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Gap equation with pairing correlations beyond the mean-field approximation
and its equivalence to a Hugenholtz-Pines condition for fermion pairs
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The equation for the gap parameter represents the main equation of the pairing theory of superconductivity.
Although it is formally defined through a single-particle property, physically, it reflects the pairing correlations
between opposite-spin fermions. Here, we exploit this physical connection and cast the gap equation in an
alternative form which explicitly highlights these two-particle correlations by showing that it is equivalent to
a Hugenholtz-Pines condition for fermion pairs. At a formal level, a direct connection is established in this way
between the treatment of the condensate fraction in condensate systems of fermions and bosons. At a practical
level, the use of this alternative form of the gap equation is expected to make easier the inclusion of pairing
fluctuations beyond mean field. As a proof-of-concept of the new method, we apply the modified form of the
gap equation to the long-pending problem about the inclusion of the Gorkov-Melik-Barkhudarov correction
across the whole BCS-BEC crossover, from the BCS limit of strongly overlapping Cooper pairs to the BEC limit
of dilute composite bosons, and for all temperatures in the superfluid phase. Our numerical calculations yield
excellent agreement with the recently determined experimental values of the gap parameter for an ultracold
Fermi gas in the intermediate regime between BCS and BEC, as well as with the available quantum Monte Carlo
data in the same regime.
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I. INTRODUCTION

As Lev Gor’kov first realized [1], in the ultimate analy-
sis, the BCS theory of superconductivity [2,3] rests on the
assumption that the average value 〈ψ↑(r)ψ↓(r)〉 is nonvan-
ishing, where ψσ (r) is the fermion field operator with spin
σ = (↑,↓) at spatial position r. This basic idea was sufficient
to Gor’kov for formulating the BCS theory in terms of single-
particle fermionic propagators (or many-body Green’s func-
tions), thereby adapting the presence of Cooper pairs between
opposite-spin fermions [4] to the apparatus of quantum field
theory. Physically, the nonvanishing of 〈ψ↑(r)ψ↓(r)〉 entails
a sort of Bose condensation of pairs below a certain critical
temperature Tc. It is thus clear that an equation determining
〈ψ↑(r)ψ↓(r)〉 (or, better, a physical quantity directly related
to it) plays a key role in the theory. It turns out that this
quantity is the so-called BCS gap �, which is the product
of 〈ψ↑(r)ψ↓(r)〉 with the strength v0 of the interparticle
attraction between opposite-spin fermions, when this is taken
of the contact type for convenience.

The Gor’kov theory [1] was framed at the mean-field
level like the original BCS theory itself [2,3], whereby all
Cooper pairs “on the average” are dealt with on equal footing.
Quantum and thermal fluctuations over and above mean field,
however, act on the individual partners of a fermion pair and
somewhat disrupt their pairing, thereby resulting in a decrease
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of the value of � (as well as of Tc). Accordingly, whenever
these pairing fluctuations become important, it is necessary to
include their effect in the gap equation that determines �.

A good physical parameter to gauge to what extent an
attractive interparticle coupling affects the Fermi gas is the
ratio of the Cooper pair size ξpair to the interparticle distance
[given in terms of the inverse of the Fermi wave vector kF =
(3π2n)1/3 where n is the density]. Here, weak (strong) cou-
pling is identified by kF ξpair being much larger (smaller) than
unity. These two situations correspond to the BCS and BEC
limits of the BCS-BEC crossover, with strongly overlapping
Cooper pairs and dilute composite bosons present in the two
regimes, respectively. Under these circumstances, fluctuations
that act to disrupt pairing are expected to affect the value of
� more significantly in the weak- (BCS) than in the strong-
(BEC) coupling regime. In this respect, the result by Gor’kov
and Melik-Barkhudarov (GMB) [5], who found for � a re-
duction by a factor 2.2 with respect to its mean-field value
at zero temperature in the (extreme) BCS limit kF ξpair � 1,
is particularly significant. This result, however, was obtained
in Ref. [5] not by solving an appropriate gap equation with
a beyond-mean-field contribution, but rather by looking at
the instability of the vertex function which is at the core of
the two-particle propagator [6]. As a consequence, it appears
difficult to extend the original GMB analysis for � to the
whole BCS-BEC crossover and for all temperature below Tc.

In this context, the interest in the BCS-BEC crossover
is motivated from two sides. On the one hand, numerical
calculations based on approximate treatments of many-body
diagrammatic methods can be tested against the analytic
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results that can be obtained in both the opposite weak- (BCS)
and strong- (BEC) limits, where the physical soundness of
the obtained results can be controlled. On the other hand, a
stringent comparison is possible with the experimental results
obtained with ultra-cold Fermi gases, in particular, in the
intermediate-coupling (unitary) regime for which no analytic
result is available. This topic is also of concern in nuclear
physics, where in low-density neutron matter the unitary
regime can be approached from the weak-coupling (BCS)
limit [7,8].

The main purpose of this paper is to set up a modified form
of the gap equation which explicitly highlights two-particle
(pairing) correlations, in such a way that pairing fluctuation
corrections beyond mean field can be most readily, not only
introduced at a formal level, but also calculated numerically
in relevant cases of interest. We also show that this modified
form of the gap equation is the equivalent for fermion pairs
of the Hugenholtz-Pines condition for pointlike bosons [9],
which is also the main reason why it is ideally suited to
span the BCS-BEC crossover from Cooper pairs to composite
bosons.

The equivalence between the modified form of the gap
equation and the Hugenholtz-Pines condition for fermion
pairs is proved to be quite general, to the extent that it holds for
any self-consistent (or, better, conserving [10]) approximation
chosen to describe the underlying fermionic system, with
the only provision that the interparticle potential is of the
contact type. On physical grounds, with this choice one can
focus the efforts directly on addressing the effects of pairing
fluctuations in the superfluid phase, leaving aside the (possibly
irrelevant) complications introduced by more complex forms
of the interaction potential.

We remark that, for the way it is formulated, the present
approach differs from the more traditional ones, which aim at
formally setting up an integral equation for the “anomalous”
single-particle self-energy in the broken-symmetry phase be-
low Tc [11], while keeping an arbitrary form of the interpar-
ticle interaction. Here, by limiting ourselves to the use of a
contact interaction, we will be able to somewhat reduce the
complexity of the ensuing mathematical problem, in a way
that will make it easier to concentrate directly on the effects
of pairing fluctuations over and above mean field. For this
reason, the present treatment is also amenable to a direct
extension to the normal phase above Tc, a result that is not
possible to achieve for approaches that concentrate instead on
the anomalous single-particle self-energy below Tc.

To provide a proof-of-concept of the improvements that
the new method can introduce in practice, for determining the
superfluid gap parameter when beyond-mean-field corrections
are required, we will specifically consider an application of
the method to the long-standing problem of extending the
original GMB many-body diagrammatic analysis of Ref. [5],
which was limited to the extreme BCS regime at zero tem-
perature, to the whole BCS-BEC crossover and for all tem-
peratures below Tc. [It will turn out that, besides the GMB
correction, an additional (Popov) diagrammatic correction
[12] will be required for a correct recovering of the value of
the gap in the BCS limit.]

At a practical level, the choice of the GMB problem, as a
test of the modified form of the gap equation transformed into

a Hugenholtz-Pines condition for fermion pairs, is suggested
by the fact that an accurate analysis of the corresponding
problem in the normal phase above Tc has recently been made
available in Ref. [13]. In that context, it was established that
a proper (although numerically nontrivial) inclusion of the
wave-vector and frequency dependence of the pair propaga-
tors that occur in the diagrammatic expression of the GMB
correction is essential to get meaningful results away from
the (extreme) BCS limit to which the original GMB analysis
was restricted. We shall consistently verify that this effect is
as well important in the superfluid phase below Tc. In this
way, we shall take advantage of the experience developed in
Ref. [13] also at the computational level.

Besides the two main achievements of this paper, namely,
having interpreted the gap equation as Hugenholtz-Pines
conditions for fermion pairs and having implemented it as
a proof-of-concept for the nontrivial problem of the GMB
correction over the whole superfluid sector of the coupling-
versus-temperature phase diagram of the BCS-BEC crossover,
a number of additional interesting features have also emerged
along the way from our approach. They include the numer-
ical implementation of the Popov correction introduced in
Ref. [12] and the identification of additional contributions to
the scattering length aB for composite bosons in the BEC
limit (over and above the Born value aB = 2aF obtained at
the mean-field level), which affect both the condensate and
noncondensate densities.

It should be mentioned that a few works have already
extended the original GMB work of Ref. [5] below Tc in
different directions. Specifically, the inclusion of screening
effects in the gap equation was considered in Refs. [14,15]
for lattice models and in Refs. [16,17] for neutron and nuclear
matter. In these works, however, the problem of the extension
of the GMB corrections to the whole BCS-BEC crossover was
not considered. More recently, this extension was addressed
in Ref. [18] within the functional-renormalization-group for-
malism, which is, however, completely different from the
many-body diagrammatic approach here considered. Finally,
the inclusion of the GMB correction throughout the BCS-
BEC crossover with a many-body diagrammatic method was
recently considered in Ref. [19]. In this work, however, the
wave-vector and frequency dependence of the pair propagator
was not taken into account, an approximation that can be
justified in practice (as we shall see) only in the extreme
weak-coupling limit.

The plan of the paper is as follows. Section II provides
a formal proof of the equivalence between the gap equation
(in its appropriately modified version) and the Hugenholtz-
Pines condition for fermion pairs with the use of diagram-
matic methods. This equivalence, which is shown to hold
for any fermionic conserving (or, at least, self-consistent)
approximation, makes it easier to include the effects of pairing
fluctuations beyond mean field on the gap itself. Section III
implements this formal equivalence in a practical context,
by addressing the long-standing (and still pending) problem
about the inclusion of the GMB contribution to the gap across
the BCS-BEC crossover. Section IV describes the strategies
we have adopted to solve numerically the modified form of the
gap equation. It also presents our results for the temperature
and coupling dependence of the gap parameter, throughout the
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BCS-BEC crossover and for all temperatures in the superfluid
phase below the critical temperature Tc. In this context, the
favorable comparison between our results and the available
experimental and quantum Monte Carlo (QMC) data will
be emphasized as an indirect check on the validity of our
diagrammatic approach. Section V gives our conclusions and
discusses the dichotomy between the thermodynamic (order
parameter) and dynamic gap. More technical details are given
in the Appendices. Appendix A summarizes the main features
of the t-matrix approximation in the broken-symmetry phase.
Appendix B considers in detail the BEC limit of the Popov
and GMB bosoniclike self-energies in the broken-symmetry
phase, and shows how they are related to diagrammatic pro-
cesses associated with the scattering length for composite
bosons. Appendix C describes a number of manipulations on
the expressions to be calculated numerically, aiming at bring-
ing them to a form as close as possible to the corresponding
expressions valid in the normal phase above Tc.

In the following, only balanced populations between spin-
up and spin-down fermions will explicitly be considered (even
though the present treatment of the modified form of the
gap equation could be extended as well to population- and
mass-imbalanced fermions). In addition, the reduced Planck
constant h̄ and the Boltzmann constant kB will everywhere be
set equal to unity.

II. GAP EQUATION AS A HUGENHOLTZ-PINES
CONDITION FOR FERMION PAIRS

In this section, we prove the equivalence between the gap
equation to determine the gap parameter in its suitably mod-
ified form and the Hugenholtz-Pines condition for fermion
pairs. This equivalence is proved at a formal level, with the
use of many-body diagrammatic techniques. The emphasis on
this equivalence is motivated by the fact that it makes more
direct (and possibly easier at a practical level, as we shall
see in Secs. III and IV) the introduction of pairing-fluctuation
corrections over and above the standard mean-field level.

The system we consider is a Fermi gas with interparticle
interaction v0δ(r − r′) of the contact type (v0 < 0), which
acts between opposite-spin fermions. This singular potential
has to be handled through a suitable regularization procedure,
which can be expressed in terms of the scattering length aF of
the two-fermion problem, in the form [20]

m

4πaF

= 1

v0
+

∫
|k|�k0

dk
(2π )3

m

k2
, (1)

where k0 is an ultraviolet cutoff on the magnitude of the
wave vector k. The limits v0 → 0− and k0 → ∞ are then
simultaneously considered in order to keep aF at the desired
value.

