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Spatially Distributed Molecular Communications
Via Diffusion: Second Order Analysis

Flavio Zabini, Member, IEEE

Abstract—Unlike electromagnetic communications, where the
noise is typically represented by a (Gaussian) independent source
which is added to the useful signal (additive noise), molecular
communications via diffusion are affected by a random distur-
bance which is intrinsically related to the random nature of
emission, propagation (Brownian motion) and reception.

In point-to-point molecular communications, the number of
received molecules is generally a Poisson random variable. Thus,
the evaluation of the signal-to-noise ratio (intended as the ratio
between the squared mean value of the received molecules and
its variance) is not a problem of interest, since its value simply
equals the mean of such a random variable. However, in spatially
distributed communications, where the point transmitters are
randomly placed in the 3D space according to a point process, the
number of received molecules derives from the contribution of a
random sum of emissions, so that it is no more a Poisson random
variable. Thus, the evaluation of the signal-to-noise ratio is not
trivial. Here, we provide an analytical framework to evaluate the
signal-to-noise ratio in spatially distributed molecular commu-
nications for both synchronous and asynchronous transmitters.
The analysis is extended to the signal-to-interference-noise ratio
when digital communications with intersymbol interference are
considered.

Index Terms—Molecular communications, diffusion, point pro-
cesses, asynchronous transmission, SNR and SINR evaluation

I. INTRODUCTION

Molecular communications are one of the new paradigms
which are rising to overcome constraints in the classic com-
munication paradigms when moving to nano-scale (e.g., size
constraints, energy problems, medium incompatibility) [1]–
[3]. Differently than electromagnetic and acoustic communica-
tions (which are totally based on waves) and than optical and
quantum communications (whose nature involves both waves
and particles), molecular communications have a particle-
based nature [4]–[9].

Important processes in Nature, such as cell development,
cell coordination in tissues, and multi-cellular homeostasis,
involve the processing, the transmission, the propagation, and
the reception of molecules [10]–[12]. Molecular communica-
tions are a nano-scale paradigm: the size of molecules which
propagate typically range from about one Angstrom to tens
of nanometers, while emission/reception processes involve
phenomena inside biological cells of about 100nm diameters
[13]. This implies that human-made molecular communication
systems (e.g., those based on nano-machines) access nano-
scales properties of matter and fit in nano-scale spaces [14]–
[16]. Application of nanomachines can be biomedical (e.g.,
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bio-hybrid implants, monitoring glucose level, heart monitor-
ing, cures against brain pathology, medication-carrying smart
nanocapsules that detect and destroy tumors), military (e.g.,
nuclear, biological, and medical defense), industrial (e.g., food
and water control, functionalized materials and fabric), and
environmental (e.g., biodegradation, animals and biodiversity
control, air pollution control) [17].

Molecular communications can be classified based on
propagation: walkway-based (e.g., molecular motors [18]),
advection-based (e.g., chemotaxis [19]–[21]), and diffusion
based (i.e., diffusion through Brownian motion only [4], [5],
[22], [23], or with flow [24]–[26]).

In this work, we focus on molecular communication via
diffusion (MCvD) in the absence of flow. Differently than
communications based on electromagnetic or acoustic waves,
in this case it is not necessary to spend energy for the
transmission, since information-carrying molecules are con-
veyed by the Brownian motion of the fluid. The negative
aspect is represented by the random nature of such a kind of
propagation. While in electromagnetic and acoustic communi-
cations the noise is usually represented by a source which is
independent of the useful signal (e.g., additive white Gaussian
noise (AWGN)), in such a way that it is sufficient to increase
the signal power to increment the signal-to-noise ratio (SNR),
in MCvD the signal itself is intrinsically affected by random
disturbance.

More specifically, if the information is encoded in the local
concentration of information-carrying molecules (i.e., in the
number of molecules observed by a certain model of receiver
in certain volume within a certain time), the signal results in a
random process (or, equivalently, a random variable if a given
time instant is considered). Such a stochastic characterization
is analytically studied in the literature for both passive receiver
model (the receiver counts the molecules inside a volume with-
out interacting with them [27]) and fully absorbing receiver
model (the receiver absorbs each molecule hitting its surface,
thus removing it from the fluid [28]).

Due to chemical reasons [29], the number of emitted
molecules can be modeled by a Poisson random variable.
Moreover, it is shown in [4], [30] that also the number of
received molecules after diffusion is a Poisson random variable
(RV). Thus, in a point-to- point MCvD, the SNR, defined
as the ratio between the square of the average number of
received molecules and the corresponding variance, is equal
to the average itself. As a consequence, the evaluation of the
average number of received molecules (first order analysis) is
sufficient to quantify the effectiveness of the communication
in such scenario.

However, when a spatially distributed transmission is con-
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sidered (e.g., when molecules are emitted by a swarm of point
transmitters randomly placed in 3D), due to the superposition
of effects, the overall number of received molecules results
in a random sum of RVs with different random parameters
(e.g., the distance from the receiver, the emission times, etc.)
which is no more a Poisson RV even though each contribution,
taken apart, is a Poisson RV. Thus, a second order stochastic
characterization is needed to study spatially distributed MCvD
in the terms of SNR.

Recent studies investigate such scenario in terms of bit
error probability (in the case of on-off keying (OOK)) [7] and
connectivity (each point transmitter is considered a node of
a nano-network) [31]. In these works, a stochastic geometry
approach is adopted and positions of point transmitter are
modeled according to a homogeneous Poisson point process
(HPPP) in 3D. However, their analytical frameworks assume
that all point transmitters emit molecules at the same time
instant (global-clock assumption). In many scenarios such
a synchronous assumption may be not realistic: e.g., when
emissions derive by chemical reactions that randomly happen
in the fluid with a certain propensity function [32], or when
point transmitters represent independent (not synchronized)
nodes of a nano-network (in [31] such an asynchronous
scenario is investigated via simulation).

The first attempt to analytically study asynchronous spa-
tially distributed MCvD can be found in [8], where a first
order analysis is presented involving methods from both point
process theory and classic linear filtering theory [33], [34].

In the present work, such an approach is extended to
a second order analysis, in order to evaluate the SNR in
spatially distributed MCvD. It should be pointed out that
a swarm of point transmitters, randomly placed according
to a point process (PP), implies that the overall number of
received molecules is given by a random sum of Poisson
RVs with random parameters (which is no more a Poisson
RV). Thus, unlike the case of point to point MCvD [31], in
the large scale MCvD, the SNR is not equal to the mean
value of received molecules and requires the evaluation of the
variance of the received molecules themselves. The proposed
framework puts in evidence that the spatially distributed case
completely differs from the point-to-point case in terms of
temporal evolution and asymptotic SNR analysis for infinite
molecules emissions. Moreover, the stochastic geometry based
approach is extended with respect to the case of the HPPP,
usually adopted by the literature, by considering the effects of
stochastic interactions (i.e., attraction and repulsion) among
the scattered points. Besides, our framework includes also
the SNR evaluation in case of multiple samples detector, as
proposed by [35].

In order to make our study more comprehensive to the
convolutional nature of the channel, we also derive analytical
expressions for the mean and the variance of the inter-symbol
interference (ISI) in case of digital transmission via OOK
modulation, and compute the signal-to-interference-noise ratio
(SINR). The bit error probability (BEP) is also analytically
evaluated, by means of a Gaussian approximation, in order to
verify how representative the SNR and the SINR are for a
spatially distributed MCvD digital communication system.

Fig. 1. A large scale MCvD system with a spherical receiver and a swarm of
randomly placed point transmitters that randomly emit molecules according
to independent time-domain PPs with the same intensity function λa(t).

Finally, numerical results obtained via Monte Carlo simula-
tions are compared to those derived by the analysis to validate
the proposed second order analysis of spatially distributed
MCvD.

The paper is organized as follows. In Sec. II, the system
model and notation are described. In Sec. III analytical ex-
pressions of the SNR are derived for both the concentration
synchronous and timing asynchronous cases, also taking a
general spatial distribution of point transmitters into account.
In Sec. IV, analytical expressions of the SINR are obtained
for spatially distributed digital MCvD affected by ISI, for con-
centration synchronous and timing asynchronous transmitters
with a general spatial distribution. In Sec. V, for the sake
of simplicity, a case study is presented based on a Poisson
distribution of point transmitters. In Sec. VI numerical results
are derived based on the closed forms previously derived for
the cases considered. In Sec. VII conclusions are presented.

II. SYSTEM MODEL

We consider a spatially distributed communication model
where a swarm of point transmitters are randomly placed in a
three dimensional space and the reception is performed by a
receiver with dimension (e.g., spherical). For the emission, we
consider all the three possible model adopted by the literature
[36]: exact concentration, Poisson concentration and timing
transmitters. All these cases have to be combined to the two
possible scenarios which can arise when multiple transmitter
are considered: all point transmitters emit molecules at the
same time (global clock assumption, see [7]) or not (asyn-
chronous case, see [8]). The diffusion process is assumed
as without flow and without interaction between different
information molecules, while the reception process is the full
absorption. Here, we consider all the source of randomness,
that have to be taken into account for the SNR evaluation, one
by one.

A. Brownian motion and absorption process

The first source of randomness is the Brownian motion
of molecules. Starting from Fick’s law, it can be described
stochastically. Here we define the function Fhit(r, t), which de-
scribes the fraction of molecules received (i.e., the probability
that the emitted molecules is received) at distance r from the
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Fig. 2. Exact and Poisson concentration transmitters emit all molecules at
t = 0. Timing transmitters emit molecules one-by-one at random instants.

point transmitter till time t , provided that the emission takes
place at the time origin and t > 0. Such a function depends
on the receiver model and on the way of considering finite
molecule’s lifetime.

According to [28], the fraction of molecules received by a
spherical fully absorbing receiver (with radius R) at distance
r from the point transmitter till time t is given by

Fhit(r, t) =
R

r
erfc

(
r −R√

4Dt

)
(1)

where D is the diffusion coefficient (in m2/s, see, e.g. [37]),
provided that the emission happens at the time origin and t >
0.1

We assume that each information molecule subdues an
independent diffusion and absorption process, such that the
superposition of effects can be applied.

B. Transmitters models

When a deterministic number of molecules are emitted at
a certain time (e.g., t = 0, without loss of generality) no ran-
domness is obviously introduced (exact concentration model).
However, it may happen both that the number of emitted
molecules is a RV (e.g., Poisson concentration transmitter), or
that the time instants at which each molecules is emitted are
RVs (in timing transmitter models, the emission instants are
controlled by the transmitter since they codify information:
thus, they can be considered as random from an external
perspective).

In order to develop a proper comparison among the three
transmission models existing in the literature [36], we formal-
ize such models by exploiting RVs stochastic description as
follows.

1) Exact concentration transmitter model: When exactly
Ntx are emitted at t = 0, we have to consider that each of
the Ntx molecules has probability Fhit(r, t) of being received
at a distance r till time t. Thus, since the diffusion of each
molecule is assumed as an independent process, the number
a|r,t of received molecules at distance r till time t due to such
a transmission results in a binomial RV (as the sum of Ntx
independent identically distributed (IID) Bernoulli RVs whose

1For t < 0 it is Fhit(r, t) = 0 since no molecule can be received before
the emission.

success probability corresponds to the successful reception of
molecules):2

a|r,t ∼ B(Ntx, Fhit(r, t)) . (2)

2) Poisson concentration transmitter model: In the Poisson
concentration model, the number ntx of emitted molecules at
t = 0 is not deterministic, but it is modeled by a Poisson RV
with mean Ntx.

Similarly to the previous case, each of the ntx molecules has
probability Fhit(r, t) of being received at a distance r till time
t. More formally, the diffusion process of the l-th molecule can
be stochastically described (for given r and t) by the Bernoulli
RV bl|r,t

bl|r,t ∼ B[Fhit(r, t)] (3)

which takes value 1 if the l-th emitted molecule is received
and 0 otherwise.

However, unlike the exact case, the number a|r,t of received
molecules at distance r till time t is no more a binomial
RV, but it is given by the random sum of the aforementioned
Bernoulli RVs

a|r,t =

ntx∑
l=1

bl|r,t (4)

where bl|r,t can be considered as IID due to the assumption
of independent diffusion of each information molecule.

3) Timing transmitter model: According to the tim-
ing transmitter model, the transmitter releases individual
molecules one by one, at specified time instances. If such
instants are unknown a priori, they can be modeled by RVs.
When emission times are independent of each other, they can
be considered as instantiations of a temporal (generally, non-
stationary) Poisson point process (PPP) Φ with intensity λ(t).3

Formally, the l-th molecule is emitted at the random time
τl ∈ Φ and thus can be described (given r, t) by the Bernoulli
RV

bl|r,t ∼ B[Fhit(r, t− τl)] (5)

where Fhit(r, t − τl) (thanks to the time invariance of Fick’s
law) represents the probability of being received at distance r
till time t.

As a consequence, the number of received molecules at
distance r till time t is given by the random sum

a|r,t =
∑

l∈I{Φ}

bl|r,t (6)

where I{Φ} indicates the index set of Φ.
By comparing (6) to (4), it can be noticed that the Poisson

concentration model can be derived as a special case of timing
transmitter model where Φ is a PPP with %(1)

Π (t) = Ntxδ(t) in
the sense of distributions.

2B(p) indicates the Bernoulli distribution with success probability p, while
B(n, p) is the binomial distribution with n trials and success probability p
for each trial.

3The intensity function ρ(t) of a generic time domain PP in [8] is going
to be identified with λ(t) in this case, since here we deal with a time domain
PPP.
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C. Point transmitters positions and stochastic geometry

In spatially distributed molecular communications via diffu-
sion, also the random positions of point transmitters represent
a source of randomness that has to be taken into account for
the SNR evaluation.

