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Summary. Background and aim of the work: Long Term Carcinogenicity Bioassays (LTCB) are among the best 
instruments to strengthen the evidence on which regulatory agencies base their decision to classify harmful 
agents as human carcinogens, so they are fundamental to protect public health. The statistical analysis is es-
sential to validate the results from cancer and non-cancer outcomes in carcinogenicity bioassay. This work 
proposes and applies some methodologies for the analysis of non-cancer outcomes, such as body weights. 
Methods: We use data from studies already concluded, evaluated and published: 4 bioassays aimed at test-
ing the carcinogenic potential of Coca-Cola on Sprague-Dawley rats of different ages. The analysis of body 
weights of the second generation of rats was performed using mixed-effects models: linear models were fitted 
for nonlinear models we considered human non-linear growth functions. Results: Linear models were fitted 
using the log-transformation of time and polynomial term of third order for time. Sex and treatment influ-
ence body weight, age of dams during gestation doesn’t. Growth models: Jenns-Bayley, Count and 1st order 
Berkey-Reed growth functions were evaluated; the latter best describes the data. Sex and treatment signifi-
cantly influence all parameters. The direction, magnitude and significance of the effect variable is substantially 
similar in all models. The analysis of residuals highlights the same issues for all models: the extreme trends in 
the last part of life heavily affect the models’ performance. Conclusions: Mixed-effects models allowed to ac-
count for the structural effect of covariates that act the same way on all individuals, and to add random effects 
that introduce a correlation among subjects if clustering happens; nonlinear human growth models added 
information about the whole growth process, therefore these may be useful methods in studies focused on 
development and sexual maturation. 
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Research

Introduction

Cancer is a major issue of public health and de-
spite the progress achieved in the prevention and cure 
of the disease, it is still the second leading cause of 
death worldwide. The prevalence of risk factors is in 
fact increasing, including occupational, environmental 

factors or consisting of dangerous behaviours and life-
styles, such as pollution, smoking, alcohol consump-
tion, obesity and hypertension (2, 3). In this frame-
work, the importance of primary prevention is clear: 
in terms of public health, the experimental research on 
environmental and occupational agents is fundamental 
in order to identify carcinogens and give to national 
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and international public health agencies adequate data 
for the necessary regulation. 

Epidemiological and experimental studies are the 
best source of evidence to identify the carcinogenic 
hazard of a substance and quantify the risk linked to 
exposure. The most predictive experimental model to 
anticipate human carcinogens are long term and life-
span carcinogenicity bioassays (4-6). 

The importance of the statistical analysis of the 
data obtained through long term studies is generally 
recognised: it is the necessary complement to estab-
lish and quantify whether the long term exposure to 
selected agents is associated with adverse effects, and 
it should always be regarded as an integral part of the 
studies (7). Despite this, not all guidelines explicitly 
treat in detail and depth the statistical analysis of data 
(Hothorn, 2014). Different guidelines, mostly from 
the Organization for Economic Cooperation and De-
velopment, illustrate and explain how to choose and 
perform the appropriate statistical tests, based on the 
kind of experiment, its objectives and the type of data; 
they also help to interpret the results and to under-
stand their real meaning and relative importance (3, 
5). To maintain coherence with the established meth-
ods in toxicology, the classical frequentist approach 
and the concept of hypothesis testing are adopted; 
the methods are systematically organized into a flow-
chart, proposing tests to verify the significance of dif-
ferences between the treated and the control groups, 
according to the nature of the data. Consolidate and 
advanced methodologies exist for the direct assess-
ment of carcinogenicity, specifically developed to 
handle peculiarities of these data and answer specific 
research questions. However, additional information 
that are routinely collected in experimental studies 
(such as body weights, feed and fluid consumption, 
the time of survival in life-span studies, etc…) are 
only used to monitor the conduct of the study and the 
health status of animals; no specific statistical method 
to treat them is suggested, so they are rarely analysed 
in depth. 

Many methodologies nowadays exist to analyse 
these data, and are relatively easy to implement, thanks 
to different accessible statistical software: applying 
them would allow to fully use all the available data and 
to integrate them, reaching an overall more complete 

information on the effects of the tested compound on 
health.  

The aim of this work is to better exploit the po-
tential of all available data on non-cancer outcomes 
from carcinogenicity studies to strengthen the knowl-
edge of the tested substances. In particular, the objec-
tives of this study are to examine one of the most com-
mon type of non-cancer outcomes, the body weight of 
experimental animals, to find appropriate methodolo-
gies to analyse its characteristics, and to apply them on 
some real data, in order to verify their suitability. 