There are two main reasons to consider this system. On
the theoretical side, access to the regularization procedure
(1) considerably simplifies the handling of the diagrammatic
structure, by getting rid from the outset of whole classes
of diagrammatic structures which do not survive the limit
v0 → 0− of the interparticle interaction. On the experimen-
tal side, this kind of system is well represented by a gas
of ultra-cold Fermi atoms, which are routinely utilized in
experiments, in terms of which it is possible to span the

BCS-BEC crossover. In this respect, having separate access to
the two opposite BCS and BEC regimes is also of theoretical
importance, because in these limits distinct analytic results
can be obtained.

The BCS-BEC crossover of interest is driven by the dimen-
sionless coupling parameter (kF aF )−1. This parameter ranges
from (kF aF )−1 � −1 in the weak-coupling (BCS) regime
when aF < 0, to (kF aF )−1 � +1 in the strong-coupling
(BEC) regime when aF > 0, across the unitary limit when
|aF | diverges.

A. Modified form of the gap equation

In the broken-symmetry phase we are interested in, it
is convenient to express the field operators (on which the
many-body diagrammatic structure is built) in the Nambu
representation [21]:

�1(r) = ψ↑(r), �2(r) = ψ
†
↓(r). (2)

When this notation is translated into Fourier space, the
Gor’kov equations [1] for the “normal” (G11) and “anoma-
lous” (G12) single-particle fermionic propagators in the
broken-symmetry phase read(

iωn − ξk − �11(k) −�12(k)
−�21(k) iωn + ξk − �22(k)

)

×
(
G11(k) G12(k)
G21(k) G22(k)

)
=

(
1 0
0 1

)
(3)

with the four-vector notation k = (k, ωn), where ωn = (2n +
1)πT (n integer) is a fermionic Matsubara frequency [22]. In
this expression, ξk = k2/(2m) − μ, where m is the fermion
mass and μ the chemical potential. In addition, the self-
energies �ij (k) satisfy the properties �22(k) = −�11(−k)
and �21(k) = �12(k) [assuming �—defined by Eq. (4)
below—real without loss of generality].

Within the Nambu notation, the gap equation for the gap
parameter � reads

� ≡ v0 〈ψ↑(r)ψ↓(r)〉 = −v0

∑
k

G12(k). (4)

Here and in the following, we adopt for convenience the short-
hand notation: ∑

k

=
∫

dk
(2π )3

T
∑
ωn

. (5)

The gap equation (4) is apparently expressed in terms of
single-particle properties. However, it can be cast in a different
form, from which two-particle properties (and thus pairing)
readily appear. To this end, we first solve for G12 in Eq. (3),
whereby the following identity results

G12(k) = G11(k)�12(k)G22(k) − G12(k)�21(k)G12(k), (6)

which involves all the single-particle propagators Gij . Then
we combine Eq. (6) with Eq. (4) and arrive at the following
modified form of the gap equation:

−�

v0
=

∑
k

[G11(k)�12(k)G22(k) − G12(k)�21(k)G12(k)].

(7)
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FIG. 1. Diagrammatic representation of the (a) right-hand side
of the modified form of the gap equation (7) multiplied by v0;
(b) Fock-like term for the anomalous fermionic self-energy �12;
(c) conserving t-matrix approximation for �12; and (d) first few
diagrams generated in the modified form of the gap equation (a)
with the choice of �12 from (c). Here, dashed lines represent the
interaction potential v0 and full lines the matrix elements of the
fermionic single-particle propagator Gij with Nambu notation, while
coloured boxes correspond to the pair propagator (11) built up on
self-consistent Gij [23]. For compactness, four-wave vectors have not
been indicated in the diagrams.

A diagrammatic representation of Eq. (7) is shown in
Fig. 1(a). Although it contains in principle the same infor-
mation provided by the original gap equation (4), we shall
argue below that the modified form (7) of the gap equation is
especially convenient for including in the gap the effects of
pairing fluctuations beyond mean field.

We pass now to show that the modified form (7) of the
gap equation is equivalent to a Hugenholtz-Pines condition
for fermion pairs, which generalizes to the present context the
well-known Hugenholtz-Pines condition for pointlike bosons
[9]. Later in Secs. III and IV, we shall see that it is actually
due to this equivalence that the effects of pairing fluctuations
on the gap parameter can be most readily included in the gap
equation. And this not only in the conventional BCS (weak-
coupling) limit, but also throughout the BCS-BEC crossover
for which a description in terms of composite bosons applies
in the BEC limit.

Alternatively, Eq. (7) can be considered as a kind of
“tadpole condition” for the vanishing of insertions with zero
momentum, a condition which is known to determine the
condensate fraction for the case of pointlike bosons [24,25].
The analogy between the gap equation for fermions and
the tadpole condition for bosons was already pointed out
in Ref. [26], where this condition was used to deal with
composite bosons in the BEC limit. By the present approach,
however, this condition is regarded to apply generically to
fermion pairs across the whole BCS-BEC crossover and not
only in the BEC limit.

B. Equivalence of the gap equation with the Hugenholtz-Pines
condition for fermion pairs

The equivalence of the modified form of the gap equation
(7) with the Hugenholtz-Pines condition for fermion pairs is
proved as follows, in terms of diagrammatic considerations
that hold in the broken-symmetry phase.

(i) By construction, the fermionic pairing theory privileges
the Fock-like diagram for the anomalous self-energy �12,
which is depicted in Fig. 1(b) and given analytically by
(minus) the right-hand side of Eq. (4) [27]. This implies that
any choice for �12 (at or beyond the mean-field level) must
necessarily contain at least the Fock-like diagram of Fig. 1(b).
This diagram contributes to Eq. (7) the factor −� [A(0) −
B(0)], where the (regularised) normal (A) and anomalous (B)
particle-particle bubbles in the broken-symmetry phase are
defined by [28,29]

A(q ) = − 1

v0
+

∑
k

G11(k + q )G22(k), (8)

B(q ) =
∑

k

G12(k + q )G12(k) (9)

with the four-vector notation q = (q,�ν ), where �ν = 2πνT

(ν integer) is bosonic Matsubara frequency. This preliminary
choice for �12 has also the effect of breaking at the outset the
superfluid symmetry of interest [11].

(ii) Any additional diagrammatic contribution to the
anomalous fermionic self-energy �12 (over and above the
Fock-like one) is bound to contain at least one anomalous
fermionic propagator G12 in its skeleton structure. As an
example, the additional contribution to �12 can be taken
within the so-called (self-consistent) t-matrix approximation
shown in Fig. 1(c) (cf. Appendix A for a summary of the
main features of the t-matrix approximation below Tc). Each
of the anomalous propagators G12 entering this additional
contribution to �12 can, in turn, be represented via the identity
(6) [30].

(iii) At this point, the total self-energy �12 associated with
the identity (6) contains both the Fock-like term of Fig. 1(b)
(which can be set equal to −�) and the chosen additional
contribution. In the second case, the above replacement pro-
cess can go on by a repeated use of the identity (6), which at
each step gives rise to a term proportional to �. Specifically,
Fig. 1(d) shows examples of the diagrammatic terms gener-
ated by applying this procedure to �12 of Fig. 1(c), which
are readily recognized as having the topological structure of
the Maki-Thompson (MT) and Aslamazov-Larkin (AL) pro-
cesses. In general, this is an open-ended process which results
in an infinite number of two-particle diagrammatic structures
being generated. In the specific example here considered, one
ends up with sequences of MT and AL structures plus a
mixed sequence of them, as indeed expected for a conserving
approximation [10].

(iv) The overall sign of the analytic expression associated
with a given two-particle diagrammatic structure [like those
shown in Fig. 1(d) or in Fig. 2 below] is given by (−1)N22+1,
where N22 is the number of single-particle propagators G22

that enter the given diagram.
(v) When the above considerations are transferred to the

right-hand side of the modified form of the gap equation (7),
the gap � factors out in all terms in such a way that it can be
simplified from both sides of the equation.

In this way, Eq. (7) reduces to the Hugenholtz-Pines con-
dition for fermion pairs, in the form

A(0) − B(0) + �B
11(0) − �B

12(0) = 0. (10)
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FIG. 2. Diagrammatic representation of the relevant bosoniclike
self-energies in the broken-symmetry phase for q = 0: (a) normal
component �B

Popov(0)11 within the Popov approximation (a symmet-
ric dressing of the lower fermionic line needs also be included);
(b) normal �B

GMB(0)11 and (c) anomalous �B
GMB(0)12 components

within the GMB approximation. The colored boxes correspond to the
matrix elements (31) of the T matrix. In all cases, Nambu’s indices
have explicitly been indicated.

In this expression, �B
11 and �B

12 correspond to the sequence
of diagrams generated as above in the two-particle channel,
which act, respectively, as normal and anomalous bosoniclike
self-energies for the “bare” pair propagator Tij (q ) (which is
here considered only in the limit q = 0). This pair propagator
is built in the two-particle channel as a series of ladder dia-
grams [which are, in turn, derived from the Fock-like diagram
of Fig. 1(b) for the anomalous fermionic self-energy �12—cf.
Appendix A] and is given by

(
T11(q ) T12(q )

T21(q ) T22(q )

)
= 1

A(q )A(−q ) − B(q )2

×
(−A(−q ) B(q )

B(q ) −A(q )

)
. (11)

Here and in the following, the suffices (i, j ) attached to boson-
iclike quantities (namely, T and �B) are identified according
to the conventions introduced in Ref. [29], which relate only
indirectly to the Nambu’s conventions (2) and (3) for the
single-particle propagators (cf. Appendix A for a summary of
these conventions). In terms of the matrix elements Tij (0), the
Hugenholtz-Pines condition (10) for fermion pairs then reads

T −1
11 (0) − T −1

12 (0) − �B
11(0) + �B

12(0) = 0. (12)

Note that this condition guarantees the “dressed” pair
propagator defined by T̄ (q ) = [T −1(q ) − �B(q )]−1 to re-
main gapless at q = 0. In this way, the value of the thermo-
dynamic gap �, which is obtained by solving the modified
form of the gap equation in the form of the Hugenholtz-
Pines condition (12) for fermion pairs, is also related to
the dynamical excitations of the systems. Note also that
all our conclusions hold irrespective of the value of the
coupling parameter (kF aF )−1 that spans the BCS-BEC
crossover.

This concludes our formal proof that, quite generally, the
gap equation that determines the gap parameter is equivalent
to a Hugenholtz-Pines condition for fermion pairs within any
self-consistent (or, better, conserving [10]) approximation for
the single-particle self-energy, with the physical condition
that the latter contains at least the Fock-like diagram of
Fig. 1(b) for the anomalous self-energy �12, consistently with
the pairing theory of superconductivity [2,3].

Before concluding this Section, it is worth mentioning
an issue that was raised in Ref. [31] in a related context,
where it was pointed out that a given fermionic conserving
approximation results into a gapless approximation for the
composite bosons built in terms of the constituent fermions.
In Ref. [31], however, no explicit mention was made to the
gap equation, so that the two-particle processes resulting from
the series of ladder diagrams (that correspond to the bare pair
propagator T ) or from more complex diagrammatic structures
(like the series of MT and AL kernels shown above) were
considered on equal footing. The modified form of the gap
equation here considered, on the other hand, by its own nature
privileges the series of ladder diagrams and thus focuses
directly on taking into account more complex diagrammatic
structures which act as bosonc-like self-energy corrections
just to the series of ladder diagrams.

III. IMPLEMENTING HUGENHOLTZ-PINES CONDITION
FOR FERMION PAIRS WITHIN THE POPOV

AND GMB CONTRIBUTIONS

In the previous section, we have proven the formal equiva-
lence between the modified form of the gap equation and the
Hugenholtz-Pines condition for fermion pairs. The motivation
behind this proof was that this equivalence should make it
easier to focus directly on (and thus to include) the relevant
pairing fluctuations corrections beyond mean field in the gap
equation. Nonetheless, solving numerically the modified form
of the gap equation is evidently going to be a quite difficult
task, especially if one would keep all terms required by a strict
implementation of a conserving approximation like in the
specific example of Fig. 1. This implies that, in practice, less
demanding (albeit relevant on physical grounds) conditions
have to be requested.

In this section, we implement explicitly the use of the
modified form of the gap equation as Hugenholtz-Pines con-
dition for fermion pair, by considering a specific path for the
inclusion of pairing fluctuations beyond mean field on the gap
parameter. This path will lead us to consider the long-pending
problem about the inclusion of the so-called Gorkov-Melik-
Barkhudarov (GMB) correction directly on the gap equation,
throughout the BCS-BEC crossover and for any temperature
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in the superfluid phase. Our approach contrasts (yet duly
complements) the original GMB approach of Ref. [5], where
the value of the gap parameter was determined through an
instability condition only in the (extreme) BCS limit and at
zero temperature.