Let Ψ be a spatial isotropic PP in R3 with first and second
order density functions given by:

%
(1)
Ψ

(x1) =λΨ (7)

%
(2)
Ψ

(x1,x2) =ρΨ(‖x1 − x2‖) (8)

for x1,x2 ∈ R3. We recall [38] that %(1)
Ψ

(x1)dx1 is the
infinitesimal probability to have a point inside the infinites-
imally small region around x1 with volume |dx1|,4 while
%

(2)
Ψ

(x1,x2)dx1dx2 is the joint probability to have a point
inside the infinitesimally small region around x1 with volume
|dx1| and another point inside the infinitesimally small region
around x2 with volume |dx2|. Thus, while the first order in-
tensity function basically describe the density of the points, the
second order intensity function is used to describe stochastic
interactions between points. More precisely, we can have one
of the following situation:
• if %

(2)
Ψ

(x1,x2) < %
(1)
Ψ

(x1)%
(1)
Ψ

(x2), that is, the joint
probability of having a point in x1 and a point in x2

is lower than the product of the respective unconditional
probabilities, then there is repulsion between points (it is
the case, e.g., of the determinantal PPs, see [39]–[41]);

• if %
(2)
Ψ

(x1,x2) = %
(1)
Ψ

(x1)%
(1)
Ψ

(x2), that is, the joint
probability of having a point in x1 and a point in x2

is equal to the product of the respective unconditional
probabilities, than there is independence among points
(it is the case of the PPP, see [42]).

• if %
(2)
Ψ

(x1,x2) > %
(1)
Ψ

(x1)%
(1)
Ψ

(x2), that is, the joint
probability of having a point in x1 and a point in x2

is higher than the product of the respective unconditional
probabilities, then there is attraction between points (it is
usually the case of the clustering PPs such as Cox, see
[43]–[46]).

We will investigate the impact of such stochastic interactions
on the SNR when Ψ is the PP which models the positions
of the point transmitters in spatially distributed molecular
communications via diffusion.

D. Spatially distributed transmission models: superposition
with generalization of Sec. II-B

Without loss of generality, the center of the spherical
receiver is at the origin. The sphere of radius R representing
its volume is denoted as ΩR. Consider a swarm of point
transmitters, whose random positions xn ∈ R3 are modeled as
the outcomes of a spatial PP (not necessarily Poisson) Ψ in
R3\ΩR.5 Thus, the distance between the n-th point transmitter
and the receiver results in ‖xn‖.

Due to the superposition of effects and the independence
of the emissions from different point transmitters, the overall

4| · | indicates the Lebesgue measure.
5and transmitters cannot be placed inside its volume ΩR.

number of received molecules from all transmitters till time t
results in

nrx|Ψ(t) =
∑

n∈I{Ψ}

an|Ψ,t (9)

where, for different n, {an|Ψ,t} are independent RVs modeling
the contribution of the n-th transmitter placed at xn ∈ Ψ. More
precisely:6

Remark 1: Note that the stochastic properties of the n-th
transmitter contribution in received molecules, an|Ψ,t, depends
on the spatial PP Ψ (through the RVs {xn}) and on the
transmitter model.

III. SNR EVALUATION

To better understand all the problems involved by the SNR
evaluation in MCvD with different transmitter models, we will
focus, first, on the simple single transmitter case, then, we
will apply the framework to the case of interest of spatially
distributed transmission.

We define the SNR related to a received molecular signal as
the ratio between the squared number of received molecules
and the variance of received molecules themselves. However,
such evaluation has to be adapted to the different scenarios
considered: the received number of molecules depends on
the distance from the transmitter in the point-to-point case,
whereas it is a sum of contributions from the swarm of
transmitters in the spatially distributed case.

A. SNR in point-to-point MCvD

The SNR at the distance r till time t is here defined as
the ratio between the square of the mean of the number
a|r,t of received molecules, at distance r till time t, and the
corresponding variance:

SNR(0)(r, t) ,
(E {a|r,t})2

V{a|r,t}
(11)

where the superscript ”(0)” indicates the single transmitter
case.

6Formally, a|r,t is replaced by an|Ψ,t, since each contribution in (9)
specifically refers to the n-th transmitter, and thus, is conditioned to its
distance ‖xn‖ from the receiver, where all {xn} belong to the PP Ψ.

an|Ψ,t =
∑
l∈L

bn,l|Ψ,t (10)

where
1) for exact concentration (synchronized) transmitters: L =
{1, 2, ..., Ntx} and bn,l|Ψ,t ∼ B[Fhit(‖xn‖, t)] (all point transmitters
are assumed to emit exactly Ntx molecules at t = 0);

2) for Poisson concentration (synchronized) transmitters: L =

{1, 2, ..., n(n)
tx } and bn,l|Ψ,t ∼ B[Fhit(‖xn‖, t)], with {n(n)

tx } IID
Poisson RVs with mean Ntx (each n-th point transmitter emits a
random number n(n)

tx of molecules at t = 0);
3) for timing (asynchronous) transmitters: L = I{Φ(n)} and bn,l|Ψ,t ∼
B[Fhit(‖xn‖, t − τ

(n)
l )], with Φ(n) time domain PPPs independent

among n with intensity function λ(t) whatever n, and τ(n)
l ∈ Φ(n)

(according to the asynchronous stochastic model proposed in [8], each
point transmitter follows a timing transmitter model with random and
independent emissions, and no synchronization is assumed: the l-th
emission of the n-th transmitter is modeled by the RV τ(n)

l belonging
to the time domain PP Φ(n)).
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1) SNR with exact concentration transmitter: By using (2)
in the expressions for the mean and the variance of a binomial
RV, we obtain the mean and variance of the received molecules
in the case of exact concentration transmitter:

E {a|r,t} = Ntx Fhit(r, t) (12a)
V{a|r,t} = Ntx Fhit(r, t) [1− Fhit(r, t)] . (12b)

Thus, from (11) it follows

SNR(0)
Ex. conc.(r, t) =

Ntx Fhit(r, t)

1− Fhit(r, t)
. (13)

2) SNR with Poisson concentration transmitter: In Ap-
pendix A we show that, with Poisson concentration transmitter,
the mean and the variance of the number of received molecules
result in

E {a|r,t} = V{a|r,t} = NtxFhit(r, t) . (14)

Thus, (11) leads to

SNR(0)
Po. conc.(r, t) = NtxFhit(r, t) . (15)

3) SNR with timing transmitter: In Appendix B we prove
that, with timing transmitter, the mean and the variance of the
number of received molecules result in

E {a|r,t} = V{a|r,t} =

∫ +∞

−∞
λ(τ)Fhit(r, t− τ)dτ . (16)

Thus, (11) leads to

SNR(0)
Timing(r, t) =

∫ +∞

−∞
λ(τ)Fhit(r, t− τ)dτ . (17)

Remark 2: For Poisson concentration and timing transmitter
models, the SNR equals the average number of received
molecules. In our framework, this result follows from the
Poisson assumption adopted in both these two models. In the
previous literature for single transmitter MCvD, it is a known
result derived by physical and chemical considerations [4].

B. SNR in spatially distributed MCvD

Definition 1 (SNR associated to received molecules from a
swarm of point transmitters scattered according to a PP): We
define the SNR due to the swarm of transmitters placed at
positions {xn} ∈ Ψ as

SNRΨ(t) ,
(E {nrx|Ψ(t)})2

V{nrx|Ψ(t)}
=

[
E
{∑

n∈I{Ψ} an|Ψ,t
}]2

V
{∑

n∈I{Ψ} an|Ψ,t
}

(18)

where nrx|Ψ(t) is the RV describing the number of molecules
received from all transmitters till time t and {an|Ψ,t} are the
RVs modeling the contribution of the n-th transmitter placed
at xn ∈ Ψ, given Ψ.

In order to separate the effect of the transmitter model and
that of multiple transmitters random displacement, we focus on
the contribution of the generic transmitter; then, we consider
the overall contribution of multiple transmitters by using the
superposition of effects.

Theorem 1 (General expression of the SNR due to spatially-
distributed transmission): The SNR due to multiple transmit-
ters placed according to Ψ ∈ R3 can be expressed as

SNR(t) =

[∫
R3\ΩR λΨ ε(‖x‖, t)dx

]2∫
R3\ΩR λΨ ξ(‖x‖, t)dx + ζΨ(t)

(19)

where

ζΨ(t) ,
∫
R3\ΩR

∫
R3\ΩR

[
ρΨ(‖x1 − x2‖)− λ2

Ψ

]
× ε(‖x1‖, t) ε(‖x2‖, t) dx1dx2 (20)

and the functions ε(r, t) and ξ(r, t) are defined such that

ε(‖xn‖, t) = Ea|Ψ {an|Ψ,t} (21a)

ξ(‖xn‖, t) = Ea|Ψ
{
a2
n|Ψ,t

}
(21b)

with Ea|Ψ {·} indicating the averaging operator given the
positions {xn} ∈ Ψ of the point transmitters.7

Proof: By using the superposition of effects stated in (9)
in the definition of the SNR for multiple transmitters case (11),
we obtain

E {nrx|Ψ(t)} =E

 ∑
n∈I{Ψ}

an|Ψ,t


=EΨ

 ∑
n∈I{Ψ}

Ea|Ψ {an|Ψ,t}


=EΨ

{∑
xn∈Ψ

ε(‖xn‖, t)

}
(22a)

E
{
nrx|2Ψ(t)

}
=E


 ∑
n∈I{Ψ}

an|Ψ,t

2


=EΨ

 ∑
n∈I{Ψ}

∑
k∈I{Ψ}

Ea|Ψ {an|Ψ,tam|Ψ(t)}


=EΨ

{∑
xn∈Ψ

ξ(‖xn‖, t)

}

+ EΨ


∑
xn∈Ψ

∑
xk∈Ψ
xn 6=xk

ε(‖xn‖, t) ε(‖xm‖, t)


(22b)

where by EΨ {·} we indicate the averaging over the transmit-
ters positions {xn} ∈ Ψ and the last follows by observing
that the contributions {an|Ψ,t} are independent given Ψ. By

7It can be readly noticed that, according to Sec. II-D, the RHS in (21)
depend on Ψ through xn ∈ Ψ only.
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applying the properties of first and second order product
density function of a PP [38], [47], from (22) we obtain

E {nrx|Ψ(t)} =

∫
R3\ΩR

λΨ ε(‖x‖, t)dx (23a)

E
{
nrx|2Ψ(t)

}
=

∫
R3\ΩR

λΨ ξ(‖x‖, t)dx

+

∫
R3\ΩR

∫
R3\ΩR

ρΨ(‖x1 − x2‖)

× ε(‖x1‖, t) ε(‖x2‖, t) dx1dx2 . (23b)

From (23) it follows

V{nrx|Ψ(t)} =E
{
nrx|2Ψ(t)

}
− (E {nrx|Ψ(t)})2

=

∫
R3\ΩR

λΨ ξ(‖x‖, t)dx

+

∫
R3\ΩR

∫
R3\ΩR

ρΨ(‖x1 − x2‖)

× ε(‖x1‖, t) ε(‖x2‖, t) dx1dx2

−
∫
R3\ΩR

∫
R3\ΩR

λ2
Ψ
ε(‖x1‖, t)ε(‖x2‖, t)dx1dx2

=

∫
R3\ΩR

λΨ ξ(‖x‖, t)dx + ζΨ(t) (24)

which, jointly with (23a), leads to (19).
Note that ε(‖x‖, t) and ξ(‖x‖, t) depend on the trans-

mission model. They will be given in the following for all
the cases of spatially distributed transmission mentioned in
II-D. First, the following definitions, related to the spatial
distribution of the point transmitters (described by the PP Ψ),
are needed.

Definition 2 (First and second order MCvD channel charac-
terization): We define the following functions, useful for the
interpretation of the results:

Hall(t) ,λΨ

∫
R3\ΩR

Fhit(‖x‖, t)dx (25a)

H
(2)
all (t1, t2) ,λΨ

∫
R3\ΩR

Fhit(‖x‖, t1)Fhit(‖x‖, t2)dx (25b)

G
(2)
all (t1, t2) ,

∫
R3\ΩR

∫
R3\ΩR

[
ρΨ(‖x1 − x2‖)− λ2

Ψ

]
× Fhit(‖x1‖, t1)Fhit(‖x2‖, t2)dx1dx2 (25c)

Note that (25a) is the so-called collective impulse response in-
troduced by [7] and [8] for the first order analysis, while (25b)
and (25c) are related to the second order characterization.

Remark 3: Differently than in point-to-point case, in the
spatially distributed multiple transmitters case the variance of
the number of received molecules is different than its mean:
in fact, even in Poisson concentration and timing transmitter
models,8 the number of received molecules from all the
randomly placed transmitters (according to a spatial PP) is not
a Poisson RV. Thus, the proposed second-order evaluation is
needed to correctly compute the SNR, since the quality of the
reception cannot be evaluated through an averaging operation
only, as done in previous works [7], [8], [31].

8Compare (22a) to (24), with ε(xn, t), ξ(xn, t), and η(xn, xm, t) provided
by (27) and by Appendix C.

1) SNR with synchronous exact concentration transmitters:
By using (10) in (21) with L = {1, 2, ..., Ntx} and bn,l|Ψ,t ∼
B[Fhit(‖xn‖, t)], it results

ε(xn, t) = NtxFhit(‖xn‖, t)
ξ(xn, t) = NtxFhit(‖xn‖, t) +Ntx(Ntx − 1)F 2

hit(‖xn‖, t) .

Thus, by using (25) in (19) we obtain

SNR(t) =
[Hall(t)]

2

Hall(t)
Ntx

+
(

1− 1
Ntx

)
H

(2)
all (t, t) +G

(2)
all (t, t)

. (26)

2) SNR with synchronous Poisson concentration transmit-
ters: By using (10) in (21) with L = {1, 2, ..., n(n)

tx } and
bn,l|Ψ,t ∼ B[Fhit(‖xn‖, t)], it results

ε(xn, t) = Ntx Fhit(xn, t) (27a)

ξ(xn, t) = NtxFhit(xn, t) +N2
txF

2
hit(xn, t) . (27b)

Thus (19) and (25) lead to

SNR(t) =
[Hall(t)]

2

Hall(t)
Ntx

+H
(2)
all (t, t) +G

(2)
all (t, t)

. (28)

3) SNR with asynchronous timing transmitters: The follow-
ing lemma is needed for the asynchronous case.