Materials and Methods

The data for this analysis were obtained from 
studies performed in 1986 at the Cesare Maltoni Can-
cer Research Centre (CMCRC) of the Ramazzini 
Institute, aimed at evaluating the possible association 
between continuous consumption of Coca-Cola and 
effects on tumour incidence in rodents. The soft drink 
was chosen as a test substance because of its widespread 
diffusion, the known effects of sweetened beverages on 
weight and the growing awareness of the importance 
of obesity as a risk factor for several types of tumours. 

Four experiments were performed, each involving 
male and female Sprague-Dawley rats starting expo-
sure at different ages (breeding rats of 30, 39 and 55 
weeks of age; all their offspring of all litters, whose 
observation started at 8 weeks of age; and young non-
breeding rats of 7 weeks of age). The experimental plan 
is schematically reported in Table 1. The soft drink was 
administered to rats ad libitum as a substitute of drink-
ing water from the beginning of observation for the 
whole lifespan, until spontaneous death. 

Here, we will focus on the second generation of 
rats: treated female and male breeders started to drink 
Coca-Cola one week before mating, while the control 
group was administered with tap water; dams con-
tinued the exposure during the whole period of the 
pregnancy and the weaning. After weaning, offspring 
continued to drink Coca-Cola ad libitum and from 8 
weeks of age they were weighted and controlled for 
feed and beverages consumption until spontaneous 
death. All pups from all litters were included, in the 
same experimental group as their breeders, so rand-
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omization was not used for the second generation; the 
data can therefore be considered clustered.

The experiments were planned and performed 
following the standard procedures of the CMCRC 
and in compliance with international guidelines; for 
a detailed presentation of the experimental plan, con-
duct and results of the analysis of tumour incidences, 
see the original publication from Belpoggi et al. (8).

This work is focused on the analysis of longitu-
dinal measurements of body weight, one of the best 
indicator for the good conduct of chronic rodent bio-
assays; moreover for this particular test compound, a 
sugar-sweetened beverage, the body weight is an end-
point of particular interest, as well as a very impor-
tant indicator of metabolic, hormonal and homeostatic 
functions, growth and sexual maturation (9). 

Guidelines (5) suggest to graphically represent 
groups means to keep track of the indicatiors of the 
animals’ well-being during the experiments; then, for-
mal analysis should start checking the assumptions of 
normality, homogeneity of variance and absence of 
outliers, required for the subsequent analyses; in case 
the assumptions are not met, some solutions such as 
the log-transformation of data are suggested. Finally, 
several types of tests are proposed, to evaluate the dif-
ferences between groups (Student’s t-test or modified 
t-test with Satterthwaite’s method, or ANOVA and 

pairwise comparisons). A concise representation of the 
suggested analyses can be seen in Figure 1.  

This approach has some clear drawbacks: using 
overall summary measures instead of all available data 
for each individual in time may cause a loss of infor-
mation. Furthermore, it is impossible to evaluate the 
effect of more variables at a time. 

The methods that might be more suitable for ana-
lysing this kind of data (clustered longitudinal data) 
are based on mixed-effect models. Laird and Ware (10) 
were the first to propose a flexible class of mixed mod-
els for longitudinal data: it includes both growth and 
repeated-measures models as special cases, and it in-
troduces population parameters, individual effects and 
within-subject variation, as well as between-subject 
variation (11, 12).

In their representation, the n * 1 vector of re-
sponses for the ith subject can be modelled as 

yi = Xi β + Zi bi+ εi                       i=1,…N

where 
•  Xi is a ni * p design matrix of explanatory vari-

ables or fixed factors;
•  β is a p * 1 vector of unknown population pa-

rameters, or fixed effects coefficients, describing 
the relationships between the outcome and the 
explanatory variables for groups defined by lev-
els of a fixed factor (for example, describing the 
contrast between males and females); 

•  Zi is a ni * q design matrix of variables of random 
factors;

•  bi is q * 1 a vector of unknown random effects 
specifically referred to a given level of a ran-
dom factor, usually representing the deviations 
from the relationships described by fixed effects. 
Random effects can be set as random intercepts 
(random deviations for an individual or cluster 
from the overall fixed intercept), or as random 
coefficients (random deviations for an individual 
or cluster from the overall fixed effects). They are 
assumed to follow a multivariate normal distri-
bution ~ N(O, D) with D being a q * q symmet-
ric, positive definite variance-covariance matrix; 

•  εi is a ni * 1 vector of errors for the ith subject for 
each measurement occasion, whose terms do not 

Table 1. Experimental plan of the four bioassays performed 
for the project: treatments, age at beginning of observation and 
number of animals by sex for each experimental group.

