
Software and Reversible Systems:
A Survey of Recent Activities

Claudio Antares Mezzina1(B), Rudolf Schlatte2, Robert Glück3, Tue Haulund4,
James Hoey5, Martin Holm Cservenka6, Ivan Lanese7,

Torben Æ. Mogensen3, Harun Siljak8, Ulrik P. Schultz9, and Irek Ulidowski5

1 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
2 Department of Informatics, University of Oslo, Oslo, Norway

3 DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
torbenm@di.ku.dk

4 A.P. Moller Maersk, Copenhagen, Denmark
5 School of Informatics, University of Leicester, Leicester, UK

6 Practio ApS, Copenhagen, Denmark
7 Focus Team, University of Bologna/Inria, Bologna, Italy

8 CONNECT Centre, Trinity College Dublin, Dublin, Ireland
9 University of Southern Denmark, Odense, Denmark

Abstract. Software plays a central role in all aspects of reversible com-
puting. We survey the breadth of topics and recent activities on reversible
software and systems including behavioural types, recovery, debugging,
concurrency, and object-oriented programming. These have the poten-
tial to provide linguistic abstractions and tools that will lead to safer
and more reliable reversible computing applications.

1 Introduction

The notion of reversible computation has a long history [37] which started by
studies on the thermodynamic cost of irreversible actions. It was noted that
since computation is usually irreversible, information loss causes dissipation of
heat. Therefore it could be possible to execute reversible computations in a heat
dissipation free way. This was the motivation that gave rise to several reversible
computation models such as reversible Turing machines [6] and conservative
logic [22]. Since then there has been a huge effort to introduce reversibility
at the level of programming languages and software systems [7,44], where it
can bring additional benefits towards reliability, robustness and scalability of
conventional software systems. Part of this effort has been carried out by the
Working Group (WG) 2: Software and Systems of the COST Action IC1405
Reversible Computation – Extending Horizons of Computing.

This work has been partially supported by COST Action IC1405 on Reversible Com-
putation - Extending Horizons of Computing.

c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 41–59, 2020.
https://doi.org/10.1007/978-3-030-47361-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_2

42 C. A. Mezzina et al.

Software plays a central role in all aspects of reversible computing. We sur-
vey the breadth of topics and recent activities on reversible software and sys-
tems including behavioural types, recovery, debugging, concurrency, and object-
oriented programming. These have the potential to provide linguistic abstrac-
tions and tools that will lead to safer and more reliable reversible computing
applications.

The rest of the chapter is structured as follows: Sect. 2 reports on reversibility
and behavioural types; Sect. 3 reports on the interplay between reversibility and
recovery for distributed systems; Sect. 4 reports on reversibility and object ori-
entation; Sect. 5 reports on reversing imperative programs with shared memory
concurrency and its possible application on reversible debugging; Sect. 6 reports
on reversibility and message passing systems, with a special focus on reversible
(core) Erlang and its reversible debugger. Section 7 reports on reversibility and
control theory. Section 8 concludes the chapter.

2 Behavioural Types

The interest in behavioural types [35] stems from the fact that it is easier to work
with a system whose behaviour (in terms of communications) is strongly disci-
plined by a type theory. Among behavioural types we distinguish: binary session
types and contracts, multiparty session types and choreographies. Choreographies
will be discussed in Sect. 3.

Reversibility and monitored semantics for binary session types have been
recently studied by Mezzina and Pérez [46,47,49]. In their work, they propose
a monitor as memory mechanism in which information about the monitor of a
process can be used to enable its reversibility. Moreover, by adding modalities
information at the level of session types, reversibility can be controlled.

In the context of multiparty session types, global types describe the message-
passing behaviour of a set of participants in a system from a global point of view.
A global type can be projected onto each participant so as to obtain local types,
which describe individual contributions to the global protocol. The work [48]
extends global and local types to keep track of the stage of the protocol that
has been already executed; this enables reversible steps in an elegant way. The
authors develop a rigorous process framework for multiparty communication,
which improves over prior works by featuring asynchrony, decoupled rollbacks
and process passing. In this framework, concurrent processes are untyped but
their forward and backward steps are governed by monitors. The main technical
result is that the developed multiparty reversible semantics is causally-consistent.
Finally, [15] proposes a Haskell implementation of the asynchronous reversible
operational semantics for multiparty session types proposed in [48]. The imple-
mentation exploits algebraic data types to faithfully represent three core ingre-
dients: a process calculus, multiparty session types, and forward and backward
reduction semantics. This implementation bears witness to the convenience of
pure functional programming for implementing reversible languages.

Software and Reversible Systems: A Survey of Recent Activities 43

In a series of works [11,16] multiparty session types (aka global types) have
been enriched with checkpoint labels on choices that mark points of the proto-
col where the computations may roll back. In [16], a simple model is developed
in which rollback could be done any time after a participant has crossed the
checkpointed choice. In [11] a more refined model is presented, in which the pro-
grammer can define points where the computation may revert to a checkpointed
label, and rollback has to be triggered by the participant that made the decision.

Behavioural contracts are abstract descriptions of expected communication
patterns followed by either clients or servers during their interaction. Behavioural
contracts come naturally equipped with a notion of compliance: when a client and
a server follow compliant contracts, their interaction is guaranteed to progress or
successfully complete. In [5] two extensions of behavioural contracts are studied:
retractable contracts dealing with backtracking and speculative contracts dealing
with speculative execution. These two extensions give rise to the same notion of
compliance. As a consequence, they also give rise to the same subcontract rela-
tion, which determines when one server can be replaced by another while preserv-
ing compliance. Moreover, compliance and subcontract relation are both decid-
able in quadratic time. The above paper also studies the relationship between
retractable contracts and calculi for reversible computing.

