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In the incoming years, the low-aerial space will be crowded by 
unmanned aerial vehicles (UAVs), which will be providing 
different services. In this expected context, an emerging problem 
is to detect and track unauthorized or malicious mini/micro 
UAVs. In contrast to current solutions mainly based on fixed 
terrestrial radars, this tutorial will put forth the idea of a 
dynamic radar network (DRN) composed of UAVs able to 
smartly adapt their formation and navigation strategy to best 
track malicious UAVs in real-time, with high accuracy and in a 
distributed fashion. To this end, the main methods for target 
detection and tracking will be described, and an optimized 
navigation scheme will be developed according to an 
information-seeking approach. Some examples of simulation 
results and future directions of work will be finally presented 
highlighting the advantages of  dynamic and reconfigurable 
networks over static ones. 

Motivations 
The use of civil unmanned aerial vehicles (UAVs) in 

densely inhabited areas like cities is expected to open an 
unimaginable set of new applications thanks to their low-cost 
and high flexibility. They can be used for enabling smart 
services in low-altitude air space (below 150 m), as for instance 
goods delivery (e.g., Amazon prime air), taxi drones (e.g., Uber 
air), and monitoring, according to the U-Space roadmap [1] [2]. 

As an example, UAVs have been recently proposed as a 
complementary aerial platform in 5G cellular networks to 
enhance communication services for terrestrial users thanks to 
their capability of reacting to the fast variations of traffic 
demand, and to rely on dominant line-of-sight (LOS) links [3]. 

At the same time, the idea of having swarms of UAVs in 
future cities might be accepted with difficulty by the public 
because of their potential malicious use. Indeed, UAVs, for 
example, can hide behind buildings for criminal activities like 
terrorist attacks, or can inhibit the functionality of authorized 
UAV networks [4]. 

Currently, UAV safety and security solutions rely on 
communications with the air traffic management (ATM) 
infrastructure and/or ad hoc fixed on-ground radars. On the one 
hand, the ATM processes the information acquired and provided 

by UAVs (e.g., the e-identification packet containing the UAV 
ID and position, as foreseen by the U1 services of the U-space 
[2]), which can be easily subjected to cybersecurity attacks. 

On the other hand, to  improve the safety and security level, 
one can deploy ad-hoc terrestrial radar systems. Typically, 
terrestrial radars for UAV detection are of two types: fixed radar 
systems with operating ranges of about 500-2000 meters in open 
space, and fixed systems based on RF, vision or acoustic sensors, 
mostly of small sizes and used in critical areas (e.g., airports) [5]. 
Another recent solution is to use low-power passive radars that 
exploit signals of opportunities (e.g., cellular, Wi-Fi signals) to 
illuminate the objects in the surroundings and process the signal 
backscattered by UAVs [6]. 

Unfortunately, all these systems could fail in harsh 
environments like cities due to obstacles that prevent the 
reception of the signal by terrestrial radars, and, consequently, 
will increase missed detection and inaccuracy of tracking 
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Figure 1. Pictorial representation of a DRN considered in this 
paper. 



malicious UAVs. Moreover, the deployment of ad-hoc terrestrial 
radar or vision-based infrastructures might not be always 
feasible or economically sustainable.  

In this context, one approach to address this problem is to 
use “UAVs to monitor UAVs” (patrolling drones), and, in this 
tutorial article, we illustrate and elaborate on the possibility of 
adopting a UAV-based dynamic radar network (DRN). A DRN 
is a network of UAVs acting as a distributed radar sensing 
system for real-time high-accuracy tracking of non-authorized 
UAVs. Figure 1 provides a pictorial representation of a DRN. 

This system will be able to observe the environment from 
different privileged viewpoints compared to on-ground systems. 
In fact, UAV-radars will fly at a certain altitude so that it will be 
possible to detect and track targets with an unprecedented level 
of accuracy. Moreover, thanks to UAV-to-UAV collaboration 
[7], the sensing capability of each individual UAV and its 
capacity to optimize the trajectory in real time will be 
augmented.  