Treatment Age at start M F

Coca-Cola 7 weeks 80 80
Drinking water 7 weeks 100 100

Coca-Cola 55 weeks 70 70
Drinking water 55 weeks 70 70
Coca-Cola Prenatal (offspring) 28 24
Drinking water Prenatal (offspring) 32 24

Coca-Cola 30 weeks 55 55
Drinking water 30 weeks 55 55
Coca-Cola Prenatal (offspring) 74 73
Drinking water Prenatal (offspring) 110 98

Coca-Cola 39 weeks 110 110
Drinking water 39 weeks 110 110
Coca-Cola Prenatal (offspring) 67 65
Drinking water Prenatal (offspring) 49 55 
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need to be independent but can be correlated 
within individuals. The residuals for each subject 
follow, again, a multivariate normal distribution 
~ N(O, Ri), with 0 mean and a positive definite  
q * q variance-covariance matrix, Ri.

Several covariance structures can be specified both 
for D and Ri. Inference on the parameters’ estimates 
can be based on least squares and maximum likelihood 
methods, or, formulating the model the appropriate 
way, using an empirical Bayesian method (13, 14).

Figure 1. OECD statistical decision tree summarizing the suggested procedures for the analysis of continuous data. (Author’s adap-
tation from OECD, 2012)
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The response variable is here assumed to present a 
linear and continuous trend, so the function included 
in the model to represent its relationship with inde-
pendent variables through fixed and random effects is a 
linear one. Often, however, the trajectory of individual 
growth presents discontinuities or shows a nonlinear 
path. Several adaptations of the linear mixed effects 
model may be adopted to cope with these situations, 
the most common being: 

•  splitting the time of analysis into sub-periods, 
so that the linearity assumption is reasonable 
within each sub-model; 

•  identifying a suitable transformation of the out-
come variable or the time scale; 

•  representing time as a polynomial function (15). 
All these methods share a characteristic: they still 

imply a linear association that models the relationship 
between the outcome and the explicative variables. 
Often, however, the likelihood function depends on 
the parameters in a non-linear way: in such cases, the 
use of nonlinear models is justified by the possibility to 
obtain a more interpretable model and to use a smaller 
number of parameters. 

Lindstrom and Bates (16) were the first to pre-
sent a general, nonlinear mixed effects model for data 
in which the assumption of the normality of residual 
holds, but the expectation function is nonlinear. The 
model can be written as 

yij = f(xij, β, ui) + εij,              i = 1,…,N

where f is a real-valued function xij is a vector 
of covariates containing both within- and between-
subjects covariates, β is a q * 1 vector of unknown pa-
rameters of fixed effects, ui is a vector of unobservable 
subjective random parameters following a multivariate 
normal distribution with 0 mean and variance-covar-
iance matrix Σ, and εi is the error vector of dimension 
ni  * 1, following a multivariate normal distribution 
with 0 mean and variance-covariance matrix σ2 Λ. 

The two-stages representation of the model (17) 
helps to clarify how the non-linear function is used to 
express the individual trajectory of change at level 1

where m describes the behaviour of the individual 
growth as depending on individual-specific parameters  
φi and the vector of within-subject covariates x ij w , while 
the inter-individual variability can be expressed using 
a regular linear relationship at level 2:

where d is a vector function that explains the 
variation of individual-specific parameters between 
subjects and incorporates β, the vector of parameters 
for the population, and xij 

b, the set of between-subjects 
covariates. The assumptions underlying the non-linear 
mixed effects model are that the random effects ui and 
the error terms εi are independent between each other 
and across individuals, that σ2 > 0 and that matrix Σ is 
definite nonnegative. 

Choosing the correct functional form to specify 
the relationships at level 1 is very important to obtain 
credible and accurate models. For this analysis a pecu-
liar approach was experimented. 