As it will turn out from the related numerical calcula-
tions presented in Sec. IV, adding the diagrammatic GMB
correction (together with an additional Popov diagrammatic
correction, see below) on top of the (non-self-consistent)
t-matrix approximation for the bare pair propagator proves
sufficient to account for the gap parameter over the whole
BCS-BEC crossover with good accuracy. In this context, we
will be reassured by the agreement obtained when confronting
our numerical calculations with the experimental and QMC
data that are available in the crossover region of most
interest.

A. Rephrasing the gap equation at the mean-field level

To begin with, it is convenient to rephrase the standard
mean-field approach for the gap equation in the form of the
modified form of the gap equation (7), as a basis for the
inclusion of the relevant pairing-fluctuation corrections over
and above the mean field itself. To this end, as a first step
we explicitly verify the identity (6) within the mean-field
approximation, whereby �11(k) = 0 and �12(k) = −�BCS.
In this case, Gij (k) → GBCS

ij (k) are given by [22]

GBCS
11 (k) = u2

k

iωn − Ek
+ v2

k

iωn + Ek

= −GBCS
22 (−k) = G0(k) − G0(k) �BCS GBCS

21 (k)

(13)

and

GBCS
12 (k) = −uk vk

(
1

iωn − Ek
− 1

iωn + Ek

)

= GBCS
21 (k) = −G0(k) �BCS GBCS

22 (k). (14)

In the above expressions, Ek =
√

ξ 2
k + (�BCS)2 for an

isotropic (s-wave) order parameter (or pairing gap) �BCS

within mean field,

uk =
√

1

2

(
1 + ξk

Ek

)
, vk =

√
1

2

(
1 − ξk

Ek

)
, (15)

and G0(k) = (iωn − ξk )−1 is the noninteracting fermionic
propagator. By entering the upper lines of the expressions
(13) and (14) into the identity (6), this identity can be verified
through simple manipulations.

Within the mean-field approximation, one can further ex-
plicitly verify that the second term on the right-hand side of
the identity (6) acts to cancel a number of undesired terms
that would be present in the first term therein. This check
can be done by using in the identity (6) the lower lines of
the expressions (13) and (14), and expanding the resulting
expressions in powers of �BCS.

In addition, within the mean-field approximation, the mod-
ified form of the gap equation (7) gets considerably simplified

since �12(k) = −�BCS is a constant. With the definitions

A(q ) = − 1

v0
+

∑
k

GBCS
11 (k + q )GBCS

22 (k), (16)

B(q ) =
∑

k

GBCS
12 (k + q )GBCS

12 (k), (17)

which are obtained from Eqs. (8) and (9), respectively, with
the replacement Gij → GBCS

ij , the modified form of the gap
equation (7) becomes

A(0) − B(0) = −
∫

dk
(2π )3

(
1 − 2f (Ek )

2Ek
− m

k2

)
− m

4πaF

.

= 0 (18)

where f (E) = (eE/T + 1)−1 is the Fermi function and the
regularization condition (1) has been utilised. Equation (18)
coincides with the standard mean-field equation for � in the
case of a contact interparticle interaction. This corresponds
to the Hugenholtz-Pines condition (10) for fermion pair with
vanishing bosoniclike self-energies �B

ij , consistently with the
absence of pairing fluctuations beyond mean field.

The mean-field gap equation (18) has to be supplemented
by the equation for the density n to determine the chemical
potential. Within the mean-field approximation this equation
reads

n =
∫

dk
(2π )3

[
1 − ξk

Ek
(1 − 2f (Ek ))

]
. (19)

In particular, in the BCS limit (kF aF )−1 � −1 at zero tem-
perature [whereby f (Ek ) = 0], one can use the methods
discussed in Refs. [24,25] to handle the behavior of the
integrands in Eqs. (18) and (19) in the vicinity of ξk = 0. One
obtains for the gap equation,

− m

4πaF

=
∫

dk
(2π )3

(
1

2Ek
− m

k2

)

� m kμ

2π2

[
ln

(
8μ

�BCS
0

)
− 2

]
(20)

with the wave vector kμ defined by μ = k2
μ/(2m) (μ > 0), as

well as

n � m kμ

2π2
μ

[
4

3
+ 1

2

(
�BCS

0

μ

)2

ln

(
8μ

�BCS
0

)]
(21)

for the density. By solving the above expressions in terms
of the coupling parameter (kF aF )−1 (where aF < 0), they
become

�BCS
0 � 8μ

e2
exp

(
π

2kμaF

)
(22)

� 8EF

e2
exp

(
π

2kF aF

)
, (23)

μ

EF

� 1 + π

8kF aF

(
�BCS

0

EF

)2

, (24)

where EF = k2
F /(2m) is the Fermi energy. Note that, within

mean field, the difference μ − EF is exponentially small in
the coupling parameter (kF aF )−1. Although this result is
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sufficient to justify the replacement μ → EF made on the
right-hand side of Eq. (23), on physical grounds one would
have expected the difference μ − EF to be related to a “mean-
field shift” and thus to be linear in kF aF . For this to occur,
however, pairing-fluctuation corrections need to be included,
as shown in Sec. III B below.

In the BEC limit whereby μ/T → −∞, on the other hand,
it is possible to expand

GBCS
11 (k) = −GBCS

22 (−k) � G0(k) − (
�BCS

0

)2 G0(k)2 G0(−k),

(25)
GBCS

12 (k) � �BCS
0 G0(k)G0(−k), (26)

such that the expressions (16) and (17) with q = 0 become
with the help of the regularization (1):

A(0) � − m

4πaF

−
∑

k

G0(k)G0(−k) +
∫

dk
(2π )3

m

k2

+ 2
(
�BCS

0

)2 ∑
k

G0(k)2 G0(−k)2, (27)

B(0) � (
�BCS

0

)2 ∑
k

G0(k)2 G0(−k)2. (28)

Here,∑
k

G0(k)G0(−k) −
∫

dk
(2π )3

m

k2
� − m

4πaF

+
(
m2aF

8π

)
μB,

∑
k

G0(k)2 G0(−k)2 �
(
m2aF

8π

)2(4πaF

m

)
, (29)

where μB = 2μ + ε0 is the chemical potential of the com-
posite bosons that form in this limit [with ε0 = (ma2

F )−1 the
binding energy of the two-fermion problem]. Entering the
approximate results (29) into the expressions (27) and (28),
the modified form of gap equation (18) at the mean-field level
becomes eventually

μB � 4π (2aF )

2m
n0, (30)

where n0 = ( m2aF

8π
)(�BCS

0 )
2

acquires the meaning of conden-
sate density [32]. The result (30) further identifies aB =
2aF as the value of the scattering length aB for the low-
energy scattering of composite bosons, at the level of the
Born approximation. We shall see below that the inclusion
of pairing fluctuations beyond mean field affects the result
(30) in two ways, namely, by modifying the value of aB and
by adding the contribution of the noncondensate density. We
note, finally, that the approximate expressions (23), (24), and
(30) could also be recovered from the analytic solution of the
mean-field equations (18) and (19), as obtained in Ref. [33]
at T = 0.

B. t-matrix approximation below Tc

The first level of approximation, for the inclusion of pairing
fluctuations beyond mean field in the broken-symmetry phase,
is represented by the t-matrix approximation, which was
studied in Ref. [34] throughout the BCS-BEC crossover. This
approximation rests on a pair propagator that corresponds to

a series of ladder diagrams and is given by the expression
(11), whereby A and B of Eqs. (8) and (9) are replaced,
respectively, by A and B of Eqs. (16) and (17), namely,(

T11(q ) T12(q )
T21(q ) T22(q )

)
→ 1

A(q )A(−q ) − B(q )2

×
(−A(−q ) B(q )

B(q ) −A(q )

)
. (31)

In addition, in the expressions of A and B, �BCS is re-
placed by a new value � to be consistently determined. Within
this approximation, the gap equation maintains the formal
structure of the mean-field gap equation (18), although now
the value of the chemical potential therein differs from that
obtained by the mean-field density equation (19). This is
because, within the t-matrix approximation in the broken-
symmetry phase, the density equation reads [34]

n = 2
∑

k

eiωnηG11(k) (32)

(η → 0+ being a positive infinitesimal), where

G11(k) = −G22(−k)

= G0(k) + G0(k)[�11(k)G11(k) + �12(k)G21(k)],

(33)

G12(k) = G21(k) = G0(k)[�11(k)G12(k) + �12(k)G22(k)]
(34)

with the following choice of the fermionic self-energy:

�11(k) = −�22(−k) = −
∑

q

T11(q )GBCS
22 (k − q ), (35)

�12(k) = �21(k) = −�. (36)

In the above expression, T11 is given by Eq. (31), and GBCS
22

has still the BCS form (13) with �BCS replaced by � [35]. In
addition, G11 of Eq. (33) can be conveniently rewritten in the
following form [34]:

G11(k) = [
G−1

0 (k) − σ11(k)
]−1

, (37)

where

σ11(k) = �11(k) − �2

G−1
0 (−k) − �11(−k)

. (38)

Since the gap equation has still the mean-field form (18),
in the BCS limit (kF aF )−1 � −1 at zero temperature the
result �0 � 8μ

e2 exp ( π
2kμaF

) still holds [cf. Eq. (22)]. However,
owing to the density equation (32), the chemical potential
acquires now a linear dependence on the small parameter
kF |aF |, namely,

μ

EF

� 1 + 4

3π
kF aF , (39)

instead of the exponential dependence given by Eqs. (23)
and (24). As a result, the pre-factor on the right-hand side
of Eq. (23) gets multiplied by e−1/3, such that the expected
mean-field result for � is not recovered in this limit. To
avoid this shortcoming, in Ref. [34], a constant fermionic
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self-energy shift �0 was added to the chemical potential μ in
the mean-field fermionic propagators (13) and (14) on which
the theory is built [and thus also in the gap equation (18)],
where �0 reduces to the mean-field shift 2πaF n/m in the
weak-coupling limit. In this way, a partial degree of self-
consistency is effectively included in the non-self-consistent
t-matrix approximation. In the following, we shall instead
rely on the Popov approximation introduced in Ref. [12], in
terms of which a partial degree of self-consistency can be
included in a more systematic way throughout the BCS-BEC
crossover.

C. Popov contribution to the gap equation

The Popov approximation for the BCS-BEC crossover
was introduced in Ref. [12], to devise a fermionic theory
which in the strong-coupling (BEC) limit would reduce to the
Popov description suitably extended from pointlike [24,25]
to composite bosons. To this end, in Ref. [12], the form of
the gap equation was modified with respect to Eq. (18), in
such a way that the associated pair propagator remains gapless
at q = 0. Here, we recover the gap equation of Ref. [12]
through an alternative route which relies on the modified
form (7) of the gap equation, identifying in this way the
bosoniclike self-energy �B

Popov that corresponds to the Popov
approximation.

To this end, in Eq. (7), we approximate the single-particle
fermionic propagators as follows:

G11(k) � GBCS
11 (k) + GBCS

11 (k) �11(k)GBCS
11 (k) + · · · ,

G12(k) � GBCS
12 (k) + · · · , (40)

and use in addition the forms (35) and (36) for the fermionic
self-energy. In this way, Eq. (7) becomes

−�

v0
� −�

∑
k

[
GBCS

11 (k)GBCS
22 (k) − GBCS

12 (k)GBCS
12 (k)

+ 2GBCS
11 (k)2 GBCS

22 (k) �11(k)
]

(41)

at the lowest significant order in �11. With the definitions (16)
and (17), Eq. (41) can then be cast in the form

A(0) − B(0) + �B
Popov(0)11 = 0, (42)

where �B
Popov(0)11 is the q = 0 value of the Popov bosoniclike

self-energy in broken symmetry, given by the expression [12]

�B
Popov(0)11 = 2

∑
k

GBCS
11 (k)2 GBCS

22 (k) �11(k)

= −2
∑
k,q ′

GBCS
11 (k)2 GBCS

22 (k)GBCS
22 (k − q ′) T11(q ′)

(43)

and depicted diagrammatically in Fig. 2(a) [35].
Note that Eq. (42) has the form of the Hugenholtz-Pines

condition (10) for fermion pairs, which now contains a
“normal” (diagonal) bosoniclike self-energy in contrast with
the mean-field and the t-matrix counterparts. (In the follow-
ing, we shall sometimes refer to the Popov bosoniclike self-
energy �B

Popov(0)11 that enters the gap equation (42) simply as

�B
Popov [36].) The Hugenholtz-Pines condition (42), which in-

cludes the Popov contribution, has to be solved in conjunction
with the density equation, which in the present approximation
needs to be appropriately modified with respect to Eq. (32), as
it will discussed in Sec. IV A below.