In the following, the problem of a joint autonomous 
navigation and target tracking problem will be analyzed 
considering the position of sensors being optimized through a 
formation control algorithm. In this sense, due to lack of prior 
knowledge of the environment and of the target trajectory, off-
line path planning algorithms [8] will not be efficient, and, 
hence, a UAV-radar should interact with nearby UAV-radars in 
order to retrieve sufficient information for planning its 
optimized trajectories on-the-fly. In order to meet the low 
latency constraint for tracking and navigation as well as 
reliability against cyber-attacks, a distributed scheme is 
considered, where the UAVs only rely on the information 
exchanged with their neighbors through multi-hops. 

The final goal is to demonstrate the feasibility of the DNRs 
for enhancing the safety and security of low-altitude air space as 
well as to propose DNRs as a more reliable alternative (or 
complementary) to vision- or terrestrial-based solutions in the 
presence of bad weather conditions or several obstructions.  

Problem Statement  
A DRN of UAVs can be described as a set of mobile 

reference nodes that navigate in an outdoor environment.  The 
UAV positions are considered a-priori known, for instance 
provided by visual aided GNSS/INS sensors that can attain a 

centimeter positioning accuracy so that the UAV localization 
error is negligible with respect to the target one [9]. Among other 
on-board technology, UAVs are also equipped with radar 
sensors that provide measurements for detecting and tracking the 
position and velocity of a passive (non-cooperative) UAV, in the 
following referred to as target. Based on the tracking 
performance, UAVs can adapt their formation and take 
navigation decisions to minimize the tracking error and, 
consequently, to enable safety countermeasures. 

For this purpose, each UAV can be considered as a central 
unit capable of locally assessing the situation, detect and track 
the non-authorized target, and taking navigation decisions 
accordingly, in an autonomous way. This improves also the 
reliability of the network vis-à-vis UAV failures or external 
attacks. In accordance with Fig. 2, each UAV performs the 
following steps: 
1) The first task focuses on retrieving useful information from 

radar measurements (i.e., from the signal backscattered by 
the environment) and detecting the presence of a malicious 
target, for example, using an energy detector [5]. For 
instance, Doppler shift, ranging and/or bearing information 
can be inferred from the backscattered signal in order to be 
processed by the tracking algorithm. Moreover, UAV 
global positions can be obtained by each UAV using multi-
sensor fusion of information (e.g., from data collected by 
GNSS, camera, or laser scanner sensors) [9]. 

2) Once each UAV has acquired its own measurements, it 
communicates this information and its own position to its 
neighbors (within a maximum communication range), and 
it receives back the same data from neighboring UAVs via 
multi-hop propagation (distributed network), in order to 
lower the latency of communications.  

3) Given the measurements and the positions of the other 
UAVs, the state (position and velocity) of a malicious target 
can be tracked [10]. For example, a Bayesian estimator can 
be used to compute the a-posteriori probability distribution 
of the state given the history of measurements, as it will be 
detailed in the sequel. 

4) The last step concerns the UAV navigation control that will 
allow the UAV to reach its next position according to a 
given control law. Since the quality of the measurements 
depends on the DRN geometry and target position, the 

Figure 2. A block diagram for decentralized joint detection and tracking performed at each UAV. 
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control law should properly dynamically change the UAV 
formation and position in order to maximize the quality of 
the tracking process.  

 

UAV Technologies for Target Detection 
The detection of a malicious UAV is a very challenging 

research problem, especially when dealing with mini/micro-
UAVs, and, hence, in this section, we briefly review some 
detection techniques without entering into mathematical details. 
We refer the readers to [5] [12] for more insights on this subject. 

Different methods can be envisioned for UAV detection, 
based on static systems, or on patrolling UAVs. It is possible to 
classify them based on the sensors adopted for the 
measurements, as follows: 
• RF-based detection: In this case, low-cost and low-

complexity RF sensors, as for example software defined 
radios (SDRs), can be mounted on UAVs and can be used 
to “sniff” the communications between the target UAV and 
its controller. The collected RF signals are usually 
processed by classifiers (e.g., using machine learning 
techniques) able to distinguish between RF signals emitted 
by UAVs. The disadvantage of this method is that a prior 
training phase is needed in order to identify different 
UAVs. Moreover, these techniques depend on the transmit 
power and receiver sensitivity, and they fail if the target is 
an autonomous UAV not remotely controlled, and, thus, not 
emitting any kind of signal.  