The growth and maturation processes have long 
been studied in humans, and several models have been 
proposed to formalize their patterns during infancy, 
childhood and adolescence (18). It is well established 
that the pattern of growth of body dimensions of the 
“general type” (to be distinguished from those of lym-
phoid, neural and genital type) from birth to the adult 
age is increasing and S-shaped, since it progresses rap-
idly in the first years, then slows down, and accelerates 
again around the so-called pubertal spurt, and finally 
approaches a plateau when the approximate adult size 
is reached. Since many similarities can be recognized 
in the growth path of humans and rats, some of these 
human models have been translated, adapted and ap-
plied here to rats. 

Several structural regression models based on an 
adequate parametric function were developed in time 
to represent the different phases of growth: these func-
tions can be substituted to the generic function at the 
level 1 of the multilevel mixed effect model, since they 
describe the behaviour of each individual.

The first parametric model was elaborated already 
in 1937 by Jenss and Bayley (19): it was developed to 
describe growth from birth to approximately 8 years 
using 4 parameters combined in a function with a lin-
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ear and an exponential part, accounting for growth and 
its decreasing rate: 

y = a + b t- – ec+d t

Another option is the Count model (20) pro-
posed in 1943, that uses only 3 parameters combined 
in a linear way 

y = a + b t + c  ln(t + 1)

This model proved to perform slightly worse than 
the Jenss and Bayley, but both remain robust relative 
to the choice of starting values for the parameters. The 
Count model was later modified by Berkey and Reed 
(21) maintaining the simple, linear structure but add-
ing one or two parameters: 

accommodating for one or two additional inflex-
ion points and leading to a better fit, compared to the 
previous alternatives. 

More complex models were developed to repre-
sent different phases of growth at the same time. It 
was showed (22) that rat’s and human developmental 
phases are similar but growth rhythms differ, particu-
larly in early phases, so it was chosen not to consider 
the models that were designed to account for the spe-
cific features and mechanisms of human growth, but 
rather to focus on those that could be used to describe 
a similar path, in terms of intensity and velocity, to the 
one of humans during young age, and adapt them to 
the available data from rats. 

Results

All statistical and graphic analysis have been per-
formed using the statistical software StataIC 15. 

It was chosen to consider for analysis only the 
measurements taken until 114 weeks of age of rats, 
because after this timepoint the number of rats alive 
was considerably reduced (at 114 weeks of age, 52.5% 

of the animals were lost to follow-up; at 122 weeks of 
age, the following measurement, 91.4% were lost), and 
rats can be considered very old at this age (it is not 
possible to draw exact parallels, but it is well accepted 
(23) that 104 weeks of age in rats are comparable to 
around 65 years in humans).

The graphical analysis of individual and mean 
weights showed a high variability, both within and 
among subjects. All trends were quite similar in shape 
during the first period of growth, while during the 
adult/elderly period some peculiar patterns appeared:  
weights tended to decrease in the last part of life, be-
cause of diseases or the physiologic ageing process; 
some animals, on the other hand, experienced a rapid 
increase of weight due to the onset of mammary neo-
plastic lumps. 

Given these characteristics that prevent the use of 
linear functions tout court, three options were evaluated 
for analysis: estimating linear mixed-effects models (I) 
using a mathematical transformation for the time vari-
able, (II) using polynomial functions to represent time, 
to obtain an approximately linearized growth trajec-
tory for each individual, and (III) fitting mixed-effects 
model using nonlinear “human” growth functions at 
the individual level. In all cases, the variables reflecting 
experimental conditions (such as sex, treatment regi-
men, and age of the dam at the beginning of gestation) 
were evaluated as fixed effect, while random intercept 
and slopes depending on time were introduced at the 
litter level, allowing correlation between the random 
slopes and intercepts. 

I. Linear mixed-effect model, mathematical transformta-
tion of time variable

Sex and the treatment regimen were found to sig-
nificantly influence body weights; males ware sensibly 
heavier than females since the first observation; the 
treatment was responsible of a smaller but still relevant 
(p= 0.021) increase in weight since the first assess-
ment. These results are summarised in Table 2; Figures 
2 and 3 show a graphical representation of the average 
growth trajectories for treated and control animals, in 
male and female rats, and some example of the specific 
trajectories estimated for randomly selected litters, re-
spectively.  
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Residuals were analysed to verify whether the un-
derlying basic assumptions (linearity of the relation-
ship between the outcome and the regressors, normal-
ity and homoscedasticity of residuals) were met: the 
unpredictable variability in the last phase of life was, as 
expected, very high. 