The expression (43) for the Popov bosoniclike self-energy
can be calculated analytically both in the BCS (weak-
coupling) and BEC (strong-coupling) limits. In the BCS limit,
one finds �B

Popov = −mkμ/(6π2), which cancels the spurious
factor e−1/3 that affects the expression of �BCS

0 within the
t-matrix approximation of Sec. III B. Dealing with the expres-
sion (43) in the BEC limit is somewhat more involved and will
be discussed in detail in Appendix B.

We remark that, in the limit T → T −
c whereby � → 0,

A(q ) reduces to the inverse of the pair propagator �0(q ) in the
normal phase, B(q ) → 0, and GBCS

11 → G0. In this limit, the
Hugenholtz-Pines condition (42) then reduces to the equation
that determines the critical temperature Tc within the Popov
approximation [13].

D. GMB contribution to the gap equation

In the original GMB paper [5], the gap parameter �0

at zero temperature was calculated in weak coupling only
(whereby μ = EF ), by searching for the singularities in the
complex energy plane of the pair propagator from the normal
phase. Accordingly, a pole was found to occur in the upper-
half plane at an energy equal to the BCS gap given by the
right-hand side of Eq. (23) divided by (4e)1/3 � 2.2. Since in
Ref. [5] the same factor was found also to reduce the value
of the critical temperature Tc with respect to the BCS value,
the ratio �0/Tc = π/eγ was not modified with respect to the
BCS value (where γ is Euler’s constant).

Similarly to what was done for the calculation of Tc, in the
literature the GMB correction for �0 in weak coupling was
often attributed to screening effects, owing to the occurrence
of a particle-hole bubble in its expression. As mentioned in the
Introduction, effects of “medium polarization” at zero temper-
ature have been studied also for superfluid nuclear and neutron
matter, in terms of a gap equation with a suitably screened
interparticle interaction [17]. However, no consideration was
given in that context to the BCS-BEC crossover. Extension of
the GMB correction to the BCS-BEC crossover was instead
considered in Ref. [19], where the characteristic approxima-
tions of the (extreme) BCS limit, that were exploited in the
original GMB paper [5], have, however, not been released
even upon approaching the BEC limit.

In the following, we shall rely on the modified form (7)
of the gap equation in order to include the GMB contribu-
tion, which will naturally lead us to recover the Hugenholtz-
Pines condition (10) for fermion pairs with suitably iden-
tified bosoniclike self-energies �B

GMB(0)11 and �B
GMB(0)12.

In this way, we will be able to extend the GMB contri-
bution to the whole BCS-BEC crossover, thereby relaxing
the approximations characteristic of the (extreme) BCS limit,
which completely loose their meaning when spanning the
BCS-BEC crossover. In the following, however, no attempt
will be made to cast the underlying fermionic theory at the
level of a fully conserving approximation, and not even to
make it self-consistent at the present level. These additional
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features, in fact, would be extremely hard to handle, either
by implementing them numerically or by deriving from them
reliable analytic results in the BCS and BEC limits.

To this end, we adopt the following approximate choice
for the off-diagonal fermionic self-energies to be entered in
Eq. (7):

�12(k) = �21(k) � −� +
∑
k′k′′

T11(k − k′′) T11(k′ − k′′)

×G11(k + k′ − k′′)G12(k′)G22(k′′) (44)

where we further approximate

G12(k′) = G21(k′) � G11(k′) (−�)G22(k′)

−G12(k′) (−�)G21(k′) (45)

with the use of the identity (6). In the expressions (44) and
(45), all fermionic propagators Gij are taken of the mean-field
form GBCS

ij given by Eqs. (13) and (14), with �BCS replaced by
a new value � to be consistently determined [35]. In addition,
the elements Tij (q ) of the many-particle T matrix are meant
to have the approximate form (31) with the bubbles A and B

given by the expressions (16) and (17), respectively.
Entering the approximate expressions (44) and (45) into

the modified form (7) of the gap equation yields eventually
the expression

1

v0
=

∑
k

[
GBCS

11 (k)GBCS
22 (k) − GBCS

12 (k)GBCS
12 (k)

]

+
∑
kk′k′′

T11(k − k′′) T11(k′ − k′′)GBCS
11 (k + k′ − k′′)

×GBCS
22 (k′′)

[
GBCS

11 (k)GBCS
22 (k) − GBCS

12 (k)GBCS
12 (k)

]
× [

GBCS
11 (k′)GBCS

22 (k′) − GBCS
12 (k′)GBCS

12 (k′)
]
. (46)

We are thus led to introduce the quantities

�B
GMB(0)11

=
∑
kk′k′′

T11(k − k′′) T11(k′ − k′′)GBCS
11 (k + k′ − k′′)

×GBCS
22 (k′′)

[
GBCS

11 (k)GBCS
22 (k)GBCS

11 (k′)GBCS
22 (k′)

+GBCS
12 (k)GBCS

12 (k)GBCS
12 (k′)GBCS

12 (k′)
]
, (47)

�B
GMB(0)12

=
∑
kk′k′′

T11(k − k′′) T11(k′ − k′′)GBCS
11 (k + k′ − k′′)

×GBCS
22 (k′′)

[
GBCS

11 (k)GBCS
22 (k)GBCS

12 (k′)GBCS
12 (k′)

+GBCS
12 (k)GBCS

12 (k)GBCS
11 (k′)GBCS

22 (k′)
]
, (48)

which represent the q = 0 values of the“normal” (diago-
nal) and “anomalous” (off-diagonal) bosoniclike self-energy
within the GMB approximation in the broken-symmetry
phase, as depicted diagrammatically in Figs. 2(b) and 2(c),
respectively. With these definitions and recalling Eqs. (16) and
(17), the condition (46) for the gap � acquires the form of the
Hugenholtz-Pines condition (10) for fermion pairs, namely,

A(0) − B(0) + �B
GMB(0)11 − �B

GMB(0)12 = 0, (49)
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FIG. 3. The magnitudes of A(q, �ν ) (top), A′(q,�ν ) (middle),
and B(q, �ν ) (bottom) at zero temperature are shown vs q2 and
�ν for the coupling values (kF aF )−1 = −3.0 (left) and (kF aF )−1 =
−1.0 (right). In each case, appropriate normalizations of length and
energy are utilized. In these plots, the mean-field values of �0 and
μ0 at T = 0 have been used.

which this time contains the anomalous (off-diagonal) boson-
iclike self-energy besides the normal (diagonal) one when
compared to the corresponding Popov result (42). (In
the following, we shall sometimes refer to the difference
�B

GMB(0)12 − �B
GMB(0)11 that enters the gap equation (49)

simply as �B
GMB [36].)

The Hugenholtz-Pines condition (49) holds for all temper-
atures in the broken-symmetry phase and for all couplings
throughout the BCS-BEC crossover. The numerical solution
of Eq. (49), in conjunction with that of the density equation,
will be considered in Sec. IV. Here, we focus instead on the
analytic results that can be obtained in the (extreme) BCS and
BEC limits.

We first consider the (extreme) BCS limit at zero temper-
ature, where the original GMB result of Ref. [5] for the gap
parameter �0 ought to be recovered from Eq. (49). To this
end, it is convenient to consider directly the form (46) of
the gap equation and adopt therein the following simplifying
assumptions that hold in this limit: (i) approximate T11(q ) →
4πaF /m, similarly to what is done in the normal phase above
Tc [13] (cf. also Fig. 3 below).

(ii) As a consequence, the three sums over the four-vectors
(k, k′, k′′) in the second term on the right-hand side of Eq. (46)
get completely decoupled from each other. Care should, how-
ever, be exerted in restoring the convergence of the overall
expression, which would be lost by the mere replacement
made before in (i). To this end, we can make a compensating
replacement and regularise both sums over k and k′ in the
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following way:

−
∑

k

[
GBCS

11 (k)GBCS
22 (k) − GBCS

12 (k)GBCS
12 (k)

]

=
∫

dk
(2π )3

(
1 − 2f (Ek )

2Ek

)

→
∫

dk
(2π )3

(
1 − 2f (Ek )

2Ek
− m

k2

)
, (50)

where f (Ek ) → 0 in the zero-temperature limit.
(iii) The sum over k′′ is instead handled as follows:∑

k′′
GBCS

11 (k + k′ − k′′)GBCS
22 (k′′)

= −
∑
k′′

GBCS
11 (k′′)GBCS

11 (k′′ − k − k′)

� −
∑
k′′

G0(k′′)G0(k′′ − k − k′) ≡ χph(k + k′), (51)

where G0 is the noninteracting propagator and χph the corre-
sponding particle-hole bubble of the normal phase. In addi-
tion, in this bubble set ωn + ωn′ = 0, take the wave vectors
k and k′ on a Fermi sphere of radius kF , and perform an
averaging over their relative angle. This is because the terms
within square brackets in Eq. (46) are strongly peaked at
|k| = |k′| = kμ and ωn = ωn′ = 0. The result is [5]

χph(k + k′) → χ̄ph(0) = −N0 ln (4e)1/3, (52)

where N0 = mkF /(2π2) is the single-particle density of states
(per spin component) at the Fermi level.

(iv) Grouping together the above results (i)–(iii) in the form
(46) of the gap equation yields approximately

m

4πaF

+
∫

dk
(2π )3

(
1 − 2f (Ek )

2Ek
− m

k2

)

+
[

4πaF

m

∫
dk

(2π )3

(
1 − 2f (Ek )

2Ek
− m

k2

)]2

χ̄ph(0) = 0.

(53)

(v) The expression (53) can be further simplified by noting
that, according to the mean-field result (18),

4πaF

m

∫
dk

(2π )3

(
1 − 2f (Ek )

2Ek
− m

k2

)
= −1. (54)

In this way, Eq. (53) becomes eventually

m

4πaF

+
∫

dk
(2π )3

(
1 − 2f (Ek )

2Ek
− m

k2

)
+ χ̄ph(0) = 0.

(55)

In particular, in the zero-temperature limit [whereby
f (Ek ) → 0] use of the result (20) with μ = EF and of
Eq. (52) for χ̄ph(0) brings Eq. (55) to the form

m

4πaF

+ N0

[
ln

(
8EF

�GMB
0

)
− 2 − ln (4e)1/3

]
= 0. (56)

From this expression the result of Ref. [5] readily follows,
namely,

�GMB
0 = 8EF

e2(4e)1/3 exp

(
π

2kF aF

)
= �BCS

0

(4e)1/3 . (57)

From the way it was derived, it is clear that Eq. (55)
holds under the specific approximations that are valid only in
the (extreme) BCS limit when (kF aF )−1 � −1. Accordingly,
one is not justified to consider Eq. (55) valid over to the
whole BCS-BEC crossover in the broken-symmetry phase for
arbitrary values of (kF aF )−1, as it was done in Ref. [19].
This is because the very first approximation (i) above, about
taking T11(q ) � constant independent of wave vector and
frequency, is bound to fail away from the (extreme) BCS
limit. This crucial point was recently emphasized for the
normal phase in Ref. [13], where a proper way to handle
the GMB contribution for determining the critical tempera-
ture Tc throughout the BCS-BEC crossover was discussed in
detail.

We can explicitly verify numerically to what extent the
approximation T11(q ) � constant holds along the BCS-BEC
crossover in the broken-symmetry phase. This is done by
plotting the magnitudes of A(q,�ν ) and B(q,�ν ) at zero
temperature for couplings in the extreme BCS limit and at the
boundary between the BCS and the crossover regimes. This is
shown in Fig. 3, where the magnitude of A(q,�ν ) is plotted
in units of m/(4π |aF |), while the magnitude of B(q,�ν ) [as
well as of A′(q,�ν ), where A′(q ) = A(q ) + m/(4πaF )—cf.
Eq. (67) below] is plotted in units of m/(4πξpair ). Here, ξpair

is the Cooper pair size at zero temperature [37], for which we
have used the values kF ξpair = (72.74, 3.39) for the couplings
(kF aF )−1 = (−3.0,−1.0), in the order [33]. Note that for
B and A′ the gap �0 at zero temperature (instead of the
Fermi energy EF like for A) is used as the unit of energy.
From these plots we conclude that only in the extreme BCS
limit (kF aF )−1 � −1 can |A(q,�ν )| be considered constant
[and equal to m/(4π |aF |)] over a large portion of the q-
�ν plane (while |B(q,�ν )| is essentially negligible in this
regime).