• Radar-based detection: In this case, low-cost and 
lightweight FMCW radars can be used to detect targets in 
the surrounding environment. Differently from vision-
based techniques, they perform well even in NLOS 
conditions and, if millimeter-waves are adopted, they also 
allow the estimation of the micro-Doppler signature from 
the energy backscattered by UAV propellers. Such 
signatures allow to classify drones, to detect the presence 
of additional payloads, and to distinguish them from other 
flying objects (e.g., birds). Because radar measurements are 
based on backscattered signals, the RCS of the targets can 
make the detection difficult, especially when dealing with 
micro drones [11]. 

• Sound-based detection: This method employs single or 
multiple microphones to detect the characteristic noise 
produced by UAVs when flying. A major drawback of the 
method is that it fails in urban or noisy areas, and it could 
not work efficiently if the microphones are installed on-
board patrolling UAVs that emit a similar noise. 

• Vision-based detection: This technique involves the use of 
camera sensors. They require LOS conditions to operate 
properly. Moreover, they encounter difficulties when 
UAVs are flying in between buildings. 

In the next, we will focus our attention on radar-based detection 
and tracking technologies thanks to their capability of identify 

mini/micro UAVs even in challenging propagation 
environments and in scarce visibility conditions. 

Radar Technology and Measurements for UAVs 
Several types of sensors can be mounted on UAVs such as 

cameras, RF sensors, microphones, and radars. One advantage 
of radars for target tracking compared to vision-based sensors is 
that their performance is not affected by lighting or weather 
conditions, and they are less sensitive to non-line-of-sight 
(NLOS) conditions. 

Radar systems transmit a signal that objects and targets in 
the environment may backscatter based on their capability to 
reflect electromagnetic waves. This latter property is measured 
by the radar cross section (RCS) of the targets, and can impact 
on the final performance. Starting from the backscattered signal, 
a radar can estimate range, but also angle-of-arrival, and velocity 
of targets.  

In particular, ranging (distance estimation) can be 
performed starting from the received signal strength (RSS), 
using suitable path-loss models, or it can be obtained by 
estimating the time-of-flight (TOF) of the signal reflected by the 
target. The main advantage of performing RSS estimates is the 
low-complexity and low-cost of the needed technology. 
However, these estimates are extremely sensitive to multipath, 
and their accuracy also deteriorates when the distance between 
nodes increases. On the contrary, TOF-based measurements can 
be more accurate, especially if wideband signals are adopted. 

Another possibility is to estimate the angle-of-arrival 
(AOA) by adopting multiple antennas or by exploiting ad-hoc 
UAV rotations of directive antennas.  

Finally, Doppler-shifts measurements can be useful for 
estimating the target velocity, and they can be inferred through 
frequency or phase estimation. 

In all cases, the measurements are subjected to 
uncertainties, related to noise, multipath, interference, etc., that 
can be mitigated by a proper choice of the underlaying 
technologies. In this sense, a promising radar technology for 
UAVs is the frequency modulated continuous wave (FMCW) 
radar. Differently from pulse radars that transmit short pulses 
periodically, FMCW radars interrogate the environment with a 
signal linearly modulated in frequency (namely, chirp). 
Sometimes, in order to measure multiple targets, multiple chirps 
are transmitted in a fixed time window (chirp train). Once the 
signal is received back by the radar, it is combined with a 
template of the transmitted waveform by a mixer. As a result, 
different target-related parameters can be inferred by processing 
the frequency and phase information of the signal at the output 
of this mixer. 

More specifically, each chirp presents a delay proportional 
to the distance from the targets that can be estimated using a two-
dimensional Fourier transform (range-FFT) able to separate 
between different beat frequencies (one for each target) in the 
spectrum. In the same manner, to retrieve velocity information, 
it is possible to rely on phase differences between different 



received chirps, or, directly, on Doppler-shift estimates. Finally, 
if a FMCW radar consists of multiple transmitting and receiving 
antennas (MIMO radar), the AOA can be estimated through the 
measurement of the phase differences between antennas.  

To this end, a promising solution might be to use  
millimeter-waves because of the possibility to miniaturize 
FMCW radars for an on-board system, for the reduction of 
weight of the payload, and for its ranging accuracy and precision 
thanks to its larger available bandwidth (up to 4 GHz at 77 GHz). 
Example of FMCW solutions for UAVs can be found in [10] and 
the references therein. 