Lemma 1 (Mean and variance of the number of received
molecules with asynchronous transmissions): If asynchronous
timing transmitters, placed over R3 \ ΩR according to the
spatial PP Ψ, emit molecules according to different and
independent time domain PPs Φ(n) with first and second order
product intensity functions ρ(t) and ρ(2)(t, τ), the mean and
the variance of the number of received molecules result in:

E {nrx|Ψ(t)} =

∫ +∞

−∞
ρ(τ)Hall(t− τ)dτ (29a)

V{nrx|Ψ(t)} =

∫ +∞

−∞
ρ(τ)Hall(t− τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
ρ(2)(τ, s)H

(2)
all (t− τ, t− s)dτds

+

∫ +∞

−∞

∫ +∞

−∞
ρ(τ)ρ(s)G

(2)
all (t− τ, t− s)dτds .

(29b)

Proof: See Appendix C.
If the time domain PPs are Poisson with intensity λ(t), it is
straightforward to obtain, from (18) and (29):9

SNR(t) =

[∫ +∞

−∞
λ(τ)Hall(t− τ)dτ

]2

×
[∫ +∞

−∞
λ(τ) Hall(t− τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
λ(τ)λ(s)H

(2)
all (t− τ, t− s)dτds

+

∫ +∞

−∞

∫ +∞

−∞
λ(τ)λ(s)G

(2)
all (t− τ, t− s)dτds

]−1

.

(30)
9Recall that, for a PPP, it is ρ(t) = λ(t) and ρ(2)(t, τ) = λ(t)λ(τ) [42].
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Remark 4: Note that in the SNR expressions (26), (28), and
(30), the denominator is always composed by three compo-
nents, corresponding to the three functions characterizing the
MCvD channel according to (25):
• the mean (which depends on the first order characteriza-

tion of the spatially distributed molecular channel Hall(t),
see also [8]);

• a component depending on the second order charac-
terization of the spatially distributed molecular channel
H

(2)
all (t, τ);

• a component depending on the stochastic characteriza-
tion (attraction/repulsion) of the transmitters positions,
G

(2)
all (t, τ), which, according to (25c), is negative for

repulsive PP and positive for clustered PP.

C. Impact of stochastic interactions between transmitter po-
sitions on the SNR

The following theorem states that, in the multiple transmit-
ters scenario, the SNR is increased by stochastic repulsion
between transmitters and is decreased by stochastic attraction
(clustering), with respect to the case of a Poisson distribution
of the transmitters (stochastic independence) with the same
intensity.

Theorem 2 (Effect of attraction/repulsion on the SNR): Let
Ψ

(re), Ψ(Po), and Ψ(cl) be, a repulsive, a Poisson and a
clustered isotropic PP, respectively, with the same intensity
λΨ. The following inequalities hold for the SNR due the
swarm of transmitters placed according to Ψ(cl), Ψ(Po), and
Ψ

(re).
SNR(cl)(t) 6 SNR(Po)(t) 6 SNR(re)(t) . (31)

Proof: By the definition of clustered and repulsive PPs,
and comparing a clustered isotropic PP Ψ(cl) and a repulsive
isotropic PP Ψ(re) with a homogeneous PPP Ψ(Po) with the
same intensity λΨ, the following inequalities hold [38], [39],
[43]:

ρ
(re)
Ψ

(‖x1 − x2‖) 6 λ2
Ψ
6 ρ

(cl)
Ψ

(‖x1 − x2‖) (32)

for all x1,x2 ∈ R3. Thus, (23) leads to

E
{
nrx|(re)

Ψ

}
= E

{
nrx|(Po)

Ψ

}
= E

{
nrx|(cl)

Ψ

}
(33a)

V
{
nrx|(re)

Ψ

}
6 V

{
nrx|(Po)

Ψ

}
6 V

{
nrx|(cl)

Ψ

}
. (33b)

The theorem follows by using (32) and (33) in (18).
Remark 5: Last result may appear as counter-intuitive, since

one may argue that a cluster close to the receiver actually
helps the communication. However, it has to be observed that
PPs with stochastic interactions between points are considered
here, which are however homogeneous (i.e., the density is
independent of the position). Thus, for a clustered PP, the
parent points (i.e., the centers of the clusters) are uniformly
distributed over R3. A cluster close to the receiver helps
the communication, but, in the same way, a cluster far from
the receiver has opposite effect. Theorem 2 states that, in
average, a clustered PP is not convenient. On the contrary, PPs
with repulsion between points (e.g., determinantal PPs [47])
are. This is in accordance to the observation that stochastic
repulsion lead to more regular point displacement [48].

D. Multiple-sample detection

The proposed ”analog” approach can be extended to a ”digi-
tal” scenario where the receiver counts the number of observed
molecules several times within one symbol interval. Consider
a multiple-samples detector as in [35]. Here, molecules are
emitted and observed every ∆t seconds within each symbol
time Ts.10 For both synchronous Poisson concentration and
asynchronous timing transmitters, the following proposition
can be derived using the results of Lemma 1.

Theorem 3 (SNR with multiple samples): Let K denote the
number of samples. If the observation interval is ∆t second
long after each emission (thus, the whole observation interval
is [0, Ts]), the SNR results in SNRmul =

µ2
mul
σ2

mul
, where

µmul =Ntx

K−1∑
k=0

Hall(Ts − k∆t) (34a)

σ2
mul =Ntx

K−1∑
k=0

Hall(Ts − k∆t)

+N2
tx

K−1∑
k=0

K−1∑
m=0

H
(2)
all (Ts − k∆t, Ts −m∆t)

+N2
tx

K−1∑
k=0

K−1∑
m=0

G
(2)
all (Ts − k∆t, Ts −m∆t) (34b)

for synchronous Poisson concentration transmitters, and

µmul =
Ntx

Ta

K−1∑
k=0

∫ k∆t+Ta

k∆t

Hall(Ts − τ)dτ (35a)

σ2
mul =

Ntx

Ta

K−1∑
k=0

∫ k∆t+Ta

k∆t

Hall(Ts − τ)dτ

+
N2

tx

T 2
a

K−1∑
k=0

K−1∑
m=0

∫ k∆t+Ta

k∆t

∫ m∆t+Ta

m∆t

H
(2)
all (Ts − τ, Ts − s)dτds

+
N2

tx

T 2
a

K−1∑
k=0

K−1∑
m=0

∫ k∆t+Ta

k∆t

∫ m∆t+Ta

m∆t

G
(2)
all (Ts − τ, Ts − s)dτds

(35b)

for asynchronous timing transmitters with uniformly dis-
tributed emissions in [0, Ta] with Ta < ∆t.

Proof: First, observe that, for both Poisson concentration
and timing transmitters, we can use the results obtained for
timing transmitters with

λ(t) =

K∑
k=0

g(t− k∆t) (36)

where g(t) = Ntxδ(t) for synchronous Poisson concentration
transmitters and g(t) = Ntx

Ta
rect

(
t
Ta

)
for asynchronous timing

10In [35] passive receivers are considered and samples are instantaneous as
a consequence. Here, with fully absorbing receivers, each sample has duration
∆t.
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transmitters. By using (36) in (29) with the properties of the
time domain PPPs, we obtain

µmul =

K−1∑
k=0

∫ +∞

−∞
g(τ − k∆t)Hall(Ts − τ)dτ

σ2
mul =

K−1∑
k=0

∫ +∞

−∞
g(τ − k∆t)Hall(Ts − τ)dτ

+

K−1∑
k=0

K−1∑
m=0

∫ +∞

−∞

∫ +∞

−∞
g(τ − k∆t)

× g(s−m∆t)H
(2)
all (Ts − τ, Ts − s)dτds

+

K−1∑
k=0

K−1∑
m=0

∫ +∞

−∞

∫ +∞

−∞
g(τ − k∆t)

× g(s−m∆t)G
(2)
all (Ts − τ, Ts − s)dτds

which result in (34) and (35).
Note that the proposed evaluation do not require that samples
are independent, which, generally, are not [37].

IV. DIGITAL APPROACH: ISI EVALUATION

SNR is key performance indicator when analog transmission
is considered (e.g., for the MCvD case, when the information
is encoded in the time continuous function λ(t) and is re-
vealed through the time continuous function f(t)). For digital
transmission, the BEP has to be computed to evaluate the
performance of MCvD. However, the framework developed
for the SNR can be useful to such an evaluation. Indeed, in
this section, first, we show that also signal-to-interference ratio
(SIR) and the SINR due to the presence of ISI can be computed
in a similar way. Then, by means of Gaussian approximation,
we derive an expression for the BEP.

Since the BEP in case of exact concentration transmitters
has been derived in [7], we focus on the Poisson concentration
and the timing transmitters case. More specifically, we con-
sider two different spatially distributed transmission scenarios:

• Poisson concentration synchronous transmitters
representing nano-robots which emit all molecules
at every time bit;

• timing asynchronous transmitters representing randomly
generated molecules due to chemical reactions in the
fluid, described by the propensity function (i.e., the
intensity function λ(t) in our model) [29], [32], [49],
[50]. In such a case, digital communication is possible
by controlling the propensity function in a proper way.

Note that the framework developed in Sec. III for asyn-
chronous timing transmissions can capture both scenarios for
proper λ(t).11

11According to Sec. II-B, the timing transmitter as here considered (which
emit molecules one-by-one according to a non-stationary time domain PPP
with intensity function λ(t)) reduces to a Poisson concentration transmitter
for λ(t) = Ntxδ(t) (all emissions are concentrated at t = 0 and the number
of emitted molecules remains a Poisson RV ntx with mean Ntx).

A. Digital transmission via MCvD
Definition 3: We define a spatially distributed digital trans-

mission via MCvD a scenario where all time domain PPs
{Φ(n)} (modeling the emissions of the n-th timing transmitter
according to Sec. II-D) have an intensity function λ(t) given
by:12

λ(t) =

j∑
i=0

dig(t− iTb) (37)

where Tb is the bit duration, di is the value of the i-th bit, j
is the number bits transmitted before the j-th one,13 and g(t)
can be considered as a sort of waveform such that
• for the synchronous Poisson transmissions,
g(t) = Ntxδ(t);

• for the asynchronous timing transmissions, g(t) is a
function which is nonzero only inside the interval [0, Tb]:
e.g., for uniformly distributed emissions in an activity
interval of duration Ta, g(t) = Ntx

Ta
rect

(
t
Ta

)
(where the

ratio Ta/Tb can be considered as the duty cycle).
It follows that, by considering a digital transmission with bit
duration Tb, the number of received molecules in the interval
[jTb, (j + 1)Tb] (i.e., the j-th time bit) due to the emissions
of the n-th timing transmitter placed at xn ∈ Ψ results in

an|Ψ,λ[j] =
∑

l∈I{Φ(n)}

bn,l|Ψ,λ[j] (38)

where bn,l|Ψ,λ[j] is a Bernoulli random variable taking value
1 if the l-th molecule emitted by the n-th transmitter (given
the intensity function λ(t) of the time domain PP Φ(n)) is
received in the interval [jTb, (j + 1)Tb] and value 0 if not.

It is known [37] that fhit(r, t) , ∂Fhit(r,t)
∂t represents the

probability that a molecule emitted at the time origin at
distance r is received at time t. Thus, the probability that
a molecules emitted at t = 0 is observed within the interval
[t1, t2] is given by

∫ t2
t1
fhit(r, t)dt = Fhit(r, t2) − Fhit(r, t1).

Due to the linearity and the time invariance of the Fick’s
law of diffusion, if the emission happens at t = t0, the
probability that the molecules is received in the interval [t1, t2]
is Fhit(r, t2 − t0) − Fhit(r, t1 − t0). It follows that the RV
modeling the reception of the l-th molecule emitted at time
τ

(n)
l by the n-th transmitter placed at xn, during the interval

[jTb, (j + 1)Tb], is distributed as

bn,l|Ψ,λ[j] ∼ B[F hit(‖xn‖, jTb − τ(n)
l )] (39)

where
F hit(r, t) , Fhit(r, Tb + t)− Fhit(r, t) . (40)

According to Sec. II-D, the total number of received molecules
during the j-th time bit due to all transmitters (placed accord-
ing to Ψ) is

nrx|Ψ,λ[j] =
∑

n∈I{Ψ}

an|Ψ,λ[j] . (41)

12Due to the random bit sequence {di}, the intensity function λ(t) is now
a random process.

13Without loss of generality, focusing on the j-th bit means taking into
account the ISI due to the previous symbols and neglecting the influence of
future symbols, according to the causality, as done by [7].
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Thus, thanks to (38) and (41), we can write that the total
number of molecules received in the j-th interval due to
emissions with intensity function λ(t) results in:

nrx|Ψ,λ[j] =
∑

n∈I{Ψ}

∑
l∈I{Φ(n)}

bn,l|Ψ,λ[j] . (42)

Lemma 2: [Mean and variance of the number of molecules
received during a bit interval] The number nrx|Ψ,ρ[j] of
molecules received during the interval [jTb, (j + 1)Tb], due
to a swarm of timing transmitters, randomly placed according
to the homogeneous spatial PP Ψ with intensity λΨ and
second order intensity function ρΨ(τ), and emitting molecules
according to time-domain PPs {Φ(n)} with first and second
order intensity functions ρ(t) and ρ(2)(t, τ), respectively, has
mean and variance as follows:

E {nrx|Ψ,ρ[j]} =

∫ +∞

−∞
ρ(τ + jTb)Hall(−τ)dτ (43a)

V{nrx|Ψ,ρ[j]} =

∫ +∞

−∞
ρ(τ + jTb)Hall(−τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
ρ(2)(τ + jTb, s+ jTb)H

(2)

all (−τ,−s)dτds

+

∫ +∞

−∞

∫ +∞

−∞
ρ(τ + jTb)ρ(s+ jTb)G

(2)

all (−τ,−s)dτds .

(43b)

where

Hall(t) ,λΨ

∫
R3\ΩR

F hit(‖x‖, t)dx (44a)

H
(2)

all (t1, t2) ,λΨ

∫
R3\ΩR

F hit(‖x‖, t1)F hit(‖x‖, t2)dx

(44b)

G
(2)

all (t1, t2) ,
∫
R3\ΩR

∫
R3\ΩR

[
ρΨ(‖x1 − x2‖)− λ2

Ψ

]
× F hit(‖x1‖, t1)F hit(‖x2‖, t2)dx1dx2 .