That the particle-hole bubble (51) is not bound to enter
the GMB version (49) of the Hugenholtz-Pines condition
away from the BCS regime can be also confirmed by con-
sidering the opposite BEC regime, where an analytic cal-
culation of the GMB bosoniclike self-energies �B

GMB(0)11

and �B
GMB(0)12 is also possible. To this end, it is conve-

nient to consider directly the expression for the difference
�B

GMB(0)11 − �B
GMB(0)12 given by the last term on the right-

hand side of Eq. (46), in which one can make use of the formal
identity

GBCS
11 (k)GBCS

22 (k) − GBCS
12 (k)GBCS

12 (k)

= 1

iωn − Ek

1

iωn + Ek
= − G̃0(k) G̃0(−k), (58)

where �BCS → � and

G̃0(k) = (iωn − Ek )−1 (59)

has the form of the noninteracting fermionic propagator G0(k)
with ξk replaced by Ek =

√
ξ 2

k + �2. In this way, we can
rewrite the last term on the right-hand side of Eq. (46) in the
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compact form:

�B
GMB(0)11 − �B

GMB(0)12

=
∑
kk′k′′

T11(k − k′′) T11(k′ − k′′)GBCS
11 (k + k′ − k′′)

×GBCS
22 (k′′) G̃0(k) G̃0(−k) G̃0(k′) G̃0(−k′)

=
∑
kpq

T11(p) T11(q )GBCS
11 (k + q )GBCS

22 (k − p)

× G̃0(k) G̃0(−k) G̃0(k + q − p) G̃0(−k − q + p), (60)

where we have introduced the bosonic variables p = k − k′′
and q = k′ − k′′. In the BEC (strong-coupling) limit, we are
interested in, whereby μ/T → −∞, the binding energy ε0

of the two-fermion problem is much larger than the gap
� and the temperatures of interest, which are of the order
of Tc. Under these circumstances, the expression (60) will
be evaluated analytically in Appendix B, where it will be
explicitly verified that no remnant of the particle-hole bubble
(51) survives in the BEC limit.

IV. NUMERICAL STRATEGIES AND RESULTS

In this section, we obtain numerically the solution of the
Hugenholtz-Pines condition for fermion pairs, in the form of
Eqs. (42) or (49) to include separately the Popov or GMB
contribution, or else in the form

A(0) − B(0) + �B
Popov(0)11 + �B

GMB(0)11 − �B
GMB(0)12 = 0

(61)

to include both contributions simultaneously. These solutions
will be determined as a function of temperature and coupling
throughout the BCS-BEC crossover, in conjunction with the
solution of the density equation (32). As a test on the accuracy
of our numerical calculations, we will also recover numeri-
cally the limiting behaviors of the bosoniclike self-energies
�B

Popov and �B
GMB that can be obtained analytically in the

BCS and BEC regimes. This is especially important for the
GMB contribution in the BCS limit, for which we will recover
numerically the expected result obtained through a different
procedure in the original GMB paper [5]. In addition, our
numerical results will be compared with available experi-
mental data obtained with ultra-cold Fermi gases and with
QMC calculations, as well as with alternative diagrammatic
calculations.

A. Numerical strategies below Tc

The numerical procedure, to solve the Hugenholtz-Pines
condition for fermion pairs with the Popov and/or the GMB
contributions, takes advantage of the experience developed in
Ref. [13], where the critical temperature Tc was approached
from the normal phase throughout the BCS- BEC crossover. In
that reference, it was found necessary to introduce a (partial)
degree of self-consistency in the pair propagator, in order
to avoid entering a temperature regime (below the critical
temperature obtained in the absence of the Popov and/or
GMB corrections), where the pair propagator itself would
diverge at q = 0. Here, we adopt a similar strategy also in the
broken-symmetry phase below Tc, although (by construction)

this divergence does occur in the pair propagators (31). This
strategy will enable us to connect with continuity with the
results obtained in Ref. [13] for the normal phase [38]. Our
arguments go as follows.

The matrix elements of the inverse T −1 of the matrix T

given by Eq. (31) are(
T −1(q )11 T −1(q )12

T −1(q )21 T −1(q )22

)
= −

(
A(q ) B(q )
B(q ) A(−q )

)
(62)

with the expressions (16) and (17) for A(q ) and B(q ). The
theory can be endowed by some degree of self-consistency,
by replacing the above matrix T −1 with a new matrix T̄ −1

given by

(
T̄ −1(q )11 T̄ −1(q )12

T̄ −1(q )21 T̄ −1(q )22

)

= −
(

A(q ) + �B(0)11 B(q ) + �B(0)12

B(q ) + �B(0)21 A(−q ) + �B(0)22

)
(63)

in terms of the constant shifts �B(0)11 = �B(0)22 and
�B(0)12 = �B(0)21. Here, �B(0)11 refers either to the Popov
term (43) or to the GMB term (47) or to the sum of both of
them, while �B(0)12 refers to the GMB term (48). In all cases,
the Hugenholtz-Pines condition for fermion pairs reads quite
generally

A(0) − B(0) + �B(0)11 − �B(0)12 = 0, (64)

which recovers alternatively Eqs. (42) or (49), depending
on the choice of the bosoniclike self-energies �B(0)ij . The
condition (64) guarantees, in addition, that the “dressed” pair
propagator T̄ , too, is gapless at q = 0. With the form (63)
of the matrix T̄ −1(q ), one readily calculates its inverse T̄ (q ),
whose matrix elements can, in turn, be introduced in the
expressions (43) of the Popov bosoniclike self-energy and/or
(47) and (48) of the GMB bosoniclike self-energies, which are
thus calculated with the dressed pair propagator T̄ in the place
of the bare T .

For the needs of the BCS-BEC crossover, the numerical
solution of the Hugenholtz-Pines condition (64) has to be
determined in conjunction with that of the density equation
(32), in which we keep G11 of the form (37) and (38).
Here, the (diagonal) fermionic self-energy �11 has still the
form (35), although with the matrix element T11(q ) now
replaced by T̄11(q ) so as to include a (partial) degree of
self-consistency also in the density equation [39]. In this way,
both the gap parameter � and the chemical potential μ can
be obtained for any given coupling (kF aF )−1 and temperature
T < Tc, the process being iterated until self-consistency is
achieved.

The above procedure can be somewhat simplified, by ex-
ploiting the fact that the constant shifts �B(0)ij in the matrix
elements (63) enter also the Hugenholtz-Pines condition (64).
Accordingly, with the use of Eq. (64), we can write for the
diagonal elements in Eq. (63):

A(±q ) + �B(0)11 = A(±q ) − A(0) + B(0) + �B(0)12.

(65)
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Here, we note that the difference

A(±q ) − A(0) =
∑

k

[
GBCS

11 (k ± q ) − GBCS
11 (k)

]
GBCS

22 (k)

(66)

contains no explicit reference to the coupling (kF aF )−1, which
would otherwise enter the definition

A(q ) = − m

4πaF

+
∑

k

GBCS
11 (k + q )GBCS

22 (k) +
∫

dk
(2π )3

m

k2
,

(67)

once A(q ) is suitably normalized in terms of the single-
particle density of states N0 = mkF /(2π2) per spin compo-
nent. [Note that the regularization condition (1) has been
used to obtain the expression (67) from the original definition
(16)).] In addition, in this way the matrix elements (63) con-
tain only �B(0)12, since �B(0)11 has been eliminated therein
through the use of the identity (65).

With these premises, it is convenient to organize the pro-
cedure of self-consistency in the following way. (i) Begin by
fixing a pair of values (T ,μ), which are expected to lie in
the superfluid phase below Tc (where the pair (Tc, μc ) can be
desumed from the results of Ref. [13]). (ii) Select further a
value of � and calculate the quantities A(±q ) − A(0), B(q ),
and �B(0)12, to obtain the matrix elements (63) of T̄ −1(q )
and of its inverse T̄ (q ). (iii) Enter the matrix element T̄ (q )11

obtained in this way into the fermionic self-energy (35) in the
place of T (q )11, and use this self-energy to determine a new
value of �, which is consistent with the density equation (32).
(iv) Use this new value of � to calculate again the matrix
elements of T̄ −1(q ) with the help of Eqs. (65) and (66), to
be used once again in the density equation to determine a
new value �. Repeat this process until self-consistency is
achieved for �. (v) Calculate �B(0)11 [or, better, directly the
difference �B(0)11 − �B(0)12] with the values of (T ,μ,�)
determined in this way. (vi) Insert A(0) in the form (67), B(0),
and �B(0)11 − �B(0)12 thus determined into the Hugenholt-
Pines condition (64), to obtain the corresponding value of the
coupling (kF aF )−1.

The above procedure is somewhat more involved than that
considered in Ref. [13] for the normal phase, where one was
only interested in calculating Tc (and the associated μc) for
given coupling. In the superfluid phase of interest here, on the
other hand, for given coupling one is required to determine the
full temperature dependence of �(T ) and μ(T ), from T = 0
to Tc.

Finally, we can also exploit the numerical procedures de-
veloped in Ref. [13] for the calculation of �B(0) in the normal
phase and utilize them now for the calculation of �B(0)11 and
�B(0)12 in the superfluid phase. To this end, it will be nec-
essary to bring the expressions (43) and (47) for �B(0)11 and
(48) for �B(0)12 in the superfluid phase to a form that can be
readily translated into that of �B(0) in the normal phase. As a
consequence, the bosoniclike self-energies (43), (47), and (48)
will be amenable to numerical computation essentially with
the same level of effort encountered in Ref. [13] for the normal
phase. This strategy is discussed in detail in Appendix C.
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FIG. 4. Bosoniclike self-energy �B within (a) the Popov and
(b) GMB approximations (multiplied by a minus sign and in units
of the single-particle density of states N0 = mkF /(2π 2) per spin
component) vs the coupling (kF aF )−1. Large (small) symbols refer
to T = 0 (T = Tc). The inset in (b) shows the anomalous counterpart
[−�B

12(0)] at T = 0 within the GMB approximation (triangles) and
its analytic behaviour in the BCS regime (dashed line).

B. Bosoniclike self-energies that enter the Hugenholtz-Pines
condition for fermion pairs

We have explicitly calculated numerically the bosoniclike
self-energies �B

ij within the Popov [cf. Eq. (43)] and the GMB
[cf. Eqs. (47) and (48)] approximations, for all temperatures
below Tc and couplings across the BCS-BEC crossover. In
both cases, we shall refer to the difference �B

11 − �B
12 that

enters the Hugenholtz-Pines condition (64) for fermion pairs
simply as �B [36].

Figure 4 shows �B (multiplied by a minus sign) throughout
the BCS-BEC crossover and for the temperatures T = 0 and
T = Tc, within the Popov (upper panel) and GMB (lower
panel) approximations. For both temperatures, the Popov and
GMB contributions to �B have comparable magnitude over
the whole coupling range, while the anomalous counterpart
�B

12(0) at T = 0 [shown in the inset of panel (b) together with
its analytic behavior obtained from the expression (C12) in the
BCS regime] turns out to be somewhat smaller. In both Popov
and GMB cases, a marked difference appears between T = 0
and Tc. We have also verified (although not reported in the
figure) that in both Popov and GMB cases a smooth evolution
occurs as a function of temperature between the curves for
T = 0 and T = Tc [38].

Figure 5 highlights the limiting behavior of �B within the
Popov (circles) and GMB (squares) approximations in the
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FIG. 5. (a) �B
Popov (circles) and −�B

GMB (squares) (in units of
the single-particle density of states N0) vs kF |aF | (with aF < 0)
obtained numerically at T = 0 in the interval (0,1). The limiting
values for kF |aF | → 0 are seen to recover the respective analytic
results. (b) �B

Popov (circles) and �B
GMB (squares) vs kF aF (with aF >

0) obtained numerically at T = 0 in the interval (0,1) are compared
with the respective analytic behaviours (dashed lines). In each case,
the symbols are connected by a solid line obtained by a quadratic
interpolation procedure.

extreme BCS (upper panel) and BEC (lower panel) sides of
the crossover. In both panels, the lines have been drawn by a
quadratic interpolation through the symbols. In the extreme
BCS regime, the limiting analytic values of �B

Popov/N0 (=
−1/3) and �B

GMB/N0(= ln(4e)1/3) are seen to be accurately
recovered by our numerical calculations. In the extreme BEC
regime, on the other hand, our numerical calculations are
compared with the analytic expressions (dashed lines) re-
ported in Appendix B, where contributions from both the
noncondensed (n′) and condensed (n0) densities are present.
Since at low temperature n′ � n0, the numerical effort to
reach the extreme BEC regime in the superfluid phase is
much more severe than in the normal phase where only n′ = n

appears.