II. Linear mixed-effect model, polynomial representation 
of time

The best option to represent time in this context is 
a third order polynomial. Results regarding the direc-
tion and magnitude of the effect of each variable on 
body weight and its overall relevance, are substantially 
assimilable to those obtained in the previous analysis. 
Again, the unconstrained consumption of Coca-Cola 
was associated with a significant (p= 0.016) increase in 
body weight, as illustrated in Table 3 and in Figures 
4 and 5. According to the goodness of fit measures, 
anyway, the previous specification should be preferred. 
The analysis of residuals highlighted again that the 
problems arising from the extreme values of weights of 
elderly or ill rats remained quite evident: residuals had 
some issues concerning normality, and appeared quite 
heteroscedastic in relation to time, too. 

III. Nonlinear mixed-effects models, human growth func-
tions

After comparing the performances of models 
built with the Jenns and Bayley, the Count and the 1st 
order Berkey and Reed growth functions, the Berkey 

Table 2. Linear multilevel mixed effects model using transformed variables; results from the regression of body weights (in grams) on 
the natural logarithm of time since first observation (in weeks), sex and treatment 

Mixed-effects REML regression of body weight

Fixed-effects Parameters     Coef. Std. Err. P>|z|      [95% Conf. Interval] 

log(time) 77.69 1.98 0.000 73.81 81.57
Treatment 12.17 5.29 0.021 1.80 22.54
Sex 158.16 0.54 0.000 157.10 159.22
_constant 67.01 4.51 0.000 58.16 75.86
     

Random-effects Parameters     Estimate Std. Err.  [95% Conf. Interval] 

Litter: Unstructured               
sd(log(time))  19.4 1.43  16.79 22.42
sd(_cons)  35.88 3.19  30.14 42.72
corr(log(time),_cons)  -0.71 0.06  -0.81 -0.57
     
sd(Residual)  47.55 0.18  47.21 47.9
     

Goodness-of-fit Measures        

Log-likelihood -193723.6 df 8  
AIC 387463.1    
BIC 387531.2

Figure 2. Plot of body weights (in grams) and estimated aver-
age predictions obtained using a linear multilevel mixed effects 
model (fixed-effects predictors: natural logarithm of time since 
first observation (in weeks), sex and treatment). 
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Figure 3. Plot of body weights (in grams) and linear predictions 
with fixed and random part in four randomly selected litters; 
results obtained using a linear multilevel mixed effects model 
(fixed-effects predictors: natural logarithm of time since first 
observation (in weeks), sex and treatment). 

Table 3. Linear multilevel mixed effects model using polynomial representation of time; results from the regression of weight (in 
grams) on third degree polynomial term for time since first observation (in weeks), sex and treatment. 

Mixed-effects REML regression

Fixed-effects Parameters     Coef. Std. Err. P>|z|      [95% Conf. Interval] 

Time 11.92 0.19 0.000 11.56 12.29
time2 -0.17 0.00 0.000 -0.18 -0.17
time3 0.00 0.00 0.000 0.00 0.00
Treatment 13.42 5.59 0.016 2.46 24.38
Sex 158.13 0.57 0.000 157.01 159.25
_constant 123.43 3.88 0.000 115.83 131.03
     
Random-effects Parameters     Estimate Std. Err.        [95% Conf. Interval] 

Litter: Independent              
sd(time) 1.64 0.15  1.37 1.95
sd(time2) 0.03 0.003  0.02 0.03
sd(time3) 0.0002 0.00002  0.0001 0.0002
sd(_cons)  26.47 2.16  22.55 31.07
     
sd(Residual)  49.76 0.18   49.39 50.12
     

Goodness-of-fit Measures        

Log-likelihood -195757.7 df 11  
AIC 391537.4    
BIC 391631

Figure 4. Plot of body weight (in grams) measurements and 
estimated average predictions, linear multilevel mixed effects 
model using a third degree polynomial term to represent time 
since first observation (in weeks)
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and Reed was chosen as the most appropriate for these 
data. The model building in this case was quite differ-
ent from the previous ones: it uses four parameters to 
describe the specific functional form of the individual 
growth curve

that may respectively represent the starting point, 
growth rate, acceleration and deceleration of growth. 
Here, the function was built so that each parameter 
would be dependent on sex and treatment regimen; 
a random effect at the litter level was introduced and 
evaluated for all of them, so that each litter is not con-
strained to have, for example, the same intercept or 
inflexion points. The estimated parameters are not as 
easy to interpret, as in the previous cases; we can re-
sume, anyway, that the previous results are confirmed 
(the individual change depended on age, while the 
inter-individual change was described using sex and 
the treatment regimen as fixed effects, and a random 
effect at the litter level, to explain the variations in 
each parameter of the model). The estimates and their 
graphical representation are displayed in Table 4, and 
in Figures 6 and 7. Nevertheless, the problems of ex-
cessive variability in the tail of the growth trajectories 
remained relevant, as expected.