(44c)

Proof: First, we note that (42) is formally identical to (10)
once that bn,l|Ψ,t is replaced by bn,l|Ψ,ρ[j] and Fhit(‖xn‖, t−
τ

(n)
l ) is replaced by F hit(‖xn‖, jTb−τ(n)

l ). Thus, by following
step by step the proof in Appendix C with such replacements,
it is straightforward to obtain

E {nrx|Ψ,ρ[j]} =

∫ +∞

−∞
ρ(τ)Hall(jTb − τ)dτ (45a)

V{nrx|Ψ,ρ[j]} =

∫ +∞

−∞
ρ(τ)Hall(jTb − τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
ρ(2)(τ, s)H

(2)

all (jTb − τ, jTb − s)dτds

+

∫ +∞

−∞

∫ +∞

−∞
ρ(τ)ρ(s)G

(2)

all (jTb − τ, jTb − s)dτds

(45b)

which is formally identical to (29) with Hall(t− τ), H(2)
all (t−

τ, t − s), and G
(2)
all (t − τ, t − s) replaced by Hall(jTb − τ),

H
(2)

all (jTb−τ, jTb−s), and G
(2)

all (jTb−τ, jTb−s), respectively.

By applying the integration variable changes τ → τ+jTb and
s→ s+ jTb we obtain (43).

B. First and second order analysis

of spatially distributed digital MCvD It is now possible to
use Lemma 2 for the first and second order analysis of both
the useful and the ISI component of the received molecular
signal. To this purpose, let’s define:

λj(t) , djg(t) (46a)

λISI(t) ,
j−1∑
i=0

dig(t− iTb) . (46b)

It is immediate to note that λ(t) = λj(t) + λISI(t) and that the
supports of the two intensity functions do not overlap. Thus,
given the data, each time domain PP Φ(n) can be partitioned
into: i) the PP Φ(n)

j with intensity λj(t); ii) the PP Φ(n)
ISI with

intensity λISI(t). Thus, we write

nrx|Ψ,λ[j] = nrx|Ψ,dj [j] + nrx|Ψ,d1:j−1
[j] (47)

where:

nrx|Ψ,dj [j] ,
∑

n∈I{Ψ}

∑
l∈I{Φ(n)

j }

bn,l|Ψ,λj [j] (48)

is the number of observed molecules due to the j-th transmit-
ted bit;

nrx|Ψ,d1:j−1
[j] ,

∑
n∈I{Ψ}

∑
l∈I{Φ(n)

ISI }

bn,l|Ψ,λISI [j] (49)

is the number of molecules observed in the same interval due
to all the previous bits. Moreover, bn,l|Ψ,λj [j] and bn,l|Ψ,λISI [j]
are independent (by neglecting collisions, different molecules
have independent diffusion).

It is clear that, given dj = 0, nrx|Ψ,dj=0[j] = 0.14. The mean
and the variance of the useful component given that dj = 1,
as well as those of the ISI component, are evaluated in the
following corollaries, both derived from Lemma 2.

Corollary 1 (Mean and variance of the useful component):
The number nrx|Ψ,dj=1[j] of molecules received during the j
time bit due to the emissions related to the j-th bit dj (given
that dj = 1) has mean and variance as follows:

µ0 ,E
{
nrx|Ψ,dj=1[j]

}
=

∫ +∞

−∞
g(τ)Hall(Tb − τ)dτ (50a)

σ2
0 ,V

{
nrx|Ψ,dj=1[j]

}
=

∫ +∞

−∞
g(τ)Hall(Tb − τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
g(τ)g(s)H

(2)
all (Tb − τ, Tb − s)dτds

+

∫ +∞

−∞

∫ +∞

−∞
g(τ)g(s)G

(2)
all (Tb − τ, Tb − s)dτds .

(50b)

Proof: See Appendix D.
Corollary 2 (Mean and Variance of the ISI component): The

mean and the variance of the ISI component observed ad the

14It is an immediate consequence of (48) resulting in λj(t) = 0.
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j-th interval emitted in the previous intervals result as follows:

µISI ,E
{
nrx|Ψ,d1:j−1

[j]
}

=p1

j−1∑
i=0

∫ +∞

−∞
g(τ − iTb + jTb)Hall(−τ)dτ (51a)

σ2
ISI ,V

{
nrx|Ψ,d1:j−1

[j]
}

=p1

j−1∑
i=0

∫ +∞

−∞
g(τ − iTb + jTb)Hall(−τ)dτ

+ p2
1

j−1∑
i=0

∫ +∞

−∞

∫ +∞

−∞
g(τ − iTb + jTb)

× g(s− iTb + jTb)H
(2)

all (−τ,−s)dτds

+ p2
1

j−1∑
i=0

j−1∑
k=0

∫ +∞

−∞

∫ +∞

−∞
g(τ − iTb + jTb)

× g(s− kTb + jTb)H
(2)

all (−τ,−s)dτds

+ p2
1

j−1∑
i=0

j−1∑
k=0

∫ +∞

−∞

∫ +∞

−∞
g(τ − iTb + jTb)

× g(s− kTb + jTb)G
(2)

all (−τ,−s)dτds (51b)

where p1 is the probability that dj = 1, while Hall(t),
H

(2)

all (t1, t2), and G
(2)

all (t1, t2) can also be written as

Hall(t) =Hall(Tb + t)−Hall(t) (52a)

H
(2)

all (t1, t2) =H
(2)
all (Tb + t1, Tb + t2)−H(2)

all (t1, Tb + t2)

−H(2)
all (Tb + t1, t2) +H

(2)
all (t1, t2) (52b)

G
(2)

all (t1, t2) =G
(2)
all (Tb + t1, Tb + t2)−G(2)

all (t1, Tb + t2)

−G(2)
all (Tb + t1, t2) +G

(2)
all (t1, t2) . (52c)

Proof: See Appendix E
Now, it is finally possible to compute the SIR and SINR due
to ISI as follows.

Definition 4 (SIR and SINR due to ISI): The SIR and the
SINR in the presence of ISI are defined as:

SIR ,
µ2

0

σ2
ISI

(53a)

SINR ,
µ2

0

σ2
0 + σ2

ISI
. (53b)

C. Impact of stochastic interaction on the ISI component

As well as for the SNR, also for the SIR and the SINR it is
possible to study the impact of stochastic interactions between
the points of the spatial PP modeling transmitters positions.

Theorem 4 (Effect of attraction/repulsion on the ISI compo-
nent): LetΨ(re),Ψ(Po), andΨ(cl) be, a repulsive, a Poisson and
a clustered isotropic PP, respectively, with the same intensity
λΨ. The mean and the variance of the ISI component are such
that:

SIR(cl) 6 SIR(Po) 6 SIR(re) (54a)

SINR(cl) 6 SINR(Po) 6 SINR(re) . (54b)

Proof: By observing that (50a) do not depend on the
second order product density function of Ψ, we have

µ
(re)
0 = µ

(Po)
0 = µ

(cl)
0 . (55)

Moreover, note that, from (40), F hit(r, t) > 0 ∀t. Thus, from
(44a) and (44b), it follows, respectively, that Hall(t) > 0 and
H

(2)

all (t, τ) > 0 ∀t, τ . By using inequalities (32) in (51b), it is
immediate to obtain

σ2
ISI

(re)
6 σ

(Po)
ISI 6 σ2

ISI
(cl)

. (56)

By substituting (55) and (56) in (53) we obtain (54).
The following corollary can also be obtained, which is useful
to establish whether the variance of ISI diverges for infinite
number j of transmitted symbols, by evaluating the mean only.

Corollary 3 (ISI variance for non-repulsive spatial PPPs): If
the PP Φ modeling the transmitters positions is non-repulsive,
then the variance of the ISI is greater or equal to the mean,
i.e.:

σ2
ISI

(Po)
> µ

(Po)
ISI

σ2
ISI

(cl)
> µ

(cl)
ISI .

Proof: For a non-repulsive PP, ρΨ(‖x1 − x2‖) > λ2
Ψ

,
where the equality holds for the PPP. Thus, from (44c), it is
Gall(t, τ) > 0 for all t, τ . The thesis follows by comparing
(51b) to (51a).
An immediate consequence is that, if µISI approaches the
infinity for infinite number of transmitted symbol j, then both
the SIR and the SINR tends to zero.

D. BEP evaluation (with the Gaussian approximation)

In the OOK modulation, the number of molecules received
during the j-th time bit, i.e., nrx|Ψ,λ[j] in (47), is compared
to a certain threshold Nth and, if nrx|Ψ,λ[j] > Nth, d̂0 = 1

is decided, while ˆd0 = 0 is decided if, instead, nrx|Ψ,λ[j] <
Nth. In case of single sample, the bit error probability can be
computed through the Bayes rule as follows:

Pe = p1Pe|dj=1 + p0Pe|dj=0 (57)

where p1 and p0 are, respectively, the probability that a bit is
1 or 0, and

Pe|d0=1 = Prob{nrx|Ψ,λ[j] < Nth} (58a)
Pe|d0=0 = Prob{nrx|Ψ,λ[j] > Nth} . (58b)

The cases of single bit transmission (no ISI) and that of
multiple bit transmission (with ISI) have to be distinguished.

1) Single bit transmission (no ISI): If di = 0 for all i < j,
no ISI occurs (nrx|Ψ,d1:j−1 [j] in (47) is zero), and all received
molecules are due to the transmissions within the j-th interval.
Indeed, (47) becomes simply nrx|Ψ,λ[j] = nrx|Ψ,dj [j]. Thus, by
recalling that nrx|Ψ,dj=0 = 0 with probability 1, we have

Pe = p1Pe|dj=1 + p0Pe|dj=0

= p1Prob{nrx|Ψ,dj=1 < Nth}+ p0Prob{nrx|Ψ,dj=0 > Nth}
= p1Prob{nrx|Ψ,dj=1 < Nth} . (59)
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By approximating nrx|Ψ,dj=1[j] with a Gaussian RV,15 with
mean µ0 and variance σ2

0 evaluated by (50), we easily get

Pe ≈ p1

∫ Nth

−∞

1√
2πσ2

0

e
− (µ0−x)

2

2σ20 dx =
p1

2
erfc

(
µ0 −Nth√

2σ0

)
.

(60)

If we choose Ntx = µ0/2,16 it results

Pe ≈
p1

2
erfc

[√
γ(Tb)

8

]
. (61)

To refine the Gaussian approximation, [51] shows that a
generalized Gaussian distribution can be adopted, with prob-
ability density function (PDF)

p(x) =
β

2αΓ
(

1
β

) exp−( x−µα )
β

(62)

where Γ(·) is the gamma function, µ is the mean, β is a
shaping parameter, and α is a scale parameter such that the
variance results in α2 Γ(3/β)

Γ(1/β) . It can be readily noticed that,
for β = 2, (62) results in the well-known normal distribution.
Thus, we can consider the PDF of nrx|Ψ,dj=1 given by (62)
with µ = µ0 and α2 Γ(3/β)

Γ(1/β) = σ2
0 . The approximation (60) is

thus refined as

Pe ≈ p1

∫ Nth

−∞
pnrx|Ψ,dj=1

(x)dx =
p1

2

{
1−

γ

[
1
β ,
(
µ0−Nth
α

)β]
Γ
(

1
β

) }
(63)

where γ(s, x) ,
∫ x

0
ts−1e−tdt denotes the lower incomplete

gamma function. Again, if Nth = µ0/2, (63) reduces to a
function of the SNR:

Pe ≈
p1

2

1−
γ

[
1
β ,
(

Γ(3/β)
4Γ(1/β) SNR

)β/2]
Γ
(

1
β

)
 . (64)

2) Multiple bit transmission (with ISI): Note that, in both
components of (47), the sum over n has an infinite number of
elements (due to the infinite cardinality of the PP Φ). Thus,
we approximate also the ISI component nrx|Ψ,d1:j−1 [j] as a
Gaussian RV, with mean µISI and variance σ2

ISI evaluated by
(51). It follows that the BEP results in (57) with

Pe|dj=1 = Prob{nrx|Ψ,dj=1 + nrx|Ψ,d1:j−1
[j] < Nth}

≈
∫ Nth

−∞

1√
2π(σ2

0 + σ2
ISI)

e
− (µ0−µISI−x)

2

2(σ20+σ2ISI) dx

=
1

2
erfc

(
µ0 + µISI −Nth√

2(σ2
0 + σ2

ISI)

)
(65)

15Note that, according to (48), the large number of transmitters modeled
by the PP Φ, i.e., the number of addenda in the sum in n ∈ I{Φ}, makes
the Gaussian approximation more accurate than in the single transmitter case

16Note that, if no interferer molecules are considered, this is not the optimal
choice, which would be, instead, Nth = 1, as shown in [7] in case of exact
concentration transmitters and as evident from (60) for Poisson concentration
and timing transmitter cases

and

Pe|d0=0 = Prob{nrx|Ψ,d1:j−1 [j] > Nth}

≈
∫ +∞

Nth

1√
2πσ2

ISI

e
− (µISI−x)

2

2σ2ISI dx

=
1

2
erfc

(
Nth − µISI√

2σ2
ISI

)
. (66)

By choosing Nth = µISI + µ0

2 we obtain

Pe ≈
p1

2
erfc

(√
SINR

8

)
+
p0

2
erfc

(√
SIR
8

)
. (67)

By using the generalized Gaussian distribution, we obtain

Pe|dj=1 ≈
∫ Nth

−∞

β1

2α1Γ
(

1
β1

) exp
−
(
x−µ0−µISI

α1

)β1
dx

=
1

2

{
1−

γ

[
1
β1
,
(
µ0+µISI−Nth

α1

)β1
]

Γ
(

1
β1

) }
(68)

and

Pe|d0=0 ≈
∫ Nth

−∞

β0

2α0Γ
(

1
β0

) exp
−
(
x−µISI
α0

)β0
dx

=
1

2

{
1−

γ

[
1
β0
,
(
µISI−Nth
α0

)β0
]

Γ
(

1
β0

) }
(69)

where the variance in case of dj = 1 and dj = 0 results,
respectively, in

α2
1

Γ(3/β1)

Γ(1/β1)
= σ2

0 + σ2
ISI (70a)

α2
0

Γ(3/β0)

Γ(1/β0)
= σ2

ISI (70b)

while β1 and β0 are the shaping parameters to be tuned.
By choosing Nth = µISI + µ0

2 , (70) leads to

Pe ≈
p1

2

1−
γ

[
1
β1
,
(

Γ(3/β1)
4Γ(1/β1) SINR

)β1/2
]

Γ
(

1
β1

)


+
p0

2

1−
γ

[
1
β0
,
(

Γ(3/β0)
4Γ(1/β0) SIR

)β0/2
]

Γ
(

1
β0

)
 . (71)

V. CASE STUDY: CLOSED FORMS FOR SNR AND ISI WITH
POISSON DISTRIBUTED TRANSMITTERS

The method proposed here is very general and can be easily
extended to cases with different type of receivers (e.g., passive)
with or without molecules decay, once that (1) is replaced by
a different expression for the probability that a molecule is
received within the time t. For the sake of simplicity, in this
section we propose closed form results for Poisson distributed
transmitters in case of active receiver without molecules decay.
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A. Closed forms for SNR

1) Spatially distributed case: Consider a fully absorbing
spherical receiver with radius R and a swarm of point trans-
mitters placed in the whole R3 according to a homogeneous
PPP with intensity λΨ in an environment with diffusivity D
[m2/s].