C. Gap parameter throughout the BCS-BEC crossover

Once the quantity �B is calculated numerically with due
confidence and its analytic BCS and BEC limiting behaviours
are suitably recovered, one can pass to determine the tem-
perature and coupling dependence of the gap parameter �

from the Hugenholtz-Pines condition (64). This is done here

 0
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-1 -0.5  0  0.5  1

Δ
0/

E
F

(kFaF)-1

FIG. 6. The gap parameter �0 at zero temperature (in units of the
Fermi energy EF ) is shown vs the coupling (kF aF )−1 within three
different approximations: mean field (dashed double-dotted line),
Popov (dashed line), and GMB-plus-Popov (solid line).

within alternative approximations, namely, the Popov and
GMB-plus-Popov approximations discussed in Secs. III C
and III D (besides the standard mean-field approximation to
compare with).

Figure 6 shows the coupling dependence of the gap param-
eter �0 at zero temperature, obtained within the above three
approximations in the crossover region −1 � (kF aF )−1 � +1
of most interest. It is seen that the value of �0 systematically
decreases over the whole coupling range, when passing from
the mean-field, to the Popov, and then to the GMB-plus-Popov
approximations, where at each step higher degrees of pairing
fluctuations beyond mean field are progressively taken into
account.

The temperature dependence �(T ) of the gap parameter is
reported in Fig. 7 within the above three approximations and
for three characteristic couplings. Several interesting features
can be highlighted from these plots, while comparing, in
particular, the results of the GMB-plus-Popov approximation
with those of mean field. When including pairing fluctuations
beyond mean field, the suppression of the gap �0 at T = 0 is
less pronounced than the corresponding reduction of the crit-
ical temperature Tc. For instance, at unitarity �0 = 0.525EF

and Tc = 0.160EF within the GMB-plus-Popov approxima-
tion, such that �0/Tc = 3.281; conversely, within mean field
�0 = 0.687EF and Tc = 0.50EF , such that �0/Tc = 1.339
(a value smaller than the result 1.76 valid in the extreme
BCS limit (kF aF )−1 � −1, also once the GMB contribu-
tion is included [5]). As a consequence, the curve �(T )
within the GMB-plus-Popov approximation gets somewhat
more compressed along the T axis than along the � axis,
when compared with the corresponding curve obtained within
mean field. This feature appears evident in all three panels
of Fig. 7. Owing to this nonuniform compression of the
curve, when including pairing fluctuations beyond mean field
�(T ) remains closer to its zero-temperature value �0 over
a wider portion of the temperature interval up to Tc when
compared with mean field, and then falls rather abruptly to
zero only quite close to Tc. This behavior is reminiscent of
what found experimentally for the temperature dependence of
the superfluid fraction in a ultracold Fermi gas [40], which
remains almost completely superfluid below 0.6T c. Finally,
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FIG. 7. Temperature dependence of the gap parameter �(T ) (in
units of the Fermi energy EF ) for the couplings (a) (kF aF )−1 =
−1.0, (b) (kF aF )−1 = 0.0, and (c) (kF aF )−1 = +1.0, within the
mean-field (stars), Popov (circles), and GMB-plus-Popov (dia-
monds) approximations.

a comment is in order about the “reentrant” behavior found
for �(T ) when T approaches Tc, which develops gradually
when passing from the BCS to the BEC side of the crossover
as seen in Fig. 7 (although this is less evident in the GMB-
plus-Popov than in the Popov approximation). This behavior
is inherited from the Bogoliubov-Popov theory for pointlike
bosons, to which the condensate density presents a similar
behavior [41–43] and to which the present theory reduces in
the BEC limit of tightly bound composite bosons (although a
minor reentrant behavior begins to show up in the crossover
region where composite bosons are not yet fully developed).

Figure 8 shows related plots for the temperature depen-
dence of the chemical potential. This is seen to decrease
monotonically below Tc, in line with the progressive building
up of the condensate upon lowering the temperature (also for
this quantity, the reentrant behavior close to Tc becomes less
evident when passing from the Popov to the GMB-plus-Popov
approximation).
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FIG. 8. Temperature dependence of the chemical potential
μ(T ) (in units of the Fermi energy EF ) for the couplings (a)
(kF aF )−1 = −1.0, (b) (kF aF )−1 = 0.0, and (c) (kF aF )−1 = +1.0,
within the mean-field (stars), Popov (circles), and GMB-plus-Popov
(diamonds) approximations.

It is relevant to compare our results with those obtained
by other theoretical (diagrammatic, functional-integral, and
QMC) approaches, as well as with the available experimental
data. This comparison is shown in Fig. 9. Specifically, the
coupling dependence of the zero-temperature gap �0 obtained
by the present GMB-plus-Popov calculation (solid line) is
compared in Fig. 9(a) with the results of the diagrammatic
or functional-integral approaches of Refs. [44] (triangles),
[45] (circles), [19] (squares), and [46] (diamonds), and in
Fig. 9(b) with the QMC data from Refs. [47] (squares with
error bars) and [48] (circles with error bars). In addition,
Fig. 9(c) compares the experimental data from Refs. [49]
(squares with error bars) and [50] (circles with error bars),
taken at low but nonzero temperatures, with our GMB-plus-
Popov results calculated at T = 0 (solid line), 0.08TF (dashed
line), 0.09TF (dotted line), 0.10TF (dashed-dotted line), and
0.12TF (dashed double-dotted line).
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FIG. 9. The results of the GMB-plus-Popov calculation for the
gap parameter are compared with those obtained at T = 0 by (a)
alternative diagrammatic or functional-integral approaches and (b)
QMC methods. In addition, (b) shows the theoretical results obtained
by the diagrammatic approach of Ref. [45] (broken line) In (c),
the results of the GMB-plus-Popov calculation at finite temperature
are compared with two independent sets of experimental data from
Refs. [49,50]. The inset in (c) compares the GMB-plus-Popov (full
line) and Popov (broken line) calculations with the experimental data
from Ref. [51]. [The meaning of the lines and symbols (as well as the
references from which the data are taken) is given in the text.]

In Fig. 9(b), it is worth pointing out that to the present
GMB-plus-Popov calculation (full line) there corresponds
a steeper dependence on coupling about unitarity as com-
pared with the diagrammatic calculation of Ref. [45] (broken
line). This steeper dependence, which is seen to reproduce
the trend of the QMC data, is consistent with the stronger
suppression of the gap on the BCS side of unitarity due to
the GMB contribution. We have verified that the presence

of the anomalous bosoniclike self-energy �B
GMB(0)12 in the

Hugenholtz-Pines condition (61), which is a distinctive fea-
ture of the present GMB-plus-Popov calculation, contributes
significantly to this steeper dependence, since it affects the
value of �0 up to about 20% on the weak-coupling side of the
crossover.

Particularly encouraging appears the comparison shown
in Fig. 9(c) between the experimental data and our re-
sults, just taken at the temperatures that correspond to
those reported experimentally. For instance, at unitarity
Ref. [50] gives the value �/EF = 0.47 ± 0.03 for the tem-
perature range T/TF = 0.09 ± 0.01. Correspondingly, the
GMB-plus-Popov calculation at unitarity yields �/EF =
(0.521, 0.507, 0.504, 0.489) for the temperatures T/TF =
(0.08, 0.09, 0.10, 0.12), in the order. This comparison also
demonstrates that the effect of temperature acquires a growing
importance for the gap as soon as one moves from the BEC
into the BCS regime.

In addition, the inset of Fig. 9(c) compares the results of the
GMB-plus-Popov (full line) and Popov (broken line) calcula-
tions at T = 0 with the experimental data from Ref. [51] (tri-
angles), which are taken at the nominal temperature T/TF =
0.07 ± 0.02. This set of experimental data appears to agree
quite well with the Popov calculation, while discrepancies
appear when compared with the GMB-plus-Popov calcu-
lation. On the contrary, we have already commented that
the GMB-plus-Popov calculation agree quite well with the
experimental data of Ref. [50]. The difference between the
two sets of experimental data could possibly be attributed
to the different protocols adopted by the two experiments
to extract the gap. While Ref. [50] measures a response
(density-density correlation) function in the linear regime for
which the system is probed at thermodynamic equilibrium,
Ref. [51] adopts a time-dependent protocol that brings the
system out of thermodynamic equilibrium. This may give
rise to a retardation mechanism, whereby increasingly com-
plicated many body-processes (like the GMB contribution)
could take longer time than simpler processes (like the Popov
one) before being excited by the experimental protocol, in
analogy to what occurs in the context of the orthogonality
catastrophe [52].

Finally, the coupling dependence of the chemical potential
at zero temperature is shown in Fig. 10 for all the three (mean
field, Popov, and GMB-plus-Popov) approximations consid-
ered in the present paper. Our results are further compared
with those obtained by alternative diagrammatic or functional-
integral approaches. The comparison shows that the GMB-
plus-Popov results are systematically larger than those ob-
tained by other approaches over the entire crossover region.
This outcome is in line with what was found in Ref. [13] when
approaching Tc from the normal phase. There it was argued
that, endowing the single-particle fermionic propagators that
enter the expressions of the Popov and GMB bosoniclike
self-energies with a suitable fermionic self-energy insertion,
acts to decrease the values of the chemical potential without
affecting at the same time the values of other thermodynamic
quantities. Translating this argument to the superfluid phase,
we expect this conclusion to imply that also the gap parameter
will not be affected by modifying the chemical potential along
the above lines.
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FIG. 10. The coupling dependence of the chemical potential at
zero temperature (in units of the Fermi energy EF ) obtained by
the GMB-plus-Popov calculation (solid line) is compared with the
results by the diagrammatic or functional-integral approaches of
Refs. [44] (triangles), [45] (circles), and [46] (diamonds). The inset
compares the results of the GMB-plus-Popov calculation (solid line)
with those of the Popov (dashed line) and mean-field (dashed double-
dotted line) calculations.

D. Further analysis of the GMB contribution
to the gap parameter

We conclude this section by digging somewhat further on
the GMB contribution to the gap parameter. It first appears
relevant to check how the numerical accuracy on the calcu-
lation of �B

GMB (as well as of �B
Popov), which was considered

in Fig. 5, translates into the accuracy on the calculation of
the gap parameter itself. This check is particularly relevant in
the extreme BCS limit (kF aF )−1 � −1, for which the result
(57) at zero temperature was obtained analytically long ago
by the original GMB work [5], but it has never been recovered
since through an accurate numerical calculation which would
approach this limit from finite values of (kF aF )−1. This check
is shown in Fig. 11, where the values of �0 obtained at zero
temperature within the GMB-plus-Popov and Popov approxi-
mations over an extended range of (inverse) coupling kF |aF |
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FIG. 11. The ratio �BCS
0 /�0 at T = 0 is shown in the BCS

(weak-coupling) regime kF |aF | � 1.0 (with aF < 0), within the
GMB-plus-Popov (diamonds) and Popov (circles) approximations.
Here, �BCS

0 is given by the mean-field expression (23) that holds
in the BCS regime, and the lines represent quadratic interpolations
through the symbols.
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FIG. 12. The full calculations of −�B
GMB vs (kF aF )−1 at T = 0

is compared with partial calculations of the same quantity, in which
either the wave-vector or the frequency dependence has been ne-
glected in both pair propagators T̄11 entering the expression of �B

GMB.
The corresponding values of μ obtained in the full calculation are
also used in the partial calculations.

(which contains the extreme BCS limit kF |aF | = 0) are com-
pared with the mean-field values given by the expression (23).
In the figure, the numerical results (diamonds and circles)
are supplemented by a quadratic interpolation both for the
GMB-plus-Popov (full line) and the Popov case (dashed line).
In both cases, these interpolations converge with extremely
good accuracy to the expected value at kF |aF | = 0 when the
limit kF |aF | → 0 is taken.

