with a set of thresholds (see Section 2.1). Every
Conv kernel presented in this work is parallelized on the H-spatial
dimension of ofmaps [2], resulting into an almost ideal speed-up
on an 8-cores cluster (7.5×).

3 MIXED-PRECISION KERNELS
In this section, we describe the proposed mixed-precision software
kernels, highlighting the optimizations made to boost the kernels on
the PULP cluster. In the context of a mixed-precision convolution
kernel (Conv), the precision of the ifmaps determines the specific
im2col function to be used, the precision of the weights determines
the specificMatMul kernel, while the ofmap determines the specific
QntPack kernel.

As the underlying hardware offers support only for 8-bit SIMD
instructions, when sub-byte input features are considered, addi-
tional unpacking functions must be added to the im2col procedure



void pu l p _ nn _ i n s e r t _ i n t 4 ( in t8_ t Src1 , in t8_ t Src2 , in t8_ t ∗Out )
{

in t8_ t mask = 0xf0 ;
in t8_ t n_mask = not ( mask ) ;
in t8_ t o f f = 0x04 ;
∗Out = bins ( Src1 , n_mask , Src2 , mask , o f f ) ;

}

Figure 3: Example of code of efficient bit compression using
XpulpV2 extension.

to extract and sign-extend the sub-byte operands into INT-8, na-
tively supported by the sum-of-dot product units. Fig. 1 highlights
a general scheme of mixed-precision Conv structure. Depending on
the ifmap and weights precision, different specific casting functions
are built, to reduce the number of load instructions needed to fetch
the compressed features, hence minimizing the memory traffic and
improving the performance. The casting operation takes place also
in the innermost loop of the MatMul kernel to ‘unpack‘ the weight
elements. To reduce unpacking operation overhead, we exploit the
bit manipulation instructions provided by the XpulpV2 ISA.

As depicted in Fig. 2 for the 4-bit case without loss of generality,
we exploit the XpulpV2 bit extraction operation, inferred in the C
code as a built-in function (bext), which extracts a specified number
of bits from a 32-bit register in one clock cycle, also extending
the sign bit. With one 32-bit load instruction that fetches eight
lower-precision operands, we can obtain eight 8-bit operands (with
sign extension), packed in two 32-bit vector registers, ready to be
handled in a SIMD fashion. For the 2-bit case, the cost of the load
operation is further amortized, since with one 32-bit load we obtain
16 8-bit operands, achieving 0.0625 loads per operand, half than in
the 4-bit case.

Since unpacking is a critical operation for MatMul kernels, sev-
eral solutions have been explored, leading to the following optimal
kernels structure:

• 8-bit weights: 6 32-bit loads and 8 SIMD MACs for a total of
14 cycles per iteration.

• 4-bit weights: 8 32-bit loads, 32 extractions, 16 pack and 16
SIMD MAC, for a total of 72 cycles per iteration.

• 2-bit weights: like the previous one but, due to the different
level of unrolling in the extraction function, there is a total
of 140 cycles per iteration.

Each inner loop is iterated over the im2col size. The number of iter-
ations depends on the overall number of MACs for each iteration.

Since the MatMul works on 32-bit accumulators as specified in
Section 2.1, theQntPack function quantizes and pack it to the desired
ofmap precision. While simple shifts and clamps are used to restore
the output range in 8-bit and store it in an 8-bit variable, to compress
back sub-byte results in an 8-bit one, additional packing functions
have to be added after the thresholding-based quantization. This is
implemented efficiently, exploiting the bit insert function that acts
as a natural counterpart of the bit extract, which compresses the
data and packs them into 8-bit variables (see Fig. 3).

4 EXPERIMENTAL RESULTS
We ran our kernels on GAP-8 as a commercial product, an edge
low-power and octa-core PULP device optimized to perform DNN
algorithms [4] and then we compared the execution performance
and the energy consumption of an STM32H7 and STM32L4 MCU,

Figure 4: MACs/cycle in a single-core linear execution in
different weights precision and its fluctuations by varying
ifmaps precision.

Table 1: Average overhead cost in cycles per output pixel and
its variance by varying the ofmaps precision.

ofmaps precision cycles/output pixel variance

8-bit 2.01 +/- 0.57
4-bit 16.64 +/- 4.47
2-bit 8.02 +/- 1.15

which run the same layer and the same kernels. Although the pro-
posed library is fully flexible, we present the results of a reference
layer featuring 32x16x16 ifmaps size, 64x16x16 ofmaps size and 3x3
filters. This layer has a 288 im2col buffer size, referred to in the
following as Reference Layer, and it is among the ones featuring the
best performance on the targeted architectures. We considered the
MACs per cycle and cycles per output pixel as the key metrics to
define the performance of the library.

4.1 Single- and Multi-Core Execution Results
As seen in Section 3, the inner loop has a different number of
iterations depending on the weights precision level. Therefore, we
should expect a decrease in terms of performance of 2.57× and
2.5× with respect to the 8-bit MatMul, for 4-bit and 2-bit MatMul,
respectively, due to the unpacking overhead.