Discussion 

The aim of this work was to go beyond the stand-
ard statistical techniques that are routinely used in 
experimental carcinogenicity studies to analyse non-
cancer endpoints. We proposed and applied some 
methodologies that encompass the use of the different 
approaches, instead of summary measures, in order to 
answer the research questions in a more comprehen-
sive way. 

It is difficult to directly compare the results with 
those of the original publication, since different ap-
proaches were adopted. The use of mixed-effects mod-
els allowed to use every measurement available from 
each individual animal: this was important given the 
features of the data, that presented a consistent ran-
dom variability, mostly in the last part of the animals’ 
lives. Furthermore, it allowed to account for the struc-
tural effect of covariates that act the same way on all 
individuals, and to add random effects that introduce 
a correlation among subjects, accounting for clustered 
data. Finally, applying nonlinear human growth func-
tions allowed to consider the change of body weight in 
time as a process, instead of a generic series of meas-
urements: this can be useful in studies whose aim is 
to characterise possible variations in the development 
and the sexual maturation linked to the exposures un-
der analysis. 

In this study, where the tested compound was a 
highly caloric and sweetened beverage, body weights 
are of primary interest, and it would be even more in-
teresting to deepen the analyses evaluating them in 
association with tumour incidence. Indeed, the un-
constrained consumption of Coca-Cola in this experi-
ment was associated with a significant increase in body 
weight (the statistically significant result emerges from 
all estimated models: linear mixed-effect model, loga-
rithmic function of time: p= 0.021; linear mixed-effect 
model, cubic function of time: p= 0.016; non-linear 
mixed-effect model, Berkey-Reed growth function: p= 
0.000 for all parameters) and it is well established that 
overweight and obesity are positively associated with 
the increase of the risk of many types of cancer (24-
26). They were not explicitly considered here, but these 
analyses are suitable for rats observed from an adult 
age, as well; for this purpose, a linear model or the in-

Figure 5. Plot of body weights (in grams) and linear predictions 
with fixed and random part in four randomly selected litters, 
linear multilevel mixed effects model using third degree polyno-
mial to represent time since first observation (in weeks).
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Table 4. Nonlinear multilevel mixed effects model using Berkey-Reed function to represent individual growth; results from the re-
gression of weight (in grams) on age (in weeks), sex and treatment.  

Mixed-effects ML non-linear regression

Fixed-effects Parameters     Coef. Std. Err. P>|z|      [95% Conf. Interval] 

a sex 565.79 33.21 0.000 500.69 630.89
 treatment -380.53 33.3 0.000 -445.8 -315.25
 _constant 655.28 28.32 0.000 599.77 710.79
      
b sex -0.15 0.12 0.221 -0.39 0.09
 treatment -0.84 0.19 0.000 -1.23 -0.46
 _constant 1.57 0.15 0.000 1.28 1.86
      
c sex 78.15 9.41 0.000 59.7 69.6
 treatment -118.26 9.44 0.000 -136.77 -99.75
 _constant 89.06 8.01 0.000 73.35 104.77
      
d sex -3381.29 137.82 0.000 -3651.41 -3111.17
 treatment 1330.01 138.13 0.000 1059.28 1600.74
 _constant -3125.87 117.84 0.000 -3356.83 -2894.92
      
Random-effects Parameters      Estimate Std. Err.      [95% Conf. Interval] 

Litter: Identity               
 var(U0)  0.57 0.08  0.43 0.75
      
  var(Residual)  1966.77 14.56   1938.44 1995.51
      

Goodness-of-fit Measures      

Log-likelihood -191030 Df 14   
AIC 382088     
BIC 382207.1

Figure 6. Plot of body weights (in grams) and estimated aver-
age predictions, nonlinear multilevel mixed effects model using 
Berkey-Reed function to represent individual growth 

Figure 7. Plot of weights (in gram) and linear predictions with 
fixed and random part in four randomly selected litters, nonlin-
ear multilevel mixed effects model using Berkey-Reed function 
to represent individual growth 
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clusion of a quadratic term to represent time should 
be the best options, since rarely growth models are 
built to model the weight trajectories during the whole 
lifespan of individuals, so a simpler and more efficient 
alternative is to be preferred. 