3 Recovery

Distributed programs are hard to get right because they are required to be open,
scalable, long-running, and tolerant to faults. This problem is exacerbated by the
recent approaches to distributed software based on (micro-)services where dif-
ferent services are developed independently by disparate teams. In fact, services
are meant to be composed together and run in open context where unpredictable
behaviours can emerge. This makes it necessary to adopt suitable strategies for
monitoring the execution and incorporate recovery and adaptation mechanisms
to make distributed programs more flexible and robust. The typical approach
that is currently adopted is to embed such mechanisms in the program logic,
which makes it hard to extract, compare and debug.

An approach that employs formal abstractions for specifying failure recovery
and adaptation strategies has been proposed in [10]. Although implementation-
agnostic, these abstractions would be amenable to algorithmic synthesis of code,
monitoring and tests. Message-passing programs (à la Erlang, Go, or MPI) are
considered, since they are gaining momentum both in academia and industry.
In [20] an instance of the framework proposed in [10] is given. More precisely,
this approach imbues the communication behaviour of multi-party protocols with
minimal decorations specifying the conditions triggering monitor adaptations. It
is then shown that, from these extended global descriptions, one can (i) synthe-
sise actors implementing the normal local behaviour of the system prescribed by
the global graph, but also (ii) synthesise monitors that are able to coordinate a
distributed rollback when certain conditions (denoting abnormal behaviour) are
met. The synthesis algorithm produces Erlang code. For each role in the global

44 C. A. Mezzina et al.

description, two Erlang actors are generated: one actor implements the normal
(forward) behaviour of the system and a second one (the monitor) is in charge
of implementing the reversible behaviour of the role. When certain conditions
are detected at runtime, the monitors will coordinate with each other in order
to bring back the system if possible. One interesting property of this approach is
that the two semantics are highly decoupled, meaning that the system is always
able to normally execute (i.e., going forward) even in case of a monitor crash.

A static analysis, based on multiparty session types, to efficiently compute a
safe global state from which to recover a system of interacting processes has been
integrated with the Erlang recovery mechanism in [50]. From a global description
of the program communication flow, given in multiparty protocol specification,
causal dependencies between processes are extracted. This information is then
used at runtime by a recovery mechanism, integrated in Erlang, to determine
which process has to be terminated and which one has to be restarted upon a
node failure. Experimental results indicate that the proposed framework outper-
forms a built-in static recovery strategy in Erlang when a part of the protocol
can be safely recovered.

In [26] a rollback operator, based on the notion of causal-consistent reversibil-
ity, is defined for a language with shared memory. A rollback is defined as
the minimal causal-consistent sequence of backward steps able to undo a given
action. The paper [69] explores the relationship between the Manetho [17] dis-
tributed checkpoint/rollback scheme (based on causal logging) and a reversible
concurrent model of computation based on the π-calculus with imperative roll-
back called roll-π [38]. A rather tight relationship between rollback based on
causal logging as performed in Manetho and the rollback algorithm underlying
roll-π is shown. The main result is that roll-π can faithfully simulate Manetho
under weak barbed simulation, but that the converse only holds if possible roll-
backs are restricted.

4 Reversibility and Object-Oriented Languages

Object-oriented (OO) programming uses classes as a means to encapsulate
behaviour and state. Classes permit programmers to define new abstractions,
such as abstract data types. The key elements of reversible OO languages were
initially introduced with a prototype of the Joule language [60] and subsequently
formally described for the ROOPL language [29]. Joule and ROOPL demonstrate
that well-known object-oriented concepts such as encapsulation, inheritance, and
virtual methods can be captured reversibly by extending a base Janus-like imper-
ative language [71] with support for such features.

This approach allows standard OO programming patterns, such as the fac-
tory and iterator design patterns [23], to be used reversibly [59], and well-known
structures such as an OO-style collection hierarchy (i.e., OO abstract data types
but with reversible operations) can similarly be implemented in such languages.
Reversible data types [13], that is data structures with all of its associated oper-
ations implemented reversibly, are enabled by dynamic allocation of constructor

Software and Reversible Systems: A Survey of Recent Activities 45

terms in the heap of a reversible machine [1]. Data structures are safe in OO
languages because they require no explicit pointer arithmetic in user programs,
which is notoriously error prone.

Memory handling is a key concern for reversible object-oriented languages.
The original Joule prototype relied on static stack allocation of objects, which
does not permit full OO programming: common patterns such as factories are for
example not possible [60]. Joule was subsequently extended into JouleR which
uses region-based [24,66] memory management [59]. Regions are sufficient to sup-
port the implementation of standard OO programming patterns and a collection
hierarchy. The initial presentation of the ROOPL language relied exclusively on
stack allocation [29], and was subsequently extended with a reversible heap-based
memory manager [13] based on Knuth’s Buddy Memory algorithm [36]. With this
extension, data structures such as min-heaps and circular buffers can be imple-
mented [13]. The language is reversibly universal (r-Turing complete), which
means it has the computational power of reversible Turing machines (cf. [71]).
See Figs. 1, 2, and 3 for example programs in Joule and ROOPL, which will be
described in the next section.