To isolate the contributions of the linear kernel execution, in
Fig. 4 we consider im2col and MatMul in isolation, removing the
per-output-pixel overhead of the QntPack function. The plot shows
how much weight unpacking impacts the MACs per cycle perfor-
mance metric compared to the 8-bit case. In line with expectations,
performance drops by 2.43× and 2.5× in 2-bit and 4-bit scenarios,
respectively. The solution proposed for 2-bit weights is more effi-
cient than 4-bit because it reduces the number of load instructions
per MAC, despite introducing more unpacking and packing instruc-
tions in the inner loop. Under the bars, Fig. 4 shows how much the
ifmaps precision impacts performance at a fixed weights precision.
We observe how the pattern is similar to the one for weights (the
solution for 8-bit is the best one, while 2-bit is better than 4-bit);
however, it is important to note that the variation is much smaller
than that observed when changing weight precision.

In Tab. 1, we investigate the overhead introduced by the QntPack
function to the overall layer computation. Due to deep compiler
optimization and instruction cache effects, these results have a high



Figure 5: Speed-up of PULP-NN Mixed-Precision on GAP-8
(8 cores) over STM32H7 and STM32L4 on theReference Layer.

variance, which we explicitly represent in the table. In particular,
depending on the size and structure of the innermost loop, code
integrating the linear andQntPack functions is optimized differently
in each case, resulting in a different number of inner instructions
but also in different binary code sizes, triggering more instruction
cache misses in some cases with respect to others. Despite this
significant variability, we can observe clear trends in the overhead
QntPack introduces. When using thresholds as activation functions,
the average results in Tab. 1 is as expected, because they are realized
with if-else nested statements that perform the binary search in
the range in which the output value is found. 4-bit quantization
requires twice the number of threshold comparisons than 2-bit
quantization, therefore we expect double of cycles per output pixel.
Most non-idealities come from this operation, which is expensive in
terms of branches and pipeline stalls. Furthermore, when we have
sub-byte quantization of output, bit compression instructions also
enter into the game to pack two or four pixels into an ofmap byte,
and 8-bit ofmaps perform better than 4-bit and 2-bit operations.

4.2 Comparison with state-of-the-art
To compare ourworkwith the state-of-the-art, we used an STM32H7
and an STM32L4 running the Reference Layer, which are a dual and
single issue processors respectively. In Fig. 5 we can see the cycle/-
cycle speed-up that an octa-core GAP-8 can achieve respect to these
devices. In terms of MACs per cycle, we achieve up to 25× and 46×
in a Conv kernel with 8-bit ifmaps/ofmaps and weights. The contri-
butions of this improvement are certainly to attribute not only to
octa-cores execution but also to the XpulpV2 ISA that, compared
to ARM Cortex-M7 and -4, features extensions to perform SIMD
8-bit MACs in one cycle with respect to 16-bit SIMD MACs of ARM
Cortex-M-based ones. On the other hand, also when unpacking is
necessary, we still perform up to 11× and 19× respectively.

Finally, we compared the energy consumption of the Reference
Layer on the benchmarked platforms. We used the two different
operating modes for GAP-8: low-power and high-performance (see
Fig. 6). Despite the less scaled technology node used for the im-
plementation of GAP-8 with respect to STM32H7 (i.e., 55 vs. 40
nm CMOS) and the higher frequency respect to STM32L4 (i.e.,
90 MHz vs 80 MHz), GAP-8 performs with 45× and 21× less en-
ergy consumption in the low-power mode and 31× and 15× in the
high-performance one, with 8-bit precision operands. When the
unpacking is necessary, the energy consumption stills up to 20×
and 9× in low-power mode and 14× and 6× in high-performance

Figure 6: GAP-8, STM32H7 and STM32L4 energy consump-
tion when they run the Reference Layer.

one respect to STM32H7 and STM32L4 execution respectively, as
depicted in Fig. 6. This demonstrates the potential of the parallel
execution on an optimized cluster with PULP-specific instruction
set extensions, coupled with an optimized software abstraction
layer able to efficiently exploit the underlying hardware.

5 CONCLUSION
We have presented an open-source software library for mixed-
precision inference on parallel ultra-low-power clusters at the edge
of the IoT. The proposed library supports 8-bit, 4-bit and 2-bit
QNN kernels and for all variants of input feature maps, weights,
and output feature maps. Exploiting the DSP capabilities of the
XpulpV2 extensions, coupled with the performance gain of parallel
execution, our solution can reach up to 16 MACs per cycle on
quantized convolutional kernels on the 8-core PULP cluster of the
GAP-8 SoC. These results outperform by 25× the execution of the
same kernels on an STM32H7 microcontroller, with 21× better
energy efficiency compared to STM32L4 microcontroller.
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