Proposition 1 (SNR for transmitters positions modeled by
homogeneous Poisson point process): If the point transmitters
are distributed according a homogeneous PPP with intensity
λΨ on the whole R3, the SNR results as follows
• exact concentration (synchronous) transmitters:

SNR(sync)
Ex. conc.(t) =

[NtxHall(t)]
2

NtxHall(t) +Ntx(Ntx − 1)H
(2)
all (t, t)

;

(72)

• Poisson concentration (synchronous) transmitters:

SNR(sync)
Po. conc.(t) =

[NtxHall(t)]
2

NtxHall(t) +N2
txH

(2)
all (t, t)

(73)

• timing (asynchronous) transmitters with emissions mod-
eled by a time domain PPP with intensity λ(t):

SNR(async)
Timing(t) =

[∫ +∞

−∞
λ(τ)Hall(t− τ)dτ

]2

×
[∫ +∞

−∞
λ(τ)Hall(t− τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
λ(τ)λ(s)H

(2)
all (t− τ, t− s)dτds

]−1

(74)

where, for all aforementioned cases,

Hall(t) = 4λΨR
√
πDt

(
2R+

√
πDt

)
(75a)

H
(2)
all (t, τ) = 8R2λΨ

√
πD

(√
τ +
√
t−
√
τ + t

)
(75b)

provided that t, τ > 0.17

Proof: See Appendix F
Remark 6: Equation (75a) corresponds to the results in [7],

[8], while (75b) is a novel result which extends the analysis
to the second order. Both expressions have been derived here
in parallel to make this work self contained.

Now, to better analyze and find close forms for (74),
we choose the intensity function for timing transmitters as
constant in a finite activity interval [0, Ta].

Corollary 4 (Uniform distribution of emission times into
a definite activity interval): In the settings of Proposition 1,
if the intensity function of the time domain PPP modeling
timing transmitters is λ(t) = Ntx

Ta
rect

(
t
Ta

)
,18 the SNR can be

expressed in closed form as follows

SNR(async)
Timing(t) =

8λΨR
2
√
πDNtx

Ta
ψ2
(
t, Ta,

√
πD
R

)
ψ
(
t, Ta,

√
πD
R

)
+ Ntx

Ta
θ(t, Ta)

(76)

17For t, τ < 0, both functions are zero.
18We define the function rect(t) such that it is equal to 1 for 0 6 t 6 1

and equal to 0 elsewhere.

for t > 0, where

ψ(t, T, x) ,


2
√
t3

3 + t2x
4 , for t 6 T

2
3

(√
t3 − t

√
t− T + T

√
t− T

)
+Tx

2

(
t− T

2

)
for t > T

and

θ(t, T ) ,



(
4
15 (7− 4

√
2)
√
t5
)
, for t 6 T

4T
3

(√
t3 − t

√
t− T + T

√
t− T

)
− 4

15

[√
(2t)5 − 2

√
(2t− T )5

+
√

32(t− T )5
]
, for t > T

.

Proof: See Appendix G
2) Comparison to the point-to-point case: The analytical

procedure developed in Sec. III can be applied to the simpler
point-to-point case. If an absorbing receiver is considered
in point-to-point transmission, the SNR can be evaluated by
using (1) in (13), (15), and (17). In particular, for exact
and Poisson concentration (with an average value of Ntx
emitted molecules), and timing (with an uniform emission
intensity equal to λa in [0, Ta] and zero elsewhere), we obtain,
respectively

SNR(0)
Ex. conc.(r, t) =

Ntx R erfc
(
r−R√
4Dt

)
r −R erfc

(
r−R√
4Dt

) (77a)

SNR(0)
Po. conc.(r, t) =Ntx

R

r
erfc

(
r −R√

4Dt

)
(77b)

SNR(0)
Timing(r, t) =

R λa

r


ζ
(
r−R√

4D
, t
)
, for t 6 Ta

ζ
(
r−R√

4D
, t
)

−ζ
(
r−R√

4D
, t− Ta

)
, for t > Ta

(77c)

where ζ(x, t) , (2x2 + t)erfc
(
x√
t

)
− 2x

√
t
π e
− x2t .

Now, to further investigate MCvD properties, we consider
asymptotic scenarios (t→ +∞ and infinite emissions).

3) Asymptotic analysis with respect to time: Spatially dis-
tributed and point to point MCvD substantially differ for
infinite time.

For point-to-point MCvD, from (77) we obtain:

lim
t→+∞

SNR(0)
Ex. conc.(r, t) =

Ntx R

r −R
(78a)

lim
t→+∞

SNR(0)
Po. conc.(r, t) =

Ntx R

r
(78b)

lim
t→+∞

SNR(0)
Timing(r, t) =

λaTa R

r
(78c)

Note that a saturation effect arises with an asymptote which
is higher for exact concentration model. Poisson concentration
and timing transmitters attain the same asymptote if the
average number of emitted molecules are the same (i.e., if
Ntx = λaTa).
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For spatially distributed MCvD, from (72), (73), and (76),
we obtain, respectively

lim
t→+∞

SNR(sync)
Ex. conc.(t) = lim

t→+∞
ntx4λΨRπD t = +∞ (79a)

lim
t→+∞

SNR(sync)
Po. conc.(t) = lim

t→+∞
ntx4λΨRπD t = +∞ (79b)

lim
t→+∞

SNR(async)
Timing(t) = lim

t→+∞
λaTa 4λΨRπD t = +∞ .

(79c)

Note that, for all concentration transmitters cases, the SNR
indefinitely increases with a slope of ntx4λΨRπD. For the
asynchronous timing transmitter case the slope results to be
λaTa4λΨRπD. Thus, there are no saturation effects with
respect to time in spatially-distributed MCvD, and the slope of
the asymptote is proportional to the transmitters density, the
diffusion coefficient and the receiver radius.

4) Asymptotic analysis with respect emissions: Spatially
distributed and point to point MCvD also differ for infinite
emissions (infinite number of emitted molecules for concen-
tration transmitters and infinite emission intensity for timing
transmitters).

For point-to-point MCvD, from (77) we obtain

lim
ntx→∞

SNR(0)
Ex. conc.(r, t) = +∞

lim
ntx→∞

SNR(0)
Po. conc.(r, t) = +∞

lim
λa→∞

SNR(0)
Timing(r, t) = +∞ .

For spatially distributed MCvD, (72), (73), and (76) lead to

lim
ntx→∞

SNR(sync)
Ex. conc.(t) =

λΨ
√

2πDt (2R+
√
πDt)2(√

2− 1
) (80a)

lim
ntx→∞

SNR(sync)
Po. conc.(t) =

λΨ
√

2πDt (2R+
√
πDt)2(√

2− 1
) (80b)

lim
λa→∞

SNR(async)
Timing(t) =

8λΨR
2
√
πD ψ2

(
t, Ta,

√
πD
R

)
θ(t, Ta)

.

(80c)

It has to be noticed that in any case the SNR for spatially
distributed MCvD shows a saturation effect with respect to
the number of emitted molecules (or the emission intensity)
which has no counterpart in point-to-point MCvD. It means
that, if one wants to increase the SNR in spatially distributed
MCvD, it is useless to further increase the number of emitted
molecules (or the emission intensity), since the SNR saturation
level depends on the transmitters density. This conclusion
could be useful to interpret the error probability evaluated in
[7], in the same scenario. On the other hand, if one wants
to interpret the cells behavior in Biology under the MCvD
perspective, it is possible to infer that the communication is
more effective with many cells (e.g., the cells of a whole
tissue) transmitting relatively few molecules, rather than with
few cells transmitting a massive number of molecules.

B. Closed forms for SIR and SINR due to ISI

Proposition 2 (ISI for transmitters positions modeled by
homogeneous Poisson point process): If the point transmitters

are distributed according a homogeneous PPP with intensity
λΨ on the whole R3, and p0 = p1 = 1/2, the mean and the
variance of the ISI component due to the previous j symbols
result as follows
• Poisson concentration (synchronous) transmitters:

µISI =
Ntx

2
[Hall(j + 1)Tb]−Hall(Tb)] (81a)

σ2
ISI =

Ntx

2
[Hall[(j + 1)Tb]−Hall(Tb)]

+
N2

tx

4

j∑
k=1

{H(2)
all [(k + 1)Tb, (k + 1)Tb]

−H(2)
all [kTb, (k + 1)Tb]}

+
N2

tx

4

j∑
k=1

{H(2)
all (kTb, kTb)−H(2)

all [(k + 1)Tb, kTb]}

+
N2

tx

4

j∑
k=1

{H(2)
all [(k + 1)Tb, (j + 1)Tb]

−H(2)
all [(k + 1)Tb, Tb]}

+
N2

tx

4

j∑
k=1

{H(2)
all [kTb, Tb]−H(2)

all [kTb, (j + 1)Tb]}

(81b)

where Hall(t) and H(2)
all (t1, t2) are evaluated, respectively,

in (75a) and (75b).
• Timing (asynchronous) transmitters with uniformly dis-

tributed emissions in an activity interval Ta:

µISI =
Ntx

2Ta
(hj+1 − h1) (82a)

σ2
ISI =

Ntx

2Ta
(hj+1 − h1)

+
N2

tx

4T 2
a

j∑
k=1

(gk+1,k+1 − gk,k+1 + gk,k − gk+1,k)

+
N2

tx

4T 2
a

j∑
k=1

(gj+1,k+1 − g1,k+1 + g1,k − gj+1,k)

(82b)

where

hk = 8λΨR
2
√
πD ψ

(
kTb, Ta,

√
πD

R

)
(83a)

gk,m = 8λΨR
2
√
πD η(kTb,mTb, Ta) (83b)

with ψ(t, T, x) defined in Corollary 4 and

η(t1, t2, T ) ,
2T

3

[√
t31 −

√
(t1 − T )3

+
√
t32 −

√
(t2 − T )3

]
− 4

15

[√
(t1 + t2)5

−2
√

(t1 + t2 − T )5 +
√

(t1 + t2 − 2T )5
]
.

Proof: See Appendix H.
Proposition 3 (SIR and SINR for transmitters positions

modeled by homogeneous Poisson point process): If the point
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transmitters are distributed according a homogeneous PPP with
intensity λΨ on the whole R3, and p0 = p1 = 1/2, the SIR
and the SINR in the presence of j interferer symbols result in
(53) where
• for Poisson concentration (synchronous) transmitters:

SIR =
N2

tx[Hall(Tb)]2

σ2
ISI

(84a)

SINR =
N2

tx[Hall(Tb)]2

NtxHall(Tb) +N2
txH

(2)
all (Tb, Tb) + σ2

ISI

(84b)

where σ2
ISI is given by (81b), while Hall(t) and

H
(2)
all (t1, t2) are evaluated, respectively, in (75a) and

(75b).
• for timing (asynchronous) transmitters with uniformly

distributed emissions in an activity interval Ta:

SIR = [8λΨR
2
√
πD]2

N2
tx

T 2
a

ψ2
(
Tb, Ta,

√
πD
R

)
σ2

ISI
(85a)

SINR =
8λΨR

2
√
πD

N2
tx

T 2
a
ψ2
(
Tb, Ta,

√
πD
R

)
Ntxψ

(
Tb,Ta,

√
πD
R

)
Ta

+
N2

tx
T 2

a
θ(Tb, Ta) +

σ2
ISI

8λΨR2
√
πD

(85b)

where σ2
ISI is given by (82b), while θ(t, T ) and ψ(t, T, x)

are defined in Corollary 4.
Proof: From (50) with G(2)

all (t, τ) = 0 and g(t) = Ntxδ(t)
we obtain

µ0 = NtxHall(Tb)

σ2
0 = NtxHall(Tb) +N2

txH
(2)
all (Tb, Tb)

which, substituted in (53), lead to (84). From (50) with
G

(2)
all (t, τ) = 0 and g(t) = Ntx

Ta
rect

(
t
Ta

)
we obtain

µ0 =8λΨR
2
√
πD

Ntx

Ta
ψ

(
Tb, Ta,

√
πD

R

)

σ2
0 =8λΨR

2
√
πD

Ntx

Ta
ψ

(
Tb, Ta,

√
πD

R

)

+ 8λΨR
2
√
πD

N2
tx

T 2
a
θ(Tb, Ta)

which, substituted in (53), provide (85).
Now, it is interesting to verify the behavior of SIR and SINR
when the average number of transmitted symbols and the
transmitters density approach infinity.