Methods for Target Tracking  
The tracking goal is to estimate the state of the target (e.g., 

its position and velocity) starting from the collected 
measurements. In this article, we will briefly review some 
statistical techniques that do not rely on geometric 
considerations or database/look-up tables (as for fingerprinting), 
but estimate the state of the target over time considering the 
history of measurements. 

In this sense, Bayesian filtering methodologies, based on 
Kalman filtering (KF) or particle filtering (PF), have 
demonstrated to be powerful tools to solve the tracking problem 
thanks to their capabilities of dealing with heterogeneous 
measurements, statistical characterization of uncertainties, and 
target mobility models [13]. 

Within the Bayesian framework, the main goal is to 
estimate the full joint posterior probability of the state at time 
instant k, i.e., !(#), given measurements up to the current time 
instant, i.e., %(&:#). When the target state and the measurements 
form a Markov sequence, it is possible to define a probabilistic 
state-space Markovian model by considering the following three 
statistical models: 
• Prior information. It represents the statistical description of 

the state at time instant 0, for instance at the output of the 
detection process; 

• Measurement model. It describes how the state is related to 
the measurements by the likelihood distribution 
()%(#)	|	!(#),, with ((∙) being the probability density 
function; 

• Mobility model. It describes how the state evolves in time 
by ()!(#)	|	!(#.&),. 

Given this state-space model, the Bayesian filtering is a 
recursive approach that permits to estimate the marginal 
posterior distribution of the target state given the measurements. 
To this end, three steps are necessary [12]: 
• Initialization. The marginal at the initial time instant is set 

equal to the prior; 
• Prediction step. By exploiting the mobility model, it is 

possible to derive the predictive distribution of the state 
/(#.&))!(#), = ()!(#)	|	%(&:#.&),; 

• Update step. Once a new measurement becomes available, 
the marginal posterior of the state, i.e. /(#))!(#), =

()!(#)	|	%(&:#),, can be computed by applying the Bayes’ 
rule.  

Finally, given the marginal posterior of the state, a point estimate 
!1(#|#) of !(#)	can be derived as 

!1(#|#) = 23!(#)|%(&:#)4 = ∫!(#)	/(#))!(#),	6!(#).     (1) 

In our investigated system, the observation functions are 
non-linear (e.g., UAV-target ranges and angle-of-arrivals) and 
the observation noise is Gaussian. In this case, two practical 
methods that provide a simple solution to the filtering equations 
are the Extended Kalman Filter (EKF) and the unscented KF 
(UKF). When an EKF is run at each UAV, the belief of the state 
can be modeled as /7

(#))!(#), =

( 8!(#)	|	%7
(&:#)9~; 8<7

(#|#), >7
(#|#)9 where ? is the UAV index, 

<7
(#|#) and >7

(#|#)are the posterior mean vector and covariance 

matrix of the target state [12], and %7
(#) are the information 

acquired by the ith UAV from its own radar measurements and 
from neighbors. In this case, (1) becomes !17

(#|#) = <7
(#|#). 

Note, that since the processing in DRNs is distributed, the 
measurements in %7

(#) might be delayed by the number of hops 
between the UAVs and, hence, they may provide non-updated 
(i.e., aged) information about the target [10].  

UAV Navigation Problem 
In this section, we propose an autonomous control at each 

UAV designed to estimate its next location in order to maximize 
its capability to best track the target, considering the positions 
and measurements of the other UAVs. 

The tracking performance mainly depends on the prior 
information acquired (if present), on the UAV network 
formation (geometry) and on the quality (uncertainties) of the 
collected measurements. Since the DRN is distributed, the 
optimization problem should be locally solved at each UAV 
based on information coming from multi-hop communications. 
For this reason, the final solution will be not optimal because 
UAVs have only partial views of the overall network geometry 
[13]. 

Path planning and optimization for UAVs has attracted 
much research attention over the years [8]. The optimization 
criterion is usually based on the minimization of the information 
cost that captures the quality of the tracking process. In this 
context, the cost function can be: (i) a metric assessing the 
performance of a specific tracking estimator (e.g., the state 
covariance matrix at the output of the EKF); (ii) a metric 
independent of the specific estimator, e.g., the Fisher 
Information Matrix (FIM) or the posterior covariance matrix, 
both evaluated on the target location estimate. 