4.1 Object Orientation and Data Structures

As exemplified by the representation of abstract-syntax trees in the reversible
Janus self-interpreter [73], even complex data structures can be expressed in
reversible languages with simple type systems including only integers and arrays.
However, more effort is required to represent and manipulate the data structures
and as the resulting code base grows, the problem exacerbates.

Reversible object-oriented languages allow for easier code reuse and exten-
sibility by encapsulating data and methods in classes, thereby also abstracting
from the underlying memory model of the reversible machine. See Figs. 1 and 2
for two classic object-oriented examples in Joule and ROOPL, respectively.

The example in Joule in Fig. 1 models a single point in a two-dimensional
space by a class Point with two integer coordinates (x, y) and two methods that
translate a point by adding an integer displacement to the respective coordinate
(add to x, add to y). Here, this.x refers to the x-coordinate of the point to
which the displacement parameter x is added when add to x is applied to a
point object.

The example in ROOPL in Fig. 2 illustrates a simple class hierarchy of
geometric shapes in a two-dimensional space. The two shapes Rectangle and
Circle inherit the reference point (x, y) from their superclass Shape and extend
it with the length and width (l, w) in the case of Rectangle and with the
radius r in the case of Circle. The two subclasses add a class-specific method
getArea that defines how to calculate the area of the respective shape. All meth-
ods defined in these three classes are implemented by reversible statements that
are similar to those in Janus and reversible flowcharts [71,73]. Methods can also
be implemented using reversible control-flow operators (conditionals, iteration)
and recursive method calls and uncalls, as illustrated in the next example. It is

46 C. A. Mezzina et al.

Fig. 1. Example Joule class modelling a single point in two-dimensional space, origi-
nally from [60]

Fig. 2. Example ROOPL class hierarchy modeling basic geometric shapes in two-
dimensional space, originally from [13]

important to note that a reversible method cannot overwrite any of the encap-
sulated data, only perform a reversible update [2]. This makes reversible OO
languages different from their mainstream counterparts, such as Java or C++,
which can perform destructive updates.

The reversible min-heap in Fig. 3 serves as an example of the expressiveness
afforded by the richer type systems and memory models of these languages. The
insert method reversibly inserts a node in the heap, where the only output
is the depth of the inserted node, maintaining the min-heap property in the
process. This procedure can be used to reversibly extract the minimal value of a
data set. The class Node recursively defines a binary tree structure by including
two nodes, left and right. The integer v is the value of a node.

The insert method makes use of a reversible conditional if...fi (lines 5 to
16), which means it contains not only an entry predicate (v < w) but also an exit
predicate (counter > 0). As usual in reversible languages, both predicates are
checked at runtime: both must be true when control passes along the then-branch
and both must be false when control passes along the else-branch; otherwise, the

Software and Reversible Systems: A Survey of Recent Activities 47

Fig. 3. Recursive min-heap value insertion implemented in ROOPL using reversible
updates and reversible conditionals, originally from [13]

program is undefined (cf. [71,73]). Method calls and uncalls refer to an object.
For example, call left::insert(w, counter) recursively applies the insert
method to the left node left with the integer parameters w and counter. This
allows to work with recursively-defined data structures, which in our case are
binary trees.

Objects, which are instances of the classes defined in a program, can be
allocated and deallocated at runtime in any order using explicit statements. For
example, a new object of class node is created by statement new Node left
where the object’s reference is assigned to left (line 7). When a new object is
created all its fields are initialised with default values, here integer v is initialised
with zero and references left and right with the null pointer nil.

Reversible programming demands certain sacrifices compared to mainstream
programming because data cannot be overwritten and join points in the control
flow require explicit tests (e.g., the exit predicate in if...fi), which can also be
seen in the case of the insert method. As a consequence, conventional algorithms
and data structures need to be rethought in a reversible context regardless of
the data structures offered by a reversible language [13,27,28,72]. However, the
abstraction and expressiveness of OO reversible data structures ease the task.

With the addition of Joule and ROOPL, reversible programs can now be
expressed in a modern programming paradigm like OO programming, with
dynamic memory management of variably sized records and programmer-defined
recursive data structures that can grow to an arbitrary size at runtime. These
new features significantly broaden the applicability of reversible languages and
support increased complexity in reversible programs.

5 Reversing Imperative Concurrent Programs

Adding reversibility to irreversible imperative languages has been studied for
many years, for example in [9,52,57,58,70]. A proof of correctness is often

48 C. A. Mezzina et al.

missing from work in this area. Hoey and Ulidowski introduce a small impera-
tive while language and describe a state-saving approach to reversing executions
[33]. This was then extended to support an imperative concurrent language,
using identifiers to capture the specific interleaving order and to ensure state-
ments are reversed in the correct order [34]. The proof of correctness provided
shows that the reversal is both correct and garbage free. A simulation tool imple-
menting this approach is mentioned in [32] and described in more detail in [30].
Performance evaluation carried out using this simulator indicates that overheads
associated with saving and using of reversal information is reasonable. Finally,
a link between this simulator and debugging is explored in [32].

5.1 Language and Program State

The imperative language used in this approach contains assignments, condi-
tional statements (branching) and loops (iteration), much like a while language.
Details on reversing this imperative while language are available in [33]. This
is later extended with block statements containing local variable or procedure
declarations, as well as (potentially recursive) procedure calls. With the ability
for multiple variables to share a name as a result of local variables, the syntax
of this language contains construct identifiers (unique names given to complex
constructs including block statements) and paths (sequence of block names in
which a statement resides capturing the position needed for evaluation). Block
statements allow the declaration of local variables or procedures, and as such are
extended to “clean” up at the end of its execution by “un-declaring” these via
removal statements. The final addition is that of interleaving parallel composi-
tion, where the execution of two (or more if nested) programs can be interleaved.
The syntax of this language follows.

