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FABER-KRAHN AND LIEB-TYPE INEQUALITIES

FOR THE COMPOSITE MEMBRANE PROBLEM

GIOVANNI CUPINI† AND EUGENIO VECCHI§

†Dipartimento di Matematica
Università di Bologna

Piazza di Porta S. Donato 5, 40126 Bologna, Italy

§Dipartimento di Matematica “Guido Castelnuovo”
Sapienza Università di Roma

P.le Aldo Moro 5, 00185 Roma, Italy

Abstract. The classical Faber-Krahn inequality states that, among all domains with
given measure, the ball has the smallest first Dirichlet eigenvalue of the Laplacian. Another
inequality related to the first eigenvalue of the Laplacian has been proved by Lieb in 1983
and it relates the first Dirichlet eigenvalues of the Laplacian of two different domains with
the first Dirichlet eigenvalue of the intersection of translations of them. In this paper
we prove the analogue of Faber-Krahn and Lieb inequalities for the composite membrane
problem.

1. Introduction

The composite membrane problem is an eigenvalue optimization problem that received
a considerable attention starting from the works of Chanillo