To enforce “agnosticism” of the chosen estimator, next we 
describe the second approach. In this case, to implement the cost 
function, one can consider the optimal experimental design 
(OED) [15]: for example, the A-optimality minimizes the trace 



of the information matrix inverse; the D-optimality considers the 
determinant,  while the E-optimality minimizes the maximum 
eigenvalue of the inverse matrix [14].  

With reference to the system and the problem previously 
described, each UAV solves an optimization problem to infer its 
control law based on the collected information.  

This problem can be formulated as, 

8@7
(#A&)9

∗
= min

@F
(GHI)

J KIM7
(#) 8!17

(#A&|#); @7
(#A&)9M,        (2) 

 where @7
(#)contains all the UAVs locations as known by the ith 

UAV at time instant N, !17
(#A&|#) is the predicted target state at the 

ith UAV at time instant N (that can be computed as in (1) during 
the prediction step), J(∙) is an OED function and IM7

(#)(∙) is the 
cost function expressed as a metric capturing the accuracy of the 
tracking process, dependent on the UAV positions and on the 

target state. For example, when A- or D- optimality is used as 
OED criterion [14] and when the posterior covariance matrix at 
the EKF output is used as a cost function [15], the argument of 
the minimization in (2) becomes 

J 8IM7
(#)9 =O

−lnRdetKV>7
(#|#)W

.&
MX ,						D-optimality

trace 8>7
(#|#)9 ,																							A-optimality

,   (3) 

where J(∙) is expressed as the log-determinant (namely, 
−ln)det(∙),) or trace (namely, trace(∙)) operator in accordance 

with the chosen criterion, and where IM7
(#) is the state 

covariance matrix evaluated on the predicted target state as in 
(2). For example, in [15], a closed form solution of (3) is given 
for heterogeneous radar measurements. 

 
 

Figure 3. Simulation scenarios in presence of obstacles. On top, ranging-based tracking scenarios with a dynamic UAV radar 
network (left) and an ad-hoc fixed network (right). On the bottom, settings with bearing-based tracking measurements for dynamic 
and fixed radars. 
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The UAV kinematic and anti-collision constraints, such as 
the maximum UAV speed or the safety distance are considered 
in (1) as non-linear inequality constraints. 

Finally, according to the UAV transition model, the control 

signal at the ith UAV can be found as b7
(#) = 8@7

(#A&)9
∗
− @7

(#).  

When the UAVs arrive at their next positions, a new  
measurement and tracking phase is performed and the entire 
control process is repeated again.  

To solve the trajectory problem in (1), one can rely on an 
approach based on optimization theory (e.g., non-linear 
programming, dynamic programming, etc.) or on more 
advanced approaches of machine learning (e.g., reinforcement 
learning algorithms).  

Once the tracking of UAVs has been performed, several 
interdiction techniques can be undertaken to neutralize the 
threats posed by the malicious UAV. Some examples are 
reported in [5]. 

Simulation Examples  
In this section, we analyze the performance of a DRN in 

different situations by varying the number of UAVs, their 
sensing capabilities and the RCS of different targets.  

For each Monte Carlo iteration, the UAV initial positions 
were randomly generated inside a sphere of radius 30 m at a 
height of 50 m, the measurement noise was generated according 
to Gaussian statistics, while the target mobility was modeled as 
a random walk [12]. The UAV global positions were considered 
known with centimeter accuracy [9] and controlled by the 
solution of the minimization problem in (2). A maximum 
communication range of 100 m between UAVs and a single hop 
were considered. For more details about models and parameters, 
please refer to [15].   

In Fig. 3, examples of estimated UAV trajectories for 
different sensing capabilities have been reported for an 
environment with NLOS areas. In particular, on the left, 
examples of DNRs are displayed considering a constant altitude 
from the ground and the collection of ranging (top) and bearing 
(bottom) measurements. For comparison, on the right, two 
situations with a fixed deployment of radar sensors is 
considered: one with a single terrestrial radar with full sensing  

 
 
 
 
 
 
 
 
 
 
 

capabilities (i.e., capable of retrieving ranging, bearing and 
Doppler shift information) represented with a diamond in Fig. 3, 
and another where for fairness the radar network is with the same 
number (i.e., c=6) and sensing capabilities of UAVs.  