P ::= ε | S | P; P | P par P

S ::= skip I | X = E (pa,A) | if In B then P else Q end (pa,A) |
while Wn B do P end (pa,A) | begin Bn BB end |
call Cn n (pa,A) | runc Cn P end

BB ::= DV; DP; P; RP; RV

DV ::= ε | var X = v (pa,A); DV DP ::= ε | proc Pn n is P end (pa,A); DP

RV ::= ε | remove X = v (pa,A); RV RP ::= ε | remove Pn n is P end (pa,A); RP

The program state is represented as a series of environments, including the
variable environment γ (linking variables to memory locations), the data store
σ (linking memory locations to values), the procedure environment μ (storing
multiple copies of procedure bodies being executed in parallel) and the while
environment β (storing multiple copies of loops being executed in parallel) [34].

Software and Reversible Systems: A Survey of Recent Activities 49

5.2 Annotation, Inversion and Operational Semantics

The considered approach is state-saving, where any information required for
inversion that is lost during traditional execution is saved [52]. Two versions of
an original program are produced. The first, named the annotated version and
generated via annotation, performs the expected forwards execution and saves
any required information, named reversal information. A design choice made
to aid the correctness proof is to store all reversal information in an auxiliary
store δ separate to the program state. This store is a collection of stacks (ideal for
reversal due to their FIFO nature), one for each variable name (all versions share
a stack to handle races), two stacks for loops (one for capturing the loop count
and one for identifiers), one for conditional statements and one for procedure
calls.

The information required depends on the type of statement. Each assignment
is destructive as the old value of the variable is lost. This old value is crucial
for reversal, thus it is saved into the stack for that variable name on δ prior to
each assignment. Conditions are not guaranteed to be invariant, meaning this
approach cannot rely on re-evaluation during inversion to behave correctly. For
each conditional statement, the result of evaluation is saved onto the stack for
conditionals on δ. Loops are handled similarly, with a sequence of booleans saved
to capture the number of iterations (onto the first stack for loops). A second
design choice made is to save a sequence over implementing a loop counter in
order to aid the correctness proof, avoiding modifying the loop code and therefore
the behaviour with respect to the program state. Lastly, the final value of a local
variable is saved prior to its removal, into the stack for that variable name.

Supporting interleaving parallel composition also requires further informa-
tion to be saved. Interleaving allows different execution orders to be followed,
which must then be correctly inverted. The specific execution order is captured
using identifiers similarly to Phillips and Ulidowski [55,56]. The next identifier is
assigned to a statement as it executes, stored into a stack of integers associated
with each required statement during annotation. Consider the small example
shown in Fig. 4 and the executed forwards version shown in Fig. 4a. This is a
simple interleaving of three statements, captured via the identifiers 1–3, where
the first statement of the right hand side is executed first, before interleaving
to the left and finally completing the right. Assuming X and Y are initially 1,
this interleaving produces the final state X= 4 and Y= 3. These identifiers also
create a link between a statement and its reversal information, as all entries on
δ contain the corresponding identifier. For example, the stack X on δ will contain
the pair (2,1) (statement with identifier 2 overwrote the value 1). For loops or
procedure calls (potentially multiple copies of the same code in execution across
a parallel), identifiers are assigned to the specific copy within μ or β. Since local
copies are removed at the end of their execution, the final example of reversal
information is the identifiers assigned to such a copy (saved onto the second
stack for loops or the stack for calls).

50 C. A. Mezzina et al.

Fig. 4. Identifier use example

The execution of an annotated program is defined in terms of small step
operational semantics, where each rule performs the expected forwards execution
alongside the saving of reversal information and assigning of an identifier [34].

The second version of an original program produced, called the inverted ver-
sion, is generated via inversion and has an inverted statement order with all dec-
laration statements changed to removals and vice versa. This forwards-executing
program simulates reversal using the saved information and identifiers.

Throughout the inverse execution, the decision of which statement to execute
next (that is, invert) is made using the identifiers in descending order to force
backtracking order. Returning to the example in Fig. 4, the identifiers are used in
the order 3–1, meaning any incorrect inverse execution path cannot be followed.
Each statement also uses the identifiers to access the correct reversal information.
Assignments will no longer evaluate the expression and instead retrieve the old
value from δ. From the example in Fig. 4b, execution of the statement with
identifier 2 uses the pair (2,1) to restore the variable to 1. Similarly conditionals
and loops retrieve the result of condition evaluation from δ. Declaring a local
variable during an inverse execution initialises it to the final value it held during
forward execution (retrieved from the stack). Lastly, whenever a copy of a loop
or procedure body is made during the inverse execution, it is populated with the
required identifiers from δ.

As before, inverse execution is defined by small step semantics, with each rule
using identifiers and reversal information to undo the effects of a statement (or
step). Complete inverse execution undoes the effects of all statements, producing
a state equivalent to that of prior to the forward execution. We refer to the
previous property, coupled with the property that all reversal information is
consumed (the approach is garbage free), as correct inversion.