An additional piece of information that is worth supplying
is to what extent the wave-vector and frequency dependence
of the pair propagator T11 affects the numerical value of the
GMB bosoniclike self-energy �B

GMB in the broken-symmetry
phase, over an extended coupling range away from the ex-
treme BCS limit. This information is relevant in the present
context, because the effects of the wave-vector and frequency
dependence of the pair propagator on the GMB correction
in the broken-symmetry phase were never considered before.
Although neglecting the wave-vector and frequency depen-
dence of the pair propagator can be justified in the extreme
BCS limit (as it was shown analytically in Sec. III D), we
have emphasized throughout this paper that this cannot be
the case when departing from the extreme BCS limit and
spanning the BCS-BEC crossover. As a further step, we can
determine which one of the two dependencies of the pair
propagator T11, namely, either on the wave vector or on
frequency, turns out to be most important for �B

GMB. The
result of this test is reported in Fig. 12, where the calculation
of �B

GMB at T = 0 with the full wave-vector and frequency
dependence of T11 is compared over an extended coupling
range on the BCS side of unitarity with two partial calcu-
lations, in which T11 has been deprived of either its wave-
vector or frequency dependence. This result shows that the
frequency dependence of T11 is by far the most dominant
one for �B

GMB, thus extending to the broken-symmetry phase
an analogous result obtained in Ref. [13] for the normal
phase.
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V. CONCLUDING REMARKS AND PERSPECTIVES

The motivation behind the work presented in this paper has
been twofold. The first aspect has been, quite generally, to cast
the gap equation for superfluid fermions in an alternative and
physically more appealing form, which would emphasize at
the outset the composite nature of the fermion pairs, in such
a way to make it more direct (and, possibly, more straightfor-
ward) the inclusion of pairing fluctuations beyond mean field
in the gap equation itself. In this context, we have proved that
the gap equation is equivalent to a Hugenholtz-Pines condition
for fermion pairs, which contains (normal and anomalous)
bosoniclike self-energies that dress the bare pair propagator,
in analogy to the original Hugenholtz-Pines condition for
pointlike bosons. The proof rests on the use of many-body di-
agrammatic methods and holds for any choice of a conserving
(or, more generally, just self-consistent) approximation for the
fermionic self-energy that describes the constituent fermions
(with the provision of always including in this choice at least
the Fock-like term which is at the basis of the BCS theory
of superconductivity). To prove this equivalence, unnecessary
details of the interparticle interaction were eliminated by
restricting to a contact interaction.

The second aspect has been to test (and, at the same time,
to take direct advantage of) this new formulation for the gap
equation, to address the long-pending problem of including
the GMB correction to the gap equation in a systematic way.
And this not only in the BCS limit at zero temperature, as it
was done in the original GMB work of Ref. [5], but also at any
temperature in the superfluid phase below Tc as well as across
the whole BCS-BEC crossover. At present, the need to span
this crossover stems from the fact that experimental data with
ultracold Fermi gases and QMC calculations have recently
become available for the superfluid phase of a Fermi gas in
the intermediate-coupling regime between the BCS and BEC
regimes, thereby providing us with the opportunity to compare
these data with the results of our diagrammatic calculations.
In this respect, the quite good agreement that has resulted,
between our diagrammatic calculations that include the GMB
correction and the experimental and QMC data (and this not
only over an extended range of coupling but also as far as
the temperature dependence is concerned), has rewarded us
for the considerable numerical efforts required to bring these
calculations to completion.

It is worth making a few final comments about the meaning
which is attributed to the (superconducting/superfluid) gap �

in related contexts. In the original BCS theory of supercon-
ductivity [2,3], the energy gap � had initially played the role
of a “thermodynamic” parameter, to be eliminated in favor
of the thermodynamic variables (temperature and chemical
potential or density) to minimize the grand-canonical ther-
modynamic potential within a mean-field decoupling. Only
at a later stage the same quantity � was also interpreted as
a “dynamic” pairing gap, inasmuch as it enters the energy
dispersion Ek that appears in the fermionic propagators (13)
and (14) (whereby a window of unaccessible states opens up
in the single-particle density of states). In this way, the value
of � or 2� (with its associated temperature dependence) can
be related to what is measured experimentally through single-
or two-particle properties [53]. However, this equivalence

between thermodynamic and dynamic gap is, in principle, lost
when pairing fluctuations beyond mean field are included.
This inclusion can be done either by diagrammatic or by
functional-integral approaches [54], whereby in both cases
the thermodynamic energy gap � is regarded as a param-
eter of the theory to be self-consistently determined, being
directly related to the nonvanishing of the pair amplitude
〈ψ↑(r)ψ↓(r)〉 in the broken-symmetry phase. As a conse-
quence, direct access to the value of the dynamic pairing gap
would require one to perform additional calculations, in order
to determine the spectrum of the dynamic response function
that corresponds to a given experimental set up. Specifically,
the dynamic pairing gap � was experimentally determined,
in Ref. [49] by examining radio-frequency spectra obtained
with an imbalanced ultracold Fermi gas, while in Ref. [50]
two-photon Bragg spectroscopy on a balanced ultracold Fermi
gas gave access to 2�. In both cases, however, extracting �

from the data has relied on a mean-field-like interpretation
for the role played by � as a single-particle energy gap. The
QMC calculations mentioned in Sec. IV C, on the other hand,
determine the pairing gap � as a single-particle property,
either directly by calculating the difference of the ground-state
energies when the total number of particles is changed by one
unit [47], or by fitting the profile of the single-particle spectral
function with a BCS-like form for the quasiparticle dispersion
Ek [48].

In this context, it appears relevant the transmuting that
was made by the present diagrammatic approach, of the
equation for the (thermodynamic) gap parameter � into a
Hugenholtz-Pines condition for fermion pairs. This is be-
cause, in this way, the gap equation itself was endowed with
a dynamical character, to the extent that the Hugenholtz-Pines
condition guarantees the dynamical Goldstone mode built up
on fermion pairs to be gapless. The same value of � that
makes this possible should then also enter other excitations of
the condensate, like single-particle pair-breaking excitations
(related to �) and the Higgs mode (related to 2�). It is
thus relevant that the experiment carried out in Ref. [50]
(whose results for � we have extensively compared with) was
able to determine simultaneously both the Goldstone mode
and the pair-breaking excitations. In addition, it appears that
an accurate determination of the Higgs mode is nowadays
feasible for an ultracold Fermi gas spanning the BCS-BEC
crossover [51] (see also Ref. [55]). Future work along these
lines should thus apply the present treatment of the GMB
contribution to the gap parameter (possibly extended also at
finite frequency), to determine how it would affect the mixing
between the Goldstone and Higgs modes while evolving along
the BCS-BEC crossover.
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APPENDIX A: SUMMARY OF THE T-MATRIX
APPROXIMATION BELOW Tc

In this Appendix, we briefly recall the main features of the
t-matrix approximation in the broken-symmetry phase [29],
which are systematically used in this paper. Quite generally,
the many-particle T matrix is defined as the solution to the
equation

T (1, 2; 1′, 2′) = �(1, 2; 1′, 2′) +
∫

d3456 �(1, 4; 1′, 3)

×G(3, 6)G(5, 4) T (6, 2; 5, 2′), (A1)

where

�(1, 2; 1′, 2′) = δ�(1, 1′)
δG(2′, 2)

(A2)

is the effective two-particle interaction obtained by functional
differentiation of the fermionic self-energy � with respect
to the single-particle fermionic propagator G. The indices
1, 2, . . . are a shorthand notation for the spatial coordinate r,
imaginary time τ , and Nambu index �.

In particular, to the Fock-like term of Fig. 1(b) there
corresponds the expression

�Fock(1, 1′) = −V (x+
1 − x1′ )

2∑
�,�′=1

τ 3
�1�

G(x1, x1′ )�,�′τ 3
�′�1′

(A3)

with �1 = 1 and �1′ = 2 for the anomalous component we are
interested in. In the expression (A3), τ 3 is a Pauli matrix, the
Nambu indices have been made explicit by setting x = (r, τ )
such that 1 = (x1, �1) and so on, and the interparticle interac-
tion has been generically indicated by V (x − x ′) (although we
shall take eventually V (x − x ′) = v0δ(r − r′)δ(τ − τ ′) with
v0 < 0).

To the choice (A3) of the anomalous self-energy there
corresponds an effective two-particle interaction of the form

�Fock(1, 2; 1′, 2′) = δ�Fock(1, 1′)
δG(2′, 2)

= −(1 − δ�1�1′ )

× τ 3
�1�2′ δ(x1 − x2′ )V (x+

1 − x1′ )

× δ(x1′ − x2)τ 3
�1′ �2

, (A4)

where we have remarked that �1 = �1′ consistently with the
choice (A3). Owing to this restriction, only four elements of
the many-particle T matrix survive in Nambu space, namely,
those with �1 = �1′ and �2 = �2′ . Following Ref. [29], it is
then convenient to adopt the short-hand convention 1 ↔ (� =
1, �′ = 2) and 2 ↔ (� = 2, �′ = 1) to label the nonvanishing
matrix elements of the T matrix. Upon Fourier transforming
from x to q space, the matrix elements of the (2 × 2) T matrix
are eventually given by the expression (11) for the case of
interest of a contact interparticle interaction.

APPENDIX B: POPOV AND GMB BOSONICLIKE
SELF-ENERGIES BELOW Tc IN THE BEC LIMIT

In this Appendix, the BEC (strong-coupling) limit of the
Popov and GMB bosoniclike self-energies in the broken-
symmetry phase is considered in detail. It is shown that

each of these structures contains two distinct diagrammatic
contributions to the scattering length for composite bosons,
which are made up of tight fermion pairs. These two contri-
butions originate from the distinct q behaviors of the normal
component T11(q ) of the t matrix in the broken-symmetry
phase, which are relevant, respectively, over the bosonic (μB)
and fermionic (μ) energy scales, where μB = 2μ + ε0 with
ε0 = (ma2

F )−1 the binding energy of the two-fermion prob-
lem. Specifically, over the bosonic energy scale μB, T11(q )
acquires the Bogoliubov form:

T11(q ) = − 8π

m2aF

q2

4m
+ i�ν + μB

EB (q)2 − (i�ν )2
, (B1)

where EB (q) =
√

( q2

4m
+ μB )

2 − μ2
B is the dispersion relation

for composite bosons [29].
Over the fermionic energy scale μ, on the other hand,

T11(q ) reduces to the asymptotic form [34]

T11(q ) = 1

m
4πaF

− m3/2

4π

√
q2

4m
− i�ν − 2μ

. (B2)

It turns out that, in the diagrammatic expressions of the
Popov and GMB bosoniclike self-energies, the above two
distinct contributions to T11(q ) are alternatively picked up, in
the order, depending on whether T11(q ) is summed over q to-
gether with a companion single-particle fermionic propagator
of the type G0(q ) or G0(−q ). In the latter case, the diagram of
interest contains a subunit corresponding to a scattering pro-
cess that contributes to the scattering length aB for composite
bosons [56] (over and above the Born contribution), as it will
be explicitly confirmed by the examples below.

1. Popov contribution below Tc in the BEC limit

The Popov bosoniclike self-energy in the broken-
symmetry phase is given by the expression (43), where only
the fermionic propagator GBCS

22 (k − q ′) entangles with the ele-
ment T11(q ′) of the T matrix. With the help of the approximate
expansion (25) valid in the BEC limit, two terms are seen to
contribute to the right-hand side of the expression (43). We
thus write

�B
Popov = �B

Popov(I) + �B
Popov(II). (B3)

The first term in Eq. (B3) reads

�B
Popov(I) = −2

∑
k,q

G0(k)2 G0(−k)G0(q − k) T11(q )

� −2
∑

k

G0(k)2G0(−k)2
∑

q

ei�νηT11(q ) (B4)

with η = 0+, where the “small-q” behavior (B1) is picked up
by the sum over q. This contribution is depicted diagram-
matically in Fig. 13(a). With the help of the result (29) and
introducing the definition∑

q

ei�νη T11(q ) = − 8π

m2aF

n′, (B5)

of the noncondensate density n′ in the broken-symmetry
phase [12], one obtains eventually �B

Popov(0)(I)
11 � m a2

F n′.
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FIG. 13. Graphical representation of the Popov (top) and GMB
(bottom) bosoniclike self-energies in the BEC limit, which are pro-
portional to the noncondensate density n′ (left) and to the condensate
density n0 (right). Here, red boxes correspond to the expression
(B1), while blue boxes refer to the expression (B2) that enters the
scattering processes of composite bosons. The yellow semicircles,
which identify the gap parameter �, map onto condensate lines in
the case of pointlike bosons. In these diagrams, we have conformed
to a different convention from the rest of the paper, whereby parallel
arrows of fermionic lines signify the joint propagation of a fermion
pair in the BEC limit where the system is extremely dilute.

Apart from a sign difference, this result coincides with the
expression obtained in Ref. [13] upon approaching Tc from the
normal phase, provided one replaces the total bosonic density
n/2 therein with the noncondensate density n′.