The ranging error was modeled as de = dfe ∙ 67
g/√RCS, 

with dfe	being the error at the reference distance of 1 m and for 
a target RCS of 1 m2, and with 67 being the UAV-target distance. 
In the simulations, the reference ranging error (namely, dfe) was 
set to 0.001 m, while the bearing accuracy was 10 degrees, 
regardless of the UAV-target distance and RCS. The actual 
target speed and RCS were set at 1.5 m/s and 0.1 m2. The target 
state was estimated using an EKF algorithm as in (1), whereas 
the UAV trajectories were estimated using the D-optimality 
criterion in (3) and by solving the problem in (2) with a 
projection gradient approach [15]. Such trajectories are 
displayed with dotted grey lines in Fig. 3 and with square 
markers every 100 time slots. The initial target position is drawn 
with a black triangle and its actual trajectory with a continuous 
blue line. The estimated target trajectory is plotted with a red 
dashed line with some samples depicted as circles for the same 
considered time instants. In NLOS propagation conditions, the  
measurements were not available, and, therefore, radars rely on 
neighbors’ collected data or on past estimates. 

As we can see, differently from a fixed deployment of 
radars, having a flying network permits to continuously follow 
the target with an increased accuracy thanks to the dominant 
LOS link, even in presence of obstacles. The RMSE results on 
position and velocity are provided in Table I, showing the 
superiority of a dynamic configuration. In the case of a single 
terrestrial radar with full sensing capabilities, the RMSE on 
position and velocities are of 32.47 m and 0.32 m/s, respectively. 

In Fig. 4, the joint impact of the number of UAVs (left) and 
the target RCS (right) is investigated in terms of averaged RMSE 
on target position and as a function of the ranging and bearing 
errors for the dynamic radar configuration. The UAVs were 
constrained to keep 50 m safety distance from the target. From 
the results, one can notice that a group of three radars with a 
millimeter ranging accuracy can obtain the same tracking 
performance of three radars with a maximum bearing error of 
about 10  degrees. Moreover, as expected, we can see that 
increasing the number of UAVs does not significantly impact 

 RMSE on Target Position [m] RMSE on Target Velocity [m/s] 

 Fixed Radars UAV Dynamic 
Radars 

Fixed Radars UAV Dynamic 
Radars 

Ranging-only 15.12 m 3.94 m 0.24 m/s 0.18 m/s 
Ranging & 

Doppler 
14.50 m 2.58 m 0.21 m/s 0.14 m/s 

Bearing-only 9.76 m 3.03 m 0.34 m/s 0.17 m/s 
Bearing & 
Doppler 

5.37 m 2.22 m 0.21 m/s 0.13 m/s 

Table 1.  RMSE of position and velocity for fixed and dynamic radars for the scenarios and simulation parameters from Fig.3. 



the bearing performance, whereas it is beneficial when ranging 
estimates are used. The effect of the target RCS on the tracking 
performance is more evident for lower values of dfe. The 
availability of the Doppler information ameliorates the position 
and velocity estimation accuracy. Future extensions of the case 
study will consider the performance of the proposed DRN with 
missed detection and false alarm of the target. 

Conclusions and Outlook  
In this tutorial, the idea of a UAV DRN for the detection 

and tracking of malicious UAVs was described. The principles 
standing behind this concept were presented, with an overview 
of the system including the description of algorithms that can be 
adopted by UAVs for target detection and tracking. In contrast 
with current on-ground radar systems, UAV networks provide 
new degrees of freedom thanks to their reconfigurability and 
flexibility. Moreover, the UAVs are considered autonomous in 
navigating and estimating their best trajectory without impacting 
the communication latency. The results demonstrate that having 
a DRN with optimized trajectories, instead of a fixed 
deployment, helps in preventing NLOS conditions, and, thus, in 
improved tracking of a passive target. 

A step forward will be to conceive UAVs with a safety and 
security payload that can be used as an add-on service in addition 
to the main primary service for which they are developed. In this 
way, the considered UAVs will become a multi-functional 
network capable both to complete the mission for which each 
UAV was initially assigned, and to form a dynamic radar team 
in order to eradicate possible threats arising from malicious 
UAVs present in the environment. Moreover, machine learning 
techniques can be designed to improve the navigation 
performance.  
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