5.3 Correctness of Annotation and Inversion

This approach is proved to perform correct reversal information saving as well
as correct and garbage-free inversion. The two results are described in [34] and
extended to hold for all programs including parallel composition in [30]. The
first, named the annotation result, states that an original program and its anno-
tated version executed on the same initial program state will produce equivalent
final program states, with the obvious exception of the annotated execution
populating the auxiliary store with the required reversal information.

The second result, named the inversion result, states that provided an anno-
tated execution has been performed producing the final program state and auxil-
iary store, then the corresponding inverse execution ran on these final stores will

Software and Reversible Systems: A Survey of Recent Activities 51

produce a program state and auxiliary store equivalent to that of prior to the
forwards execution. This means the inverse execution reverses all effects of the
original program, as well as using all of the reversal information saved (the app-
roach is garbage free). These two results together show that no state is reached
that was not originally reached in either the forward or reverse execution.

5.4 Simulator and Performance Evaluation

A simulator implementing this approach has been developed, originally for the
purposes of testing [30]. The simulator reads a program written in a simplified
language (omitting paths, construct identifiers and removal statements as these
can be automatically inserted), parses it and sets up the initial program state.
Key features include complete or step-by-step execution, viewable program state
and reversal information at any point, random or manual interleaving and record
mode (storing further details including interleaving decisions/rule applications).

This simulator has been used for performance evaluation. Design choices
(mentioned above) have been made to aid the proof and may not be the most
efficient solution, and no optimisation techniques have yet been applied. This
analysis concerns the overhead associated with annotation (time required to
save reversal information), and the overhead associated with inversion (inverse
execution time compared to annotated forward execution time). From figures
in [32], the annotated execution experiences a reasonable overhead of between
4.2%–13.4%, while the inverted execution experiences an again reasonable over-
head of between −14.7%–1.9%. As expected, the inverse execution is sometimes
faster as there is no evaluation (values retrieved from δ).

5.5 Application to Debugging

Many works including [12,18,25,40,41,68] have described how reversibility can
be beneficial for debugging. The link between this approach to reversibility and
debugging is explored in [32], showing that this simulator (not originally devel-
oped as a debugger) helps with finding errors. Benefits include bugs being repro-
ducible should a user wish to re-execute a program forwards (for example, a
randomly interleaved program experiences a bug that can only be reproduced
by luck, with inversion obviously still possible), the ability to pause executions
and to view program state at any point. In [32] and [31], this simulator is used
to debug an example atomicity violation.

6 Reversible Debugger for Message Passing Systems

A relevant research thread in WG2 has tackled the problem of debugging concur-
rent message-passing applications using the so called causal-consistent approach.
Causal-consistent reversibility [14] stems from the observation that in concur-
rent systems, events (e.g., sending and receive of messages) are not always totally
ordered since there may be no unique notion of time. Even if events are totally

52 C. A. Mezzina et al.

ordered in principle, such an order is not relevant since it depends on the speed
of execution of the various processes, and it is difficult to observe and even more
to control. Instead, events naturally form a partial order dictated by causality:
causes precede their consequences, while there is no order between concurrent
events. The corresponding notion of reversibility, causal-consistent reversibility,
allows one to undo any event, provided that its consequences, if any, are undone
beforehand. A main property of this notion of reversibility is that states reachable
via backward computation are also reachable via forward computation from the
initial state, hence reversibility does not introduce new states but only provides
different ways of exploring states of forward computations.

This observation led to the development of causal-consistent reversible debug-
ging [25], which allows one to explore a concurrent computation backward and
forward, looking for the causes of a given misbehaviour, e.g., a wrong value
printed on the screen. Indeed, a misbehaviour is due to a bug, that is a wrong
line of code, and the execution of the wrong line of code is a cause of the misbe-
haviour. More precisely, causal-consistent reversible debugging provides primi-
tives to undo past events, including all and only their consequences. For instance,
if variable x has a wrong value, one can go back to where variable x has been
assigned. If the wrong value is in a message payload, one can go back where the
message has been sent. By iterating this technique, one can look for causes of
the misbehaviour until the bug is found.

Inside WG2 the research focused on how to apply this approach to a real
programming language, and Erlang was the language of choice. Erlang features
native primitives for message-passing concurrency, and has been used in relevant
applications such as some versions of Facebook chat [45]. For simplicity, the
research thread does not deal directly with Erlang, but with Core Erlang [8],
which is an intermediate step in Erlang compilation, essentially removing some
syntactic sugar from Erlang.

The research thread started with an investigation on the reversible semantics
of Core Erlang, aiming at defining a rollback operator to undo a past action in
a causal-consistent way [51]. The study was further developed in [42], where
relevant properties of the approach were proved, e.g., that the rollback operator
indeed satisfies the constraints of causal-consistent reversibility. The focus on
debugging started in [41], where CauDEr [40], a Causal-consistent Debugger for
(core) Erlang, was described. CauDEr provided the primitives above for causal-
consistent reversible debugging, paired with primitives for forward execution and
with a graphical interface to show the runtime structure of the program under
analysis and the relevant concurrent events in the computation.