A possible alternative to build flexible yet simple 
models are General Additive Models: it could be in-
teresting to evaluate their performance in this context, 
since they may allow to handle data with such an irreg-
ular trend, and at the same time to maintain a simple 
and understandable interpretation for the regression 
parameters.

Some issues remain open, like the problem of 
how to handle the extreme trends that some animals 
showed in the last part of their life; they represent 
an interesting feature, that is usually associated with 
ageing and the onset of pathological conditions (for 
example mammary tumours increase the individual 
weight, other tumours decrease individual weight). 

Conclusions

Continuous experimental longitudinal data, in 
particular those consisting in body weights, have 
some very peculiar characteristics similar to the hu-
man counterpart, the most relevant for their analysis 
are non-linearity and the fact that they can take unex-
pected, extreme turns upwards or downwards, mostly 
when rats are close to the end of their life, reflecting 
the presence of large neoplastic mammary lumps or 
a worsening of the health conditions due to ageing. 
These features should discourage the use of methods 
based on the comparison of measures of synthesis like 
the group means, because they could be heavily af-
fected by the atypical recordings, giving an unrealistic 
picture of the situation and possibly preventing to de-
tect subtler differences caused by experimental factors. 

The use of multilevel mixed effects models is 
therefore to be encouraged, since they allow to ana-
lyse directly the recordings of each subject, without 
concerns about the differences in the duration of the 
follow-up. They are also a precious tool in case of clus-
tered data, like in this rather peculiar experimental 
design, where no randomization was performed on a 
whole cohort of rats of second generation. The most 
straightforward specification of such models using a 

proper linear function isn’t the best option because it 
requires a transformation of the variables, so the ad-
vantage of a simple functional form is counterbalanced 
by the difficult interpretation of the transformed vari-
ables. Even the introduction of polynomial terms, that 
allow to represent a curve trajectory remaining in the 
frame of a linear function, slightly reduces the ease of 
the interpretation, but it can still be acceptable in case 
it allowed a more faithful representation of the growth 
trajectories; as these analyses showed, nevertheless, it’s 
not always the case. New tools in this field, that may 
have potential advantages, are the nonlinear growth 
models that were “borrowed” from human studies: a 
wide variety exists, so one can select the most appro-
priate every time, according to the characteristics of 
data. The model’s parameters are not always easy to 
interpret, but a clear indication is provided about the 
direction, magnitude and statistical significance of the 
effect of each covariate. 

As a more general recommendation, deepen-
ing the knowledge and understanding of the methods 
used for the statistical analysis of experimental re-
sults is an important strategy to enhance the quality 
of the research, in particular for toxicology (27). This 
work is an attempt in this direction: it aims to go be-
yond the statistical techniques that are routinely used, 
to explore the characteristics of the data and to try to 
understand the mechanisms that determined them. In 
this framework, some methodologies to answer the 
research questions in a more comprehensive way were 
proposed and applied to the carcinogenicity bioassay 
on a sweetened beverage (Coca Cola) performed by the 
Ramazzini Institute. All estimated models confirm that 
the unconstrained consumption of Coca-Cola in this 
experiment was associated with a significant increase 
in body weight (linear mixed-effect model, logarithmic 
function of time: p= 0.021; linear mixed-effect model, 
cubic function of time: p= 0.016; non-linear mixed-
effect model, Berkey-Reed growth function: p= 0.000 
for all parameters). 

To conclude, it’s worthy to remind once more 
the importance of properly choosing the methods 
and specifying the models, where properly means in a 
data-and-experience-driven way. A thorough knowl-
edge of the data and of the dynamics that contribute 
to determine them is always a good starting point to 
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build plausible, representative and meaningful models. 
Another crucial point is the fact that model checking 
and verification of the respect of the assumptions that 
lie at the foundations of any method, should become 
a routine embedded in every analysis, while it still re-
mains not so common (or, at least, not always explicitly 
reported) in the literature regarding carcinogenicity 
bioassays, in particular for non-cancer outcomes. 

Ultimately, the use of more adequate statistical 
models helps refine and reduce the use of experimental 
animals, in line with the EU Directive 2010/63/EU 
(28). 
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