1) Asymptotic analysis with respect emissions: Define the
quantity

Θj ,
j∑

k=1

(fk+1,k+1 − fk,k+1 + fk,k − fk+1,k)

+

j∑
k=1

(fj+1,k+1 − f1,k+1 + f1,k − fj+1,k)

with fk,m =
√
kTb +

√
mTb −

√
kTb +mTb for Pois-

son concentration (synchronous) transmitters and fk,m =

η(kTb,mTb, Ta) for timing (asynchronous) transmitters. From
Proposition 3 it is easy to derive the following limits
• Poisson concentration (synchronous) transmitters:

lim
Ntx→+∞

SIR =
2λΨ
√
πDTb (2R+

√
πDTb)2

1
4Θj

(86a)

lim
Ntx→+∞

SINR =
2λΨ
√
πDTb (2R+

√
πDTb)2

(
√

2− 1)
√
Tb + 1

4Θj

(86b)

• Timing (asynchronous) transmitters with uniformly dis-
tributed emissions within an activity interval Ta:

lim
Ntx→+∞

SIR =
8λΨ
√
πD ψ2

(
Tb, Ta,

√
πD
R

)
1
4Θj

(87a)

lim
Ntx→+∞

SINR =
8λΨ
√
πD ψ2

(
Tb, Ta,

√
πD
R

)
θ(Tb, Ta) + 1

4Θj

. (87b)

2) Asymptotic analysis with respect transmitters density:
From Proposition 3 it is also straightforward to derive, that,
if the number of interferer symbols j is finite, it results, for
both synchronous and asynchronous cases:

lim
λΨ→∞

SIR = lim
λΨ→∞

SINR = +∞ . (88)

This confirms that the best strategy, in a spatially distributed
molecular communication system, is to increase the transmit-
ters density rather than the number of molecules emitted by
each transmitter.

VI. NUMERICAL RESULTS

In this section, we present numerical results derived by the
proposed analytical framework and verified by simulations.

A. Model validation via simulation

The stochastic description of Brownian motion is well-
established [52]. In particular, Fick’s law of diffusion which
leads to equation (1) for spherical absorbing receiver has
been extensively verified in literature, e.g. in [28] and [7] via
particle-based simulation. Here, we focus on the validation
of the proposed spatio-temporal model for molecules trans-
mission. As in [8] we assume that (1) holds and we generate
Bernoulli random variables with parameter Fhit(‖xn‖, t−τ(n)

l )
to simulate the reception process of each emitted molecule at
a certain time instant τ(n)

l at a certain position xn (which
is, indeed, received with probability Fhit(‖xn‖, t − τ(n)

l )).
By exploiting the superposition of effects (implicit in the
linearity of diffusion equations), we compute the total number
of received molecules as the sum of all contributions. By
using Monte Carlo method, we evaluate the mean and the
variance by averaging over thousands of realizations of the
point processes modeling the transmitters positions and the
emission times. The same is done for the ISI component. To
compute the bit error rate (BER),19 the number of received
molecules obtained as described is compared to the threshold
according to OOK modulation as described in Sec. IV-D.

19We use the term ”rate” when we refer to simulations, while for the
analysis it is preferred the term ”probability”.
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Fig. 3. SNR as a function of time (Ntx = 20), and timing transmitters (for a fair comparison, we consider λaTa = Ntx). Lines represents analytical results,
while marked points are from simulation.

B. Analog scenario

We refer to the case study in Sec. V-A. In the following,
unless stated otherwise, an unbounded space is considered,
the diffusion coefficient is20 D = 120 · 10−12m2/s, the
transmitters density is λΨ = 1015m−3, the radius of the
spherical fully absorbing receiver is r = 5µm, the number of
emitted molecules by concentration transmitters are Ntx = 20,
and the activity interval of timing transmitters is Ta = 1s. Such
numerical values are consistent with [7], [9].

1) Comparison between point to point and spatially dis-
tributed MCvD: For a fair comparison, the single transmitter
is considered at distance r = 5.1µm from the receiver, which
is equal to the average distance between the nearest points
belonging to an homogeneous PPP with intensity 1015m−3

(i.e., the intensity considered for the multiple transmitters
case).

2) Temporal Evolution of the first and second order statis-
tics: In Fig. 3(a) and 3(b), the mean number of received
molecules and the SNR as defined by (11) and (18) are
shown as functions of time for the point-to-point and the
spatially distributed cases, respectively. Poisson concentration,
and timing (with activity interval Ta = 1s) transmitters are
considered. For a fair comparison between different transmitter
models, the average number of emitted molecules for timing
transmitters during the activity interval (λaTa) is assumed to
be equal to the average number of molecules emitted by
concentration transmitters (Ntx).

In a single-transmitter system case as shown in Fig. 3(a),
the SNR is strictly related to the average number of received
molecules. More specifically, for Poisson concentration and
timing transmitter (with molecules emitted one-by-one ac-
cording to a time domain PPP: see Sec. II-B3) the SNR
results equal to the mean number of received molecules (see
Remark 2), while for the exact concentration case it results
higher, due to the deterministic emission (which reduces the
variance for the same average). The mean number of received

20See also [53], [54], [8], and [9] for typical values in similar scenarios.

molecules, instead, is the same for both exact and Poisson
concentration cases. Before the end of the activity interval (1s
in the example), the timing transmitter leads to lower values of
mean and SNR compared to both concentration models. This is
due to the delayed emission of molecules (in the timing model)
with respect to the instant t = 0 at which all molecules are
emitted by concentration models. After the end of the activity
interval, the timing transmitter tends to attain the same mean
and SNR as the Poisson concentration transmitters, since for
both the number of emitted molecules are Poisson RV having
the same parameter after Ta. For all the models a saturation
effect occurs in the upper range of the t values; the asymptotes
are found in exact coincidence with formulas (78).

In a spatially distributed system case as shown in Fig. 3(b),
the SNR significantly diverges from the average number of
received molecules (according to the remark 3) for all cases.
First, note that for all cases of multiple transmitters, the SNR
does not saturate as with a single transmitter, but continu-
ously increases as t increases. Second, unlike in the single-
transmitter case, exact and Poisson concentration models are
almost indistinguishable (in terms of both mean and SNR)
just for ntx = 20.21 Finally, the timing transmitter leads to
lower values of mean and SNR compared to both concentration
models for t < Ta = 1s. After the end of the activity, interval,
both mean and SNR tend to the same values as for Poisson
concentration. It can be explained as for the corresponding
single transmitters cases. It should be remarked that after 1s (in
the scenario considered) a significant value of SNR is obtained
for all the models.

For all cases, simulation results (marked points) are in
almost perfect agreement with the analysis (lines).

3) Saturation effects: In Fig. 4(b) and 4(a) the SNR is
depicted as a function of the time t after the beginning of
the emissions and of the average number Ntx of emitted

21For such a reason, in the following figures, exact and Poisson con-
centration transmitter model will be considered together under the name of
”concentration transmitter”.
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Fig. 4. Different (dual) saturation effects for single and multiple transmitters scenarios. Lines represents analytical results, while marked points are from
simulation.

molecules, respectively. Single and multiple transmitters cases
are compared in the same plots. Both concentration22 and
timing transmitters (with Ta = 1s) are considered.

Fig. 4(a) shows that, for high Ntx, the SNR (evaluated 1
second after the emission) linearly increases as the number
of emitted molecules increases for the single transmitter case,
while a saturation effect arises for the multiple transmitters
case. This can be explained as follows:

• In the single transmitter scenario, for both Poisson con-
centration and timing transmitter models, the number of
received molecules is a Poisson RV and thus the SNR
equals the mean which continues to increase;

• In a spatially distributed scenario, the number of received
molecules cannot be modeled as a Poisson RV,23 due to
the random number and the random positions of the trans-
mitters. In fact, in the scenario considered, the average
value of the molecules received increases linearly as Ntx
increases (according to the literature [7], [8]), while the
variance is shown to have a higher increasing with Ntx
compared to the mean (due to the aforementioned spatial
randomness). Thus, the ratio (18) saturates.

Fig. 4(b) shows that, as the time increases, the SNR con-
tinues to increase for the multiple transmitters case, while a
saturation effect arises for the single transmitter case. This can
be explained as follows:

• In the single transmitter scenario, the probability that a
molecule is received at time t, i.e., the hitting rate (the
derivative of (1)), decreases as t−3/2 (see also [28], [55],
and [37]). Thus, the number of received molecules does
not significantly increase after a time much longer than
the average time of arrival of the molecule;

22We mean Poisson concentration, since exact concentration has been
previously shown to be similar in the spatially distributed transmitters case.

23Only its density function conditioned to the transmitters positions and to
the emission times can be considered as a Poisson distribution.
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• In the multiple transmitters scenario, if the space of the
PP modeling the transmitters positions is unbounded and
no molecules decay is considered, the aforementioned
effect is counteracted by the large number of contribu-
tions from transmitters placed very far from the receiver
(whose molecules arrive long time after the emission).24

Observe that, for all cases, simulation results (marked points)
are in good agreement with analytical results (lines).

4) Activation Time: In Fig. 5 the SNR is depicted as a
function of time for spatially distributed timing (asynchronous)
transmitters with an activity interval [0 − Ta]. SNR values
corresponding to Ta = 102, 1, 10−2 are compared to the

24According to Proposition 1, both the mean and the variance of the
received molecules in a spatially distributed transmitters scenario linearly
increase for large t, (see (75a)) such that the ratio (18) increases too.
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Fig. 6. SNR as a function of spatial parameters

case Ta → 0, which corresponds to the Poisson concentration
(synchronous) transmitters case. For fair comparison, the same
average number of emitted molecules Ntx = 20 is considered
for all cases (i.e., the emission intensity λa is chosen such
that, for each case, λaTa = Ntx). It has to be noticed that the
duration of the activity interval can have a strong impact on the
SNR. On one hand, it can be observed that, with an activity
interval of duration 102s, only a fraction of Ntx is emitted
within 1s after the start. This produces the lower SNR for cases
where Ta < 1s. On the other hand, with an activity interval of
duration 10−2 and 1s, the gap in terms of SNR with respect
to the case of concentration transmitter (all molecules emitted
at t = 0) vanishes for t > 10−2s and t > 1s, respectively. In
fact, after Ta, all the molecules are emitted with probability
1. The comparison between simulation (marked points) and
analysis (lines) validates the proposed spatio-temporal model
also for the second order statistics. Thus, the following figures
of this subsection will report analytical results only.

5) Spatial distribution parameters: In Fig. 6(c) and 6(d)
the SNR at t = 1s for both concentration and timing

(with Ta = 10−2s) transmitters is shown as a function of
the transmitters density λΨ and of the receiver radius R,
respectively. Two different values for the diffusion coefficient
D are considered in both cases. One can notice that the SNR
linearly increases as λΨ increase, while it shows lower increase
with respect to linearity, as the receiver radius increases. This
represents another difference with respect to electromagnetic
waves communications, where usually (e.g., in the case of
parabolic antennas and AWGN channel) the gain of the
receiving antenna (and, thus, the SNR) increases as the square
of its radius.

In Fig. 6(a) and 6(b) the SNR for the case of spatially
distributed (asynchronous) timing transmitters is represented
as a function of time for different values of the transmitters
density and of the receiver radius, respectively.

First, it can be noticed that the gap between SNR values cor-
responding to different transmitters density is almost constant
among time. This is a consequence of the linear dependence
between the SNR and the transmitters density. This means
that, in a spatially distributed emissions scenario, the density
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Fig. 7. Performance vs Emitted molecules (without ISI). Lines represents analytical results, while marked points are from simulations.

of the transmitters is the key parameter for the communication
efficiency.

Second, the gap between SNR values corresponding to dif-
ferent receiver radius values is reduced as the time increases. It
means that, in the molecular communication scenario consid-
ered, the benefit of a higher radius receiver is ”time-varying”
and more relevant in the earlier instants. This differs from the
classical electromagnetic wave communications, where, e.g.,
the benefit of an higher gain antenna is, in general, not time
varying for a fixed scenario.

C. Digital scenario

Unless otherwise stated, for digital molecular communica-
tions via diffusion, we consider on-off keying with a bit time
Tb = 0.2s and a threshold Nth = 40. All the other parameters
are set as for the analog scenario.

1) Performance vs Emitted molecules without ISI: Fig 7(a)
and 7(b) show, respectively the SNR and the single BEP as
functions of the average number of transmitted molecules.
Both Poisson concentration (synchronous) and timing (asyn-
chronous) transmitters are considered. In the latter case, the
activation time Ta is set equal to the bit time Tb.25 It can be
noticed that, as expected, without ISI, for increasing average
number of emitted molecules, an increasing SNR corresponds
to a decreasing BEP. Note the results for the BEP, obtained
through the Gaussian approximation (60), show an acceptable
agreement with the simulation results.

2) Performance vs Bit rate without ISI: Fig 8(a) and 8(b)
show, respectively the SNR and the single BEP as functions
of the bit rate 1/Tb. As before, both Poisson concentration
(synchronous) and timing (asynchronous) transmitters are con-
sidered and, in the latter case, the activation time Ta is set equal
to the bit time Tb. It can be noticed that, in the absence of
ISI, as the bit rate decreases (i.e., the bit time increases), the
SNR increases (according to what shown for the analog case)
and the BEP decreases indefinitely.

25This represents the worst case, i.e., without any guard time.

3) Performance in the presence ISI: In Fig. 11(a) and 10 the
impact of ISI on the performance of the considered spatially
distributed molecular communication scenario is studied via
both analysis and simulations. In Fig. 11(a) the SIR and the
SINR are shown as functions of the average number of emitted
molecules. Analytical results from (84) and (85), with j = 1
(ISI with one interferer symbol) are compared to simulations.
Both ratios, as expected, increases as Ntx increases. According
to Corollary 3, the growing of the variance is faster than that of
the mean, so that the SIR and the SINR saturate. The matching
between analytical and simulation results validate the proposed
stochastic model even in the presence of ISI. In Fig. 10 the
Gaussian approximation used in (65) and (66) is applied to
evaluate the bit error probability in the presence of ISI for
both Poisson concentration (synchronous) and timing (asyn-
chronous) transmitters. Due to the ISI component, the choice
of the threshold is critical (according to what shown in [7] for
exact concentration transmitters). The optimal threshold, for
which the BEP is minimized, results to be Nth = 40, for the
considered values of Ntx = 20 and λΨ = 1015m−3. Note that
such a higher value (due to the presence of ISI component)
makes the Gaussian approximation tighter with respect the
case of no ISI (for which the optimal threshold is Nth = 1.).