A main limitation of CauDEr was that if the user went too far back, there
was no automatic way to go forward again with the guarantee to replay the
misbehaviour under analysis. This is a relevant problem, since in concurrent
systems misbehaviours depend on the scheduling, and of course it is not possible
to debug a misbehaviour that does not appear when executing the wrong applica-
tion inside the debugger. To solve this problem, the research studied techniques
for tracing a computation and replay it inside the debugger. This lead to the

Software and Reversible Systems: A Survey of Recent Activities 53

definition of a new form of replay, called causal-consistent replay [43], which
allows one to redo a future event of a traced computation, including all and
only its causes. One can notice that causal-consistent reversibility and causal-
consistent replay are dual, and together they allow one to explore a wrong com-
putation back and forward, always concentrating on events of interest. Also, this
approach ensures that if a misbehaviour occurred in the traced computation then
the same misbehaviour occurs also in each possible replay (provided that exe-
cution goes forward enough). A tracer for Erlang compatible with CauDEr was
produced and is available at [39]. An example of application of this framework
to a simple Erlang program can be found in [21].

7 Control Theory

The challenge of reversible control is its interaction with the irreversible object
of control. Even when the object is reversible, (e.g. motion of a fluid) often the
ability to reverse it is not controllable [61]. Disturbance in the system can be fully
reversible, but inacessible to the control mechanism. We explored the elements of
reversible control in an applied setting of wireless communications, through two
different realistic examples, one of resource management in large antenna arrays,
and one of wave time reversal in underwater acoustic communications [62].

In the first example [64], we perform antenna selection in a large distributed
antenna array which serves as a distributed base station in a next generation
cellular network: at any point in time, we want to use n out of m available anten-
nas to serve k < n users in the cell. The subset of antennas to be used is selected
so to maximise the Shannon capacity of the communication channel between
the base station and the users, which is a non-trivial optimisation task: select-
ing simply the antennas with the strongest signal does not help as they tend
to be correlated and not contributing to the diversity in the channel. We pro-
pose a solution using reversing Petri nets [53] with controlled transitions: tokens
(indicating antennas that are “on”) move between places (antennas) based on
simple calculations at the transitions (do the channel sum rates increase with the
change of token position, i.e. reconfiguration of the array?) [54]. The results of
experiments with varying number of users show that this distributed approach
delivers results on par with computationally demanding centralised approaches,
and tend to outperform the competition as the number of users increases. The
approach we proposed here is not limited to the problem of antenna selection:
in the ongoing work, we extend it to general resource management in wireless
setting, using the advantages offered by having a reversible control algorithm,
namely fault recovery, partial reversal of the system and repetitive motion han-
dling [65].

In the second example, we focus on wave time reversal, the idea of recon-
structing a wave (e.g. an acoustic pulse) by measuring the incoming wave at the
boundary of a cavity and then re-transmitting the collected samples in reverse,
producing a wave that reconverges at the original source [19]. It is straightforward
to see how this scheme can be used to establish a communication channel, and

54 C. A. Mezzina et al.

hence be used in a communication scheme in e.g. underwater acoustic commu-
nications. We selected sound propagation in water as an example of a reversible
(but rarely reversed) medium under control, and proposed a reversible hardware
architecture for this task [63]. Here we recognised another control challenge: dis-
turbance compensation. If there is a source of disturbance in the medium (e.g.
strong stream in the water) the reconstructed pulse will be distorted and hence
the quality of communication will degrade. If we cannot remove the source of
disturbance, but are in position to control a different part of the environment
based on measurements from sensors in the medium, how can we improve the
quality of wave time reversal? The more general question we pose here is whether
control of a reversible medium is simpler than control of an irreversible one, and
the model we chose to work on is one provided by reversible cellular automata.
These automata, in the form of lattice gases, have been extensively used for
fluid modelling. In cellular automata, the control problem revolves around the
question of reaching a certain configuration from an arbitrary initial configura-
tion [3]. In our consideration of reversible cellular automata, instead of observing
the question of reaching a microstate, we investigate the problem of reaching a
statistical macrostate in a region of the automaton [4]. The idea of reversible
automata control being easier than the general automata control stems from the
fact that states in reversible automata have unique predecessors, hence minimis-
ing the combinatorics of the arc of transition between an initial and a final state,
which is an important element of cellular automata control.

8 Conclusions

We have summarised the main results obtained by the Working Group 2 on Soft-
ware and System of the COST Action IC1405. In these four years the WG was
active and produced important results, as witnessed by this document. Research
in applying reversibility to software and systems is ongoing, and some of the
guidelines and topics indicated in the MOU [67] were not exhaustively investi-
gated during the lifetime of WG2. The interplay between reversibility and the so
called recovery patterns deserves to be further investigated. Also, the integration
of reversibility in software development is still at an early stage.

Acknowledgement. The WG2 has been led by Claudio Antares Mezzina and Rudolf
Schlatte. For both of us, it has been an enormous honour to lead such WG, to organise
the WG meetings and to interact with all the people involved in the working group.
A witness of the liveness of the working group is the list of authors who happily con-
tributed to this document. We would also thank Irek Ulidowski (chair) and Ivan Lanese
(vice-chair) who wisely have led this COST Action and the Management Committee
(MC) who appointed us as leader and co-leader (respectively) of this WG.