The second term term in Eq. (B3) becomes instead

�B
Popov(II) = 2

(
8π

m2aF

)
n0

∑
k,q

G0(k)2 G0(−k)

×G0(q − k)2 G0(k − q ) T11(q ) (B6)

since �2 = ( 8π
m2aF

)n0 in the BEC limit, where n0 is the con-
densate density such that n/2 = n0 + n′ [12]. This contribu-
tion is depicted diagrammatically in Fig. 13(b). In this case,
the “large-q” behavior (B2) is picked up by the sum over q

in Eq. (B6), and one obtains �B
Popov(0)(II)

11 � −0.42 m a2
F n0

according to a result given in Ref. [13].
By grouping together the two contributions (B4) and (B6),

we write eventually

�B
Popov = (α(Popov) n′ + β (Popov) n0)ma2

F , (B7)

where α(Popov) = 1 and β (Popov) = −0.42. To the extent that
n0 � n′ for a weakly interacting gas of composite bosons that
form in the BEC limit, the term containing n0 is dominant
over that containing n′ as we have also verified numerically in
Fig. 5(b) of the main text.

2. GMB contribution below Tc in the BEC limit

Analogous results can be obtained for the GMB contribu-
tion, for which it is appropriate to calculate directly the differ-
ence �B

GMB(0)11 − �B
GMB(0)12 given by the expression (60).

Also in this case, two relevant contributions there arise once

the expansion (25) for GBCS
22 (k) [and a similar one for GBCS

11 (k)]
is considered in that expression. We write accordingly

�B
GMB = �B

GMB(I) + �B
GMB(II). (B8)

Here, the first term coincides with that obtained for the
normal phase in Ref. [13], with the provision of replacing
n/2 therein by n′ (plus an additional sign changes due to the
different conventions we now use in the broken-symmetry
phase). One then obtains �B

GMB(I) � −0.42 m a2
F n′. This

contribution is depicted diagrammatically in Fig. 13(c).
The second term in Eq. (B8), on the other hand, originates

from the second term in the expansion (25) for GBCS
22 (k)

[as well as from a similar expansion for GBCS
11 (k)], and thus

contains a factor �2 proportional to n0. The two contribu-
tions originating in this way are depicted diagrammatically in
Fig. 13(d) and are seen to coincide with each other by symme-
try considerations. The corresponding analytic expression can
be obtained by a lengthly but straightforward extension of the
method used in Ref. [13] to obtain �B

GMB in the normal phase.
The end result is �B

GMB(II) � 0.20 m a2
F n0.

By grouping together the two contributions for �B
GMB, we

write in analogy to Eq. (B7)

�B
GMB = (α(GMB) n′ + β (GMB) n0)ma2

F , (B9)

where now α(GMB) = −0.42 and β (GMB) = 0.20. This result,
too, has been verified numerically in Fig. 5(b) of the main text.

3. Contributions to the scattering length
of composite bosons below Tc

As evidenced by the way the diagrams of Fig. 13 have been
drawn, the Popov and GMB results (B7) and (B9) can be inter-
preted in terms of specific scattering processes that contribute
to the value of scattering length aB of composite bosons. To
this end, it is convenient to rewrite in the expressions (B7) and
(B9):

m a2
F =

(
m2aF

8π

)
4π (2aF )

m
, (B10)

where the factor (m
2aF

8π
) is required to comply with the structure

of the pair propagator (B1). In addition, the Popov and GMB
results (B7) and (B9) can be grouped together with the results
(27)–(29) at the mean-field level valid in the BEC limit, in
such a way that the modified form of the gap equation (61)
yields for the chemical potential of composite bosons the
expression

μB � 4π (2aF )

2m
[1 + 2(β (Popov) + β (GMB))] n0

+ 8π (2aF )

2m
[α(Popov) + α(GMB)] n′, (B11)

where 1 + 2(β (Popov) + β (GMB)) � 0.56 and α(Popov) +
α(GMB) � 0.58 in terms of the results obtained above.

From the result (B11), we conclude that in the term
proportional to n0 pairing fluctuations beyond mean field
modify the value of the scattering length for composite bosons
from aB = 2aF to aB = 1.12aF . In addition, they introduce a
term proportional to n′ in which aB equals 1.16aF . On the
other hand, if all possible diagrammatic scattering processes
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between composite bosons were included (on top of those
shown in Fig. 13), one would expect the value aB = 0.6aF

to occur in both terms [56].
In this respect, note that in the present work the diagrams to

be included in the modified gap equation have been selected in
the weak-coupling limit, where the Popov and GMB bosonic
self-energies were recognized as the minimal set needed
for dressing the t-matrix approximation in order to recover
the correct value of the gap. It is then remarkable that the
same set of diagrams recovers also the first contributions to the
series of diagrams identified in Ref. [56], which describes the
interaction between composite bosons in the strong-coupling
limit. Alternatively, one could have proceeded in reverse,
starting from the above series of Ref. [56] where only dia-
grams with the smaller number of particle-particle propaga-
tors are retained, so as to construct with them the bosonic
self-energies to be inserted in the modified gap equation. In
this way, the Popov and GMB bosonic self-energies would
have been obtained, together with a number of additional
diagrams of higher-order in the small parameter kF |aF | in the
weak-coupling limit.

Note, finally, that the result (B11) gives support to the
use of the terminology Hugenholtz-Pines condition we have
adopted for the modified form of the gap equation, owing
to its strict analogy with the Hugenholtz-Pines condition for
pointlike bosons [9].

APPENDIX C: NUMERICAL IMPLEMENTATION
OF THE POPOV AND GMB CONTRIBUTIONS

TO THE GAP EQUATION

In this Appendix, we cast the Popov [Eq. (43)] and GMB
[Eq. (47)] expressions for the “normal” bosoniclike self-
energy �B(0)11, as well as the GMB [Eq. (48)] expression for
the “anomalous” bosoniclike self-energy �B(0)12, in a form
that makes it easier to map these expressions for the superfluid
phase with those obtained in Ref. [13] for the normal phase.
[As far as the GMB contribution is concerned, in practice

it will be convenient to calculate directly �B
GMB(0)12 and

the difference �B
GMB(0)11 − �B

GMB(0)12, instead of calculating
�B

GMB(0)11 and �B
GMB(0)12 separately.] This mapping will

speed up considerably the numerical calculation of the rele-
vant bosoniclike self-energies, to the extent that one can count
directly on the experience nurtured with the calculation of
similar quantities in the normal phase, as described in detail
in Appendix A of Ref. [13].

The key feature which allows this mapping to be im-
plemented is the presence of the single-particle fermionic
propagators (13) and (14) taken at the mean-field level (albeit
with the replacement �BCS → �) in the expressions (43),
(47), and (48) that have to be calculated. These propagators,
in turn, can be conveniently rewritten in the following form:

GBCS
11 (k) = u2

k G̃0(k) − v2
k G̃0(−k). (C1)

GBCS
12 (k) = −ukvk(G̃0(k) + G̃0(−k)). (C2)

Here, uk and vk are the BCS factors given by Eq. (15), while
G̃0 given by Eq. (59) has the same form of the noninteracting
fermionic propagator G0(k) = (iωn − ξk )−1 with ξk replaced
by Ek. In addition, the following identities hold:

− 1

�
GBCS

12 (k) = GBCS
11 (k)GBCS

22 (k) − GBCS
12 (k)GBCS

12 (k)

GBCS
12 (k) = � G̃0(k) G̃0(−k), (C3)

which can be combined together to express [cf. Eq. (58)]

GBCS
11 (k)GBCS

22 (k) − GBCS
12 (k)GBCS

12 (k) = −G̃0(k) G̃0(−k),

(C4)

as well as to write

GBCS
11 (k)GBCS

22 (k) = GBCS
12 (k)2 − 1

�
GBCS

12 (k)

= �2G̃0(k)2 G̃0(−k)2 − G̃0(k) G̃0(−k).

(C5)

The identity (C4) was already used in Sec. III to manipulate the GMB expression for the difference �B
GMB(0)11 − �B

GMB(0)12,
in the form of the right-hand side of Eq. (60). Here, we rewrite that expression in an alternative form which is of better use for
numerical calculations, by making the change of variables k̄ = p − k:

�B
GMB(0)11 − �B

GMB(0)12 =
∑
k̄pq

T11(p) T11(q )GBCS
11 (p + q − k̄)GBCS

22 (−k̄)G̃0(k̄ − q ) G̃0(q − k̄) G̃0(p − k̄) G̃0(k̄ − p). (C6)

The form (C1) of GBCS
11 (k) = −GBCS

22 (−k) can further be used on the right-hand side of Eq. (C6), to express the integrand
therein as T11(p) T11(q ) times a linear combination of products of six G̃0 with appropriate arguments. In this way one ends up
with the following expression:

�B
GMB(0)11 − �B

GMB(0)12 = −
∫

dk
(2π )3

∑
p,q

T11(p)T11(q )J (Ek, Ep−k, Eq−k, Ep+q−k; �p,�q ), (C7)

where

J (Ek, Ep−k, Eq−k, Ep+q−k; �p,�q )

= {
u2

ku
2
p+q−k J (Ek, Ep−k, Eq−k, Ep+q−k; �p,�q ) + v2

ku
2
p+q−k J (−Ek, Ep−k, Eq−k, Ep+q−k; �p,�q )

+u2
kv

2
p+q−k J (Ek, Ep−k, Eq−k,−Ep+q−k; �p,�q ) + v2

kv
2
p+q−k J (−Ek, Ep−k, Eq−k,−Ep+q−k; �p,�q )

}
(C8)
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with the short-hand notation

J (Ek, Ep−k, Eq−k, Ep+q−k; �p,�q ) = T
∑
ωn

G̃0(p + q − k) G̃0(k) G̃0(k̄ − q ) G̃0(q − k̄) G̃0(p − k̄) G̃0(k̄ − p), (C9)

in analogy to a similar notation introduced in Appendix A of Ref. [13].
The identity (C5) can be used in conjunction with (C3) to manipulate the expression of �B

GMB(0)12 given by Eq. (48) (where
we note that the two terms on the right-hand side are equal to each other owing to the symmetry of the integrand under the
interchange k ↔ k′). With the change of variables k = q − k̄, k′ = p − k̄, k′′ = −k̄, we obtain

�B
GMB(0)12 = 2

∑
k̄pq

T11(p) T11(q )GBCS
11 (p + q − k̄)GBCS

22 (−k̄)GBCS
11 (q − k̄)GBCS

22 (q − k̄)GBCS
12 (p − k̄)GBCS

12 (p − k̄)

= 2
∑
kpq

T11(p) T11(q )GBCS
11 (p + q − k)GBCS

22 (−k){�4 G̃0(q − k)2 G̃0(k − q )2 − �2 G̃0(q − k) G̃0(k − q )}

× G̃0(p − k)2 G̃0(k − p)2. (C10)

Here, the factor GBCS
11 (p + q − k)GBCS

22 (−k) can be expressed in terms of products of two G̃0 using Eq. (C1), while the squares
of G̃0(q − k) G̃0(k − q ) and of G̃0(p − k) G̃0(k − p) can be reduced to the products of two G̃0 by noting that

(G̃0(k) G̃0(−k))2 =
(

1

ω2
n + E2

k

)2

= − ∂

∂E2
k

(
1

ω2
n + E2

k

)
= − ∂

∂E2
k

(G̃0(k) G̃0(−k)). (C11)

With the definitions (C8) and (C9), the expression (C10) can be eventually cast in the form

�B
GMB(0)12 = 2

∫
dk

(2π )3

∑
p,q

T11(p)T11(q )

{
�4 ∂

∂E2
q−k

∂

∂E2
p−k

J (Ek, Ep−k, Eq−k, Ep+q−k; �p,�q )

+ �2 ∂

∂E2
p−k

J (Ek, Ep−k, Eq−k, Ep+q−k; �p,�q )

}
. (C12)

The Popov bosoniclike self-energy (43) can also be manipulated along similar lines through a repeated use of the identity (C1),
in order to bring it to the form of a linear combination of the corresponding expression valid in the normal phase above Tc as
discussed in Ref. [13], apart again from the replacement G0 → G̃0.

The numerical calculation of the expressions (C7) and (C12) for the GMB contribution (as well as of the corresponding
expression for the Popov contribution) can now proceed following step by step the prescriptions given in detail in Appendix A
of Ref. [13], with the only provision of replacing the cutoff kc defined in Eq. (A4) therein with the new value kc =√

2m[μ2 + max(�, T )2]1/2, to account for the presence of a finite value of � in the broken-symmetry phase.
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