Once validated the analytical model, we can use (84) and
(85) to investigate the asymptotic behavior of both SINR and
BEP with respect the average number of transmitted molecules
and the density of transmitters. In Fig. 11(a) and 11(b),
respectively, the SINR and the BEP are shown as functions
of the average number of emitted molecules. As expected, the
SINR saturates for high values for Ntx and the BEP presents a
floor as consequence. It is in accordance to results known for
the single transmitter case [35]. The impact of the length of
the ISI sequence (j = 1, 4, 16, 64) can also be appreciated
(e.g., about 5dB loss between 1 and 64 interferer symbols).
Moreover, it has to be noticed that asynchronous transmissions
(dashed lines) imply a loss of about 4dB (with respect the
synchronous transmissions) for all cases.
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Fig. 11(c) and 11(d) present the SINR and the BEP as
functions of the transmitters density λΨ. Here, a characteristic
effect of the spatially distributed transmission arises. Both SIR
and SINR linearly increase with λΨ without any saturation.
The BEP decreases accordingly without any floor. Long (but
finite) ISI sequences (e.g., i = 10, 100) introduce gaps in both
figures, without modifying the asymptotic behavior, which is
in accordance to (88). Such an apparently counter-intuitive
effect26 strictly depends on the stochastic geometry and can be
explained as follows. ISI arises due to molecules which arrive
delayed (with respect to the emission interval). Thus, most of
the molecules emitted by transmitters far from the receiver
contribute to the ISI component, while most of the molecules
transmitted by points very close to the receiver contribute to
the useful signal. However, for transmitters randomly placed
according to a homogeneous PPP, the number of received
molecules is dominated by contributions of transmitters very
close to the receiver when the PPP density is high (see
also [8]). The impact of ISI for high transmitters density is
proportionally reduced as a consequence.

It is shown in [51] that, for a high number of interferer
symbols, the generalized Gaussian approximation (62) with
β > 2 seems to be more accurate than the standard Gaussian,
achieving a very good fitting by tuning the shape parameter.
However, in Fig. 12, we show that, for β ranging between 2
and 8 (for the sake of simplicity, in (68) and (69) we consid-
ered β1 = β0 = β),27, the impact on the BEP is negligible
in the values of interest for the transmitters density. More
precisely, the generalized Gaussian approximation is slightly
more pessimistic (with respect the Gaussian approximation,
i.e., β = 2) for low values of the transmitters density while it
is more optimistic (lower values of the BEP) for high densities.
This implies that positive effect of an high transmitters density
(which counteracts ISI in MCvD as previously explained)

26In classical communications, the ISI detrimental effect is not counteracted
by simply increasing the number of transmitters

27Note that such an interval includes all values proposed by [51]
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Fig. 11. Analytical results for SIR, SINR and BEP in spatially distributed molecular communications. ISI is considered with different number of interferer
symbols. Continuous lines represent the synchronous case, dashed lines the asynchronous.

is not affected by the Gaussian approximation. Finally, note
that the gap in terms of BEP between the synchronous and
asynchronous case is always appreciable.

VII. CONCLUSION AND FUTURE WORKS

In this work, a scenario with a swarm of point transmitters
randomly placed in R3 and a spherical fully absorbing receiver
is considered as case study, according to the recent literature
on spatially distributed MCvD. However, for the first time, not
only the average number of received molecules is evaluated
here, but also its variance. This allows the evaluation of the
SNR for the received molecular signal, defined as the ratio
between the squared average number of received molecules
and the corresponding variance.

Making use of the stochastic geometry and the point pro-
cesses theory, analytical expressions for the SNR in spatially
distributed MCvD are derived for synchronous concentration
and asynchronous timing transmitters. It is shown that, in

spatially distributed MCvD, the SNR indefinitely increases as
the time increases, unlike in point-to-point MCvD, for which
saturation effects arise with respect to time. On the contrary,
the SNR in spatially distributed MCvD shows a saturation
effect with respect to the number of emitted molecules (for
concentration transmitter models) and to the emission intensity
(for the timing transmitter model). Such an effect derives
from the random position of transmitters in the considered
spatially distributed scenario and has no counterpart in point-
to-point MCvD. These results suggest that spatially distributed
MCvD is more effective than point-to-point MCvD for long
observation times (where high SNRs can be obtained even
with few emitted molecules per transmitter), while it tends to
be less effective in scenarios where high SNRs have to be
obtained through an high number of emitted molecules per
transmitter.

Besides, the proposed second order analysis clarifies the
role of the spatial distribution of the point transmitters. It is
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Fig. 12. BEP as a function of the transmitters density in the presence of ISI
(10 interferer symbols). Generalized Gaussian approximation with different
values of β. Continuous lines represent the synchronous case, dashed lines
the asynchronous.

shown that, when the point process modeling the transmitters
positions involves stochastic repulsion among points, the SNR
is increased with respect to the case of independently scattered
points (PPP). On the contrary, clustering effects leads to a
reduced SNR with respect to the reference case of the PPP.
This results suggests that the typical cells displacement in
organic tissues (a middle way between fully random and
regular displacements) might also have beneficial effects if
such cells play the role of transmitters in MCvD.

In addition, the extensive analysis put also in evidence
some general aspects of MCvD which may be considered
counter-intuitive, if compared to the classical electromagnetic
wave communications: e.g, the SNR increases sublinearly as
a function of the receiver radius, and the benefit of a larger
radius is reduced by time.

The analysis is completed by the evaluation of the SINR
when digital communications affected by ISI are considered.
The BEP in case of OOK modulation is obtained via Gaussian
approximation.

Numerical results obtained via Monte Carlo simulations
show a perfect agreement with the analytical results for the
SNR and the ISI (thus validating the proposed second order
spatiotemporal stochastic model) and a good agreement (in
the range of interest) with the BEP expression derived by the
Gaussian approximation (thus confirming that such an approx-
imation is acceptable with a large number of transmitters).

The analysis shows that both SINR saturation and BEP error
floor, which arise for increasing number of emitted molecules,
do not arise for increasing transmitters density. Such an
effect is due to the homogeneous Poisson distribution of the
point transmitter and allows spatially distributed molecular
communication to counteract the detrimental effect of ISI.

Finally, the cases of multiple samples detector and of spatial
PPs with stochastic interactions (attraction/repulsion) between
points representing transmitters positions have been considered
here for the first time in a spatially distributed MCvD scenario.
Deeper investigations about these two topics could represent

future lines of research.

APPENDIX A
MEAN AND VARIANCE OF THE NUMBER OF RECEIVED

MOLECULES WITH A POISSON CONCENTRATION TX

In case of Poisson concentration transmitter, the contribution
of the l-th emitted molecules (3) has a Bernoulli distribution
with success probability Fhit(r, t). Thus, using (4) we get

E {a|r,t} = E

{
ntx∑
l=1

bl(r, t)

}
= E

{
ntx∑
l=1

Fhit(r, t)

}
= E {ntx}Fhit(r, t) = Ntx Fhit(r, t) (89)

and

E
{
a2(r, t)

}
= E


(

ntx∑
l=1

bl(r, t)

)2


= E

{
ntx∑
l=1

b2
l (r, t)

}
+ E


ntx∑
l=1

ntx∑
m=1
m 6=l

bl(r, t)bm(r, t)


= E

{
ntx∑
l=1

Fhit(r, t)

}
+ E


ntx∑
l=1

ntx∑
m=1
m6=l

F 2
hit(r, t)


= E {ntx}Fhit(r, t) + E {ntx(ntx − 1)}F 2

hit(r, t)

= NtxFhit(r, t) + (Ntx +N2
tx −Ntx)F 2

hit(r, t)

= NtxFhit(r, t) +N2
txF

2
hit(r, t) (90)

from which it follows

V{a|r,t} = NtxFhit(r, t) . (91)

APPENDIX B
MEAN AND VARIANCE OF THE NUMBER OF RECEIVED

MOLECULES WITH A TIMING TRANSMITTER

From (6), using the properties of a Bernoulli RV and
applying the Campbell theorem to the time domain PPP Φ,
we obtain

E {a|r,t} = E

{∑
τl∈Φ

b(r, t− τl)

}

= EΦ

{∑
τl∈Φ

Fhit(r, t− τl)

}

=

∫ +∞

−∞
λ(τ)Fhit(r, t− τ)dτ . (92)
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and

E
{

[a|r,t]2
}

= E


[∑
τl∈Φ

b(r, t− τl)

]2


= E

{∑
τl∈Φ

b2(r, t− τl)

}

+ E


∑
τl∈Φ

∑
τk∈Φ
τk 6=τl

b(r, t− τl)b(r, t− τk)


=EΦ

{∑
τl∈Φ

Eb|Ψ
{
b2(r, t− τl)

}}

+ EΦ


∑
τl∈Φ

∑
τk∈Φ
τk 6=τl

Eb|Ψ {b(r, t− τl)b(r, t− τk)}


=EΦ

{∑
τl∈Φ

Fhit(r, t− τl)

}

+ EΦ


∑
τl∈Φ

∑
τk∈Φ
τk 6=τl

Fhit(r, t− τl)Fhit(r, t− τk)


=

∫ +∞

−∞
λ(τ)Fhit(r, t− τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
λ(τ)λ(s)Fhit(r, t− τ)

× Fhit(r, t− s)dτds

=

∫ +∞

−∞
λ(τ)Fhit(r, t− τ)dτ

+

[∫ +∞

−∞
λ(τ)Fhit(r, t− τ)dτ

]2

. (93)

Thus

V{a|r,t} =

∫ +∞

−∞

∫ +∞

−∞
λ(τ)λ(s)Fhit(r, t−τ)Fhit(r, t−s)dτds .

(94)

APPENDIX C
MEAN AND VARIANCE OF THE NUMBER OF RECEIVED

MOLECULES FOR SPATIALLY DISTRIBUTED
ASYNCHRONOUS TIMING TRANSMISSION

Proof: By using (10) with L = I{Φ(n)} and bn,l|Ψ,t ∼
B[Fhit(‖xn‖, t− τ(n)

l )], (21) leads to

ε(xn, t) =EΦ,b|Ψ

 ∑
l∈I{Φ(n)}

bn,l|Ψ,t


=EΦ


∑

τ
(n)
l ∈Φ(n)

Fhit(‖xn‖, t− τ(n)
l )


=

∫ +∞

−∞
ρ(τ)Fhit(‖xn‖, t− τ)dτ (95)

and

ξ(xn, t) =EΦ,b|Ψ


 ∑
l∈I{Φ(n)}

bn,l|(t)

2


=EΦ,b|Ψ

 ∑
l∈I{Φ(n)}

b2
n,l(t)


+ EΦ,b|Ψ


∑

l∈I{Φ(n)}

∑
k∈I{Φ(n)}

k 6=l

bn,l(t)bn,k(t)


=EΦ

 ∑
τl∈Φ(n)

Eb|Φ,Ψ
{
b2
n,l(t)

}
+EΦ


∑

l∈I{Φ(n)}

∑
k∈I{Φ(n)}

k 6=l

Eb|Φ,Ψ {bn,l(t)bn,k(t)}


=EΦ


∑

τ
(n)
l ∈Φ(n)

Fhit(‖xn‖, t− τ(n)
l )


+ EΦ

{ ∑
τ
(n)
l ∈Φ(n)

∑
τ
(n)
k ∈Φ

(n)

τ
(n)
k 6=τ

(n)
l

Fhit(‖xn‖, t− τ(n)
l )

× Fhit(‖xn‖, t− τ(n)
k )

}

=

∫ +∞

−∞
ρ(τ)Fhit(‖xn‖, t− τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
ρ(2)(τ, s)Fhit(‖xn‖, t− τ)

× Fhit(‖xn‖, t− s)dτds (96)

where in the last step we applied the Campbell’s theorem for
the second order product density function to the time domain
PP Φ(n). By using (95) and (96) in (23a), (24), and (20), we
obtain

E {nrx|Ψ(t)} =

∫
R3\ΩR

λΨ

∫ +∞

−∞
ρ(τ)Fhit(‖x‖, t− τ)dτdx

=

∫ +∞

−∞
ρ(τ)

∫
R3\ΩR

λΨFhit(‖x‖, t− τ)dxdτ

(97)
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and

V{nrx|Ψ(t)} =

∫
R3\ΩR

λΨ

∫ +∞

−∞
ρ(τ)Fhit(‖x‖, t− τ)dτdx

+

∫
R3\ΩR

λΨ

∫ +∞

−∞

∫ +∞

−∞
ρ(2)(τ, s)Fhit(‖x‖, t− τ)

× Fhit(‖x‖, t− s)dτ dx + ζΨ(t)

=

∫ +∞

−∞
ρ(τ)

∫
R3\ΩR

λΨFhit(‖x‖, t− τ)dxdτ

+

∫ +∞

−∞

∫ +∞

−∞
ρ(2)(τ, s)

∫
R3\ΩR

λΨFhit(‖x‖, t− τ)

× Fhit(‖x‖, t− s)dx dτds+ ζΨ(t) (98)

with

ζΨ(t) =

∫
R3\ΩR

∫
R3\ΩR

[
ρΨ(‖x1 − x2‖)− λ2

Ψ

]
×
∫ +∞

−∞
ρ(τ)Fhit(‖x1‖, t− τ)dτ

∫ +∞

−∞
ρ(s)

× Fhit(‖x2‖, t− s)ds dx1dx2

=

∫ +∞

−∞

∫ +∞

−∞
ρ(τ)ρ(s)

∫
R3\ΩR

∫
R3\ΩR

[
ρΨ(‖x1 − x2‖)− λ2

Ψ

]
× Fhit(‖x1‖, t− τ)Fhit(‖x2‖, t− s)dx1dx2 dτds

(99)

where we remark that, in both cases, the possibility to ex-
change the order of integrals is insured by Fubini’s theorem
(note that the integrand functions are positive and the integrals
converge). By using (25) in (97), (98), and (99), we obtain
(29).