Software and Reversible Systems: A Survey of Recent Activities 55

References

1. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of construc-
tor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol.
7948, pp. 96–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38986-3 9

2. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74510-5 9

3. Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys.
Rev. E 86(6), 066201 (2012)

4. Bagnoli, F., Siljak, H.: Control of reversible cellular automata (2019, Manuscript
in preparation)

5. Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative
contracts. Sci. Comput. Program. 167, 25–50 (2018)

6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

7. Bishop, P.G.: Using reversible computing to achieve fail-safety. In: Proceedings the
Eighth International Symposium on Software Reliability Engineering, pp. 182–191,
November 1997

8. Carlsson, R., et al.: Core Erlang 1.0.3. Language specification (2004). https://www.
it.uu.se/research/group/hipe/cerl/doc/core erlang-1.0.3.pdf

9. Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224–253 (1999)

10. Cassar, I., Francalanza, A., Mezzina, C.A., Tuosto, E.: Reliability and fault-
tolerance by choreographic design. In: Francalanza, A., Pace, G.J. (eds.) Proceed-
ings Second International Workshop on Pre- and Post-Deployment Verification
Techniques, PrePost@iFM 2017. EPTCS, vol. 254, pp. 69–80 (2017)

11. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Concurrent reversible sessions.
In: Meyer, R., Nestmann, U. (eds.) International Conference on Concurrency The-
ory, CONCUR 2017. LIPIcs, vol. 85, pp. 30:1–30:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

12. Chen, S.-K., Fuchs, W.K., Chung, J.-Y.: Reversible debugging using program
instrumentation. IEEE Trans. Softw. Eng. 27, 715–727 (2001)

13. Cservenka, M.H., Glück, R., Haulund, T., Mogensen, T.Æ.: Data structures and
dynamic memory management in reversible languages. In: Kari, J., Ulidowski, I.
(eds.) RC 2018. LNCS, vol. 11106, pp. 269–285. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99498-7 19

14. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

15. de Vries, F., Pérez, J.A.: Reversible session-based concurrency in Haskell. In: Pa�lka,
M., Myreen, M. (eds.) TFP 2018. LNCS, vol. 11457, pp. 20–45. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-18506-0 2

16. Dezani-Ciancaglini, M., Giannini, P.: Reversible multiparty sessions with check-
points. In: Gebler, D., Peters, K. (eds.) Proceedings Combined 23rd International
Workshop on Expressiveness in Concurrency and 13th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2016. EPTCS, vol. 222, pp. 60–74 (2016)

https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-030-18506-0_2

56 C. A. Mezzina et al.

17. Elnozahy, E.N., Zwaenepoel, W.: Manetho: transparent rollback-recovery with low
overhead, limited rollback, and fast output commit. IEEE Trans. Comput. 41(5),
526–531 (1992)

18. Engblom, J.: A review of reverse debugging. In: System, Software, SoC and Silicon
Debug, pp. 1–6. IEEE (2012)

19. Fink, M.: Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 39(5), 555–566 (1992)

20. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

21. Francalanza, A., Mezzina, C.A., Tuosto, E.: Towards choreographic-based mon-
itoring. In: Ferreira, C., Lanese, I., Schultz, U., Ulidowski, I. (eds.) Reversible
Computation: Theory and Applications. LNCS, vol. 12070. Springer, Heidelberg
(2020)

22. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)
23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)
24. Gay, D., Aiken, A.: Language support for regions. In: Proceedings of the ACM SIG-

PLAN 2001 Conference on Programming Language Design and Implementation,
PLDI 2001, pp. 70–80. ACM (2001)

25. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

26. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebr. Methods Program. 88, 99–120 (2017)

27. Glück, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative
language. Comput. Softw. 33(3), 108–128 (2016)

28. Glück, R., Yokoyama, T.: Constructing a binary tree from its traversals by
reversible recursion and iteration. Inf. Process. Lett. 147, 32–37 (2019)

29. Haulund, T., Mogensen, T.Æ., Glück, R.: Implementing reversible object-oriented
language features on reversible machines. In: Phillips, I., Rahaman, H. (eds.) RC
2017. LNCS, vol. 10301, pp. 66–73. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59936-6 5

30. Hoey, J.: Reversing imperative concurrent programs. Ph.D. thesis, University of
Leicester (2020)

31. Hoey, J., Lanese, I., Nishida, N., Ulidowski, I., Vidal, G.: A case study for reversible
computing: reversible debugging. In: Ferreira, C., Lanese, I., Schultz, U., Ulidowski,
I. (eds.) Reversible Computation: Theory and Applications. LNCS, vol. 12070.
Springer, Heidelberg (2020)

32. Hoey, J., Ulidowski, I.: Reversible imperative parallel programs and debugging.
In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497, pp. 108–127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2 7

33. Hoey, J., Ulidowski, I., Yuen, S.: Reversing imperative parallel programs. In: Peters,
K., Tini, S. (eds.) Proceedings Combined 24th International Workshop on Expres-
siveness in Concurrency and 14th Workshop on Structural Operational Semantics,
EXPRESS/SOS. EPTCS, vol. 255, pp. 51–66 (2017)

34. Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and pro-
cedures. In: Pérez, J.A., Tini, S. (eds.) Proceedings Combined 25th International
Workshop on Expressiveness in Concurrency and 15th Workshop on Structural
Operational Semantics, EXPRESS/SOS. EPTCS, vol. 276, pp. 69–86 (2018)

https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-030-21500-2_7

Software and Reversible Systems: A Survey of Recent Activities 57

35. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

36. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms.
Addison-Wesley, Boston (1998)

37. Landauer, R.: Irreversibility and heat generated in the computing process. IBM J.
Res. Dev. 5, 183–191 (1961)

38. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

39. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr tracer website. https://
github.com/mistupv/tracer/

40. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr website. https://github.
com/mistupv/cauder

41. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7 16

42. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebr. Methods Program. 100, 71–97 (2018)

43. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message
passing programs. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol.
11535, pp. 167–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21759-4 10

44. Leeman Jr., G.B.: A formal approach to undo operations in programming lan-
guages. ACM Trans. Program. Lang. Syst. 8(1), 50–87 (1986)

45. Letuchy, E.: Erlang at Facebook (2009). http://www.erlang-factory.com/
conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy

46. Mezzina, C.A., Pérez, J.A.: Reversible semantics in session-based concurrency. In:
Proceedings of the 17th Italian Conference on Theoretical Computer 2016, Volume
1720 of CEUR Workshop Proceedings, pp. 221–226 (2016). CEUR-WS.org

47. Mezzina, C.A., Pérez, J.A.: Reversible sessions using monitors. In: Proceedings
of the Ninth Workshop on Programming Language Approaches to Concurrency-
and Communication-cEntric Software, PLACES 2016. EPTCS, vol. 211, pp. 56–64
(2016)

48. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a
monitors-as-memories approach. In: Vanhoof, W., Pientka, B. (eds.) Proceedings
of the 19th International Symposium on Principles and Practice of Declarative
Programming, pp. 127–138. ACM (2017)

49. Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh look.
J. Log. Algebr. Methods Program. 90, 2–30 (2017)

50. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
26th International Conference on Compiler Construction, pp. 98–108. ACM (2017)

51. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp.
259–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 15

52. Perumalla, K.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2014)

53. Philippou, A., Psara, K.: Reversible computation in petri nets. In: Kari, J., Ulid-
owski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 6

https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://github.com/mistupv/tracer/
https://github.com/mistupv/tracer/
https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
http://www.erlang-factory.com/conference/SFBayAreaErlangFactory2009/speakers/EugeneLetuchy
http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-99498-7_6

58 C. A. Mezzina et al.

54. Philippou, A., Psara, K., Siljak, H.: Controlling reversibility in reversing petri nets
with application to wireless communications. In: Thomsen, M.K., Soeken, M. (eds.)
RC 2019. LNCS, vol. 11497, pp. 238–245. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-21500-2 15

55. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Algebraic
Program. 73(1–2), 70–96 (2007)

56. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3 18

57. Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code
generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.-B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 95–110. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-20860-2 6

58. Schordan, M., Oppelstrup, T., Jefferson, D., Barnes Jr., P.D., Quinlan, D.J.: Auto-
matic generation of reversible C++ code and its performance in a scalable kinetic
Monte-Carlo application. In: SIGSIM-PADS 2016 (2016)

59. Schultz, U.P.: Reversible object-oriented programming with region-based memory
management. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp.
322–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 22

60. Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 153–159. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0 10

61. Siljak, H.: Reversibility in space, time, and computation: the case of underwater
acoustic communications. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol.
11106, pp. 346–352. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99498-7 25

62. Siljak, H.: Reversible computation in wireless communications. In: Ferreira, C.,
Lanese, I., Schultz, U., Ulidowski, I. (eds.) Reversible Computation: Theory and
Applications. LNCS, vol. 12070. Springer, Heidelberg (2020)

63. Siljak, H., de Rosny, J., Fink, M.: Reversible hardware for acoustic wave time
reversal. IEEE Commun. Mag. 58(1), 55–61 (2020)

64. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive
MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427–1430
(2019)

65. Siljak, H., Psara, K., Philippou, A.: Reversing Petri nets for resource management
in wireless networks (2019, Manuscript in preparation)

66. Tofte, M., Talpin, J.-P.: Region-based memory management. Inf. Comput. 132(2),
109–176 (1997)

67. Ulidowski, I.: IC1405 - Reversible Computation: extending horizons of computing
- Memorandum of Understanding. https://e-services.cost.eu/files/domain files/
ICT/Action IC1405/mou/IC1405-e.pdf

68. Undo Software: Undodb. Commercial reversible debugger. http://undo-software.
com/

69. Vassor, M., Stefani, J.-B.: Checkpoint/Rollback vs causally-consistent reversibility.
In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99498-7 20

70. Vulov, G., Hou, C., Vuduc, R.W., Fujimoto, R., Quinlan, D.J., Jefferson, D.R.:
The backstroke framework for source level reverse computation applied to parallel
discrete event simulation. In: WSC 2011 (2011)

https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-030-21500-2_15
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-99498-7_22
https://doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1007/978-3-319-99498-7_25
https://doi.org/10.1007/978-3-319-99498-7_25
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf
https://e-services.cost.eu/files/domain_files/ICT/Action_IC1405/mou/IC1405-e.pdf
http://undo-software.com/
http://undo-software.com/
https://doi.org/10.1007/978-3-319-99498-7_20

Software and Reversible Systems: A Survey of Recent Activities 59

71. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 258–270. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 22

72. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1 2

73. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation, Proceedings,
pp. 144–153. ACM (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-642-29517-1_2
http://creativecommons.org/licenses/by/4.0/

	Software and Reversible Systems: A Survey of Recent Activities
	1 Introduction
	2 Behavioural Types
	3 Recovery
	4 Reversibility and Object-Oriented Languages
	4.1 Object Orientation and Data Structures

	5 Reversing Imperative Concurrent Programs
	5.1 Language and Program State
	5.2 Annotation, Inversion and Operational Semantics
	5.3 Correctness of Annotation and Inversion
	5.4 Simulator and Performance Evaluation
	5.5 Application to Debugging

	6 Reversible Debugger for Message Passing Systems
	7 Control Theory
	8 Conclusions
	References