APPENDIX D
PROOF OF COROLLARY 1

Proof: By applying Lemma 2 with ρ(t) = λj(t) = g(t−
jTb) and ρ(2)(t, τ) = λj(t)λj(τ) = g(t− jTb)g(τ − jTb) we
get

E
{
nrx|Ψ,dj=1[j]

}
=

∫ +∞

−∞
g(τ)Hall(−τ)dτ (100a)

V
{
nrx|Ψ,dj=1[j]

}
=

∫ +∞

−∞
g(τ)Hall(−τ)dτ

+

∫ +∞

−∞

∫ +∞

−∞
g(τ)g(s)H

(2)

all (−τ,−s)dτds

+

∫ +∞

−∞

∫ +∞

−∞
g(τ)g(s)G

(2)

all (−τ,−s)dτds . (100b)

Note that g(t) is zero for t < 0. Thus, the contribution of the
integrals is non-zero only when the integration variables (τ
ans s) are non-negative. For τ > 0, F hit(r,−τ) = Fhit(r, Tb−
τ) − Fhit(r,−τ) = Fhit(r, Tb − τ). Thus, according to (44)
and (25), (100) results in (29) with t = Tb, ρ(t) = g(t), and
ρ(2)(t, τ) = g(t)g(τ).

APPENDIX E
PROOF OF COROLLARY 2

Proof: First, note that, if previous bits (d0, d1, ...dj−1)
are RVs, λISI(t) =

∑j−1
i=0 dig(t− iTb) is a random process and

{Φ(n)
ISI } result in Cox PPs with first and second order intensity

functions given by:

ρ(t) =E {λISI(t)} = E

{
j−1∑
i=0

dig(t− iTb)

}

=p1

j−1∑
i=0

g(t− iTb) (101)

and

ρ(2)(t, τ) =E {λISI(t)λISI(τ)}

=E

{
j−1∑
i=0

dig(t− iTb)

j−1∑
k=0

dkg(τ − kTb)

}

=

j−1∑
i=0

E
{
d2
i

}
g(t− iTb)g(τ − iTb)

+

j−1∑
i=0

j−1∑
k=0
k 6=i

E {di}E {dk} g(t− iTb)g(τ − kTb)

=p1

j−1∑
i=0

g(t− iTb)g(τ − iTb)

+ p2
1

j−1∑
i=0

j−1∑
k=0
k 6=i

g(t− iTb)g(τ − kTb)

=p2
1

j−1∑
i=0

g(t− iTb)g(τ − iTb)

+ p2
1

j−1∑
i=0

j−1∑
k=0

g(t− iTb)g(τ − kTb) (102)

respectively. By applying Lemma 2 with ρ(t) and ρ(2)(t, τ)
as in (101) and (102), we obtain (51). Second, note that from
(44) and (40) we have

Hall(t) =λΨ

∫
R3\ΩR

[Fhit(‖x‖, Tb + t)− Fhit(‖x‖, t)] dx

H
(2)

all (t1, t2) =λΨ

∫
R3\ΩR

[Fhit(‖x‖, Tb + t1)− Fhit(‖x‖, t1)]

× [Fhit(‖x‖, Tb + t2)− Fhit(‖x‖, t2)] dx

G
(2)

all (t1, t2) =

∫
R3\ΩR

∫
R3\ΩR

[
ρΨ(‖x1 − x2‖)− λ2

Ψ

]
× [Fhit(‖x1‖, Tb + t1)− Fhit(‖x1‖, t1)]

× [Fhit(‖x2‖, Tb + t2)− Fhit(‖x2‖, t2)] dx1dx2

(103a)

which result in (52).

APPENDIX F
PROOF OF PROPOSITION 1

Proof: First, for an homogeneous PPP it is ρΨ(‖x1 −
x2‖) = λ2

Ψ
and (25) lead to

G
(2)
all (t, τ) = 0 (104)



24

Thus, (26), (28), and (30) reduce to (72), (73), and (74),
respectively. Second, by substituting (1) in (25a), we obtain

Hall(t) = λΨ

∫
R3\A

Fhit(x, t)dx

= λΨ

∫ +∞

R

4πr2Fhit(r, t)dr

= 4πλΨR

∫ +∞

R

r erfc
(
r −R√

4Dt

)
dr

that results in (75a). Finally, from (1) and (25c) it follows

H
(2)
all (t, τ) =λΨ

∫
R3\ΩR

Fhit(x, t)Fhit(x, τ)dx

=

∫
R3\ΩR

λΨ
R2

‖x‖2
erfc

(
‖x‖ −R√

4Dt

)
erfc

(
‖x‖ −R√

4Dτ

)
dx

=λΨ4π

∫ +∞

R

R2 erfc
(
r −R√

4Dt

)
erfc

(
r −R√

4Dτ

)
dr

=4πλΨ
√

4D

∫ +∞

0

R2 erfc
(
r′√
t

)
erfc

(
r′√
τ

)
dr′

=8πR2λΨ

√
Dtτ

π

(
1√
t

+
1√
τ
−
√

1

t
+

1

τ

)
(105)

which results in (75b).

APPENDIX G
PROOF OF COROLLARY 4

Proof: For a function λ(t) which is Ntx/Ta in [0, Ta] and
0 elsewhere, it is

∫ +∞

−∞
λ(τ)Hall(t− τ)dτ =

Ntx

Ta

∫ min{t,Ta}

0

Hall(t− τ)dτ

=
Ntx

Ta

∫ min{t,Ta}

0

4λΨR
√
πD(t− τ)

{
2R+

√
πD(t− τ)

}
dτ

=
8NtxλΨR

2
√
πD

Ta

∫ min{t,Ta}

0

√
t− τdτ

+
4NtxλΨRπD

Ta

∫ min{t,Ta}

0

(t− τ)dτ

=


16NtxλΨR

2
√
πDt3

3Te
+ 2NtxλΨRπDt

2

Ta
, for t 6 Ta

16NtxλΨR
2
√
πD

3Ta

(√
t3 − t

√
t− Ta

+Ta
√
t− Ta

)
+ 4NtxλΨRπD

Ta

(
tTa − T 2

a
2

)
for t > Ta

(106)

and

∫ +∞

−∞

∫ +∞

−∞
λ(τ)λ(s)H

(2)
all (t− τ, t− s)dτds

=
N2

tx

T 2
a

∫ Ta

0

∫ Ta

0

H
(2)
all (t− τ, t− s)dτds

=
8N2

txR
2λΨ
√
πD

T 2
a

∫ min{t,Ta}

0

∫ min{t,Ta}

0

(
√
t− τ +

√
t− s

−
√

2t− τ − s)dτds

=
8N2

txR
2λΨ
√
πD

T 2
a



(
4
15 (7− 4

√
2)
√
t5
)
, for t 6 Ta

4Ta
3

(√
t3 − t

√
t− Ta

+Ta
√
t− Ta

)
−
∫ Ta

0
2
3

[√
(2t− s)3

−
√

(2t− s− Ta)3
]
ds, for t > Ta

=
8N2

txR
2λΨ
√
πD

T 2
a



(
4
15 (7− 4

√
2)
√
t5
)
, for t 6 Ta

4Ta
3

(√
t3 − t

√
t− Ta

+Ta
√
t− Ta

)
− 4

15

[√
(2t)5

−2
√

(2t− Ta)5

+
√

(2t− 2Ta)5
]
, for t > Ta

(107)

which, substituted in (74), provide (76).

APPENDIX H
PROOF OF PROPOSITION 2

Proof: First, note that, in both cases, if Φ is a PPP, then
ρΨ(‖x1−x2‖) = λ2

Ψ
and thus, from (44c), it is Gall(t, τ) = 0.

For Poisson concentration transmitters, g(t) = Ntxδ(t), and
thus (51) leads to

µISI =
Ntx

2

j−1∑
i=0

∫ +∞

−∞
δ(τ − iTb + jTb)Hall(−τ)dτ

=
Ntx

2

j−1∑
i=0

Hall[(j − i)Tb] =
Ntx

2

j∑
k=1

Hall(kTb) (108)
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and

σ2
ISI =

Ntx

2

j−1∑
i=0

∫ +∞

−∞
δ(τ − iTb + jTb)Hall(−τ)dτ

+
N2

tx

4

j−1∑
i=0

∫ +∞

−∞

∫ +∞

−∞
δ(τ − iTb + jTb)

× δ(s− iTb + jTb)H
(2)

all (−τ,−s)dτds

+
N2

tx

4

j−1∑
i=0

j−1∑
l=0

∫ +∞

−∞

∫ +∞

−∞
δ(τ − iTb + jTb)

× δ(s− lTb + jTb)H
(2)

all (−τ,−s)dτds

=
Ntx

2

j−1∑
i=0

Hall[(j − i)Tb]

+
N2

tx

4

j−1∑
i=0

H
(2)

all [(j − i)Tb, (j − i)Tb]

+
N2

tx

4

j−1∑
i=0

j−1∑
l=0

H
(2)

all [(j − i)Tb, (j − l)Tb]

=
Ntx

2

j∑
k=1

Hall(kTb) +
N2

tx

4

j∑
k=1

H
(2)

all (kTb, kTb)

+
N2

tx

4

j∑
k=1

j∑
m=1

H
(2)

all (kTb,mTb) (109)

where in the last step we introduces the index k , j − i and
m , j − l. By using (52), (108) and (109) become

µISI =
Ntx

2

j∑
k=1

{Hall[(k + 1)Tb]−Hall(kTb)} (110a)

σ2
ISI =

Ntx

2

j∑
k=1

{Hall[(k + 1)Tb]−Hall(kTb)}

+
N2

tx

4

j∑
k=1

{H(2)
all [(k + 1)Tb, (k + 1)Tb]

−H(2)
all [kTb, (k + 1)Tb]}

+
N2

tx

4

j∑
k=1

{H(2)
all (kTb, kTb)

−H(2)
all [(k + 1)Tb, kTb]}

+
N2

tx

4

j∑
k=1

j∑
m=1

{H(2)
all [(k + 1)Tb, (m+ 1)Tb]

−H(2)
all [kTb, (m+ 1)Tb]}

+
N2

tx

4

j∑
k=1

j∑
m=1

{H(2)
all (kTb,mTb)

−H(2)
all [(k + 1)Tb,mTb]} (110b)

which result in (81) by noticing that, in the sums over the index
k, the positive part k-th element is deleted by the negative part
of the k + 1-th element.

For timing transmitters with uniformly distributed emissions
in an activity interval, g(t) = Ntx

Ta
rect tTa

, and thus (51) leads
to

µISI =
Ntx

2Ta

j−1∑
i=0

∫ (i−j)Tb+Ta

(i−j)Tb

Hall(−τ)dτ

=
Ntx

2Ta

j−1∑
i=0

∫ Ta

0

Hall[(j − i)Tb − u]du (111)

and

σ2
ISI =

Ntx

2Ta

j−1∑
i=0

∫ (i−j)Tb+Ta

(i−j)Tb

Hall(−τ)dτ

+
N2

tx

4T 2
a

j−1∑
i=0

∫ (i−j)Tb+Ta

(i−j)Tb

∫ (i−j)Tb+Ta

(i−j)Tb

H
(2)

all (−τ,−s)dτds

+
N2

tx

4T 2
a

j−1∑
i=0

j−1∑
l=0

∫ (i−j)Tb+Ta

(i−j)Tb

∫ (l−j)Tb+Ta

(l−j)Tb

H
(2)

all (−τ,−s)dτds

=
Ntx

2Ta

j−1∑
i=0

∫ Ta

0

Hall[(j − i)Tb − u]du

+
N2

tx

4T 2
a

j−1∑
i=0

∫ Ta

0

∫ Ta

0

H
(2)

all [(j − i)Tb − u, (j − i)Tb − v]dudv

+
N2

tx

4T 2
a

j−1∑
i=0

j−1∑
l=0

∫ Ta

0

∫ Ta

0

H
(2)

all [(j − i)Tb − u, (j − l)Tb − v]dudv

(112)

where u = τ + (j − i)Tb and v = s + (j − l). By using the
index k = j − i and m = j − l and by recalling (52), we get

µISI =
Ntx

2Ta

j∑
k=1

(hk+1 − hk) (113)

σ2
ISI =

Ntx

2Ta

j∑
k=1

(hk+1 − hk)

+
N2

tx

4T 2
a

j∑
k=1

(gk+1,k+1 − gk,k+1 + gk,k − gk+1,k)

+
N2

tx

4T 2
a

j∑
k=1

j∑
m=1

(gk+1,m+1 − gk,m+1 + gk,m − gk+1,m)

(114)

which, by noticing that in the sums over k each element deletes
its follower, result in (82) where

hk ,
∫ Ta

0

Hall(kTb − u)du (115a)

gk,m ,
∫ Ta

0

∫ Ta

0

H
(2)
all (kTb − u,mTb − v)dudv . (115b)

For t, t1, tz > 0, it results∫ Ta

0

Hall(t− τ)dτ

=8λΨR
2
√
πD

{
2

3

[√
t3 −

√
(t− Ta)3

]
+

√
πD

2R

(
tTa −

T 2
a

2

)}
(116)
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and∫ Ta

0

H
(2)
all (t1 − τ, t2 − s)dτds = 8R2λΨ

√
πD

×
∫ Ta

0

∫ Ta

0

(
√
t1 − τ +

√
t2 − s−

√
t1 + t2 − τ − s)dτds

= 8R2λΨ
√
πD

{
2Ta

3

×
[√

t31 −
√

(t1 − Ta)3 +
√
t32 −

√
(t2 − Ta)3

]
+

2

3

∫ Ta

0

[√
(t1 + t2 − s)3 −

√
(t1 + t2 − s− Ta)3

]
ds

}

= 8R2λΨ
√
πD

{
2Ta

3

[√
t31 −

√
(t1 − Ta)3

+
√
t32 −

√
(t2 − Ta)3

]
− 4

15

[√
(t1 + t2)5

−2
√

(t1 + t2 − Ta)5 +
√

(t1 + t2 − 2Ta)5
]}

. (117)

Thus (115) become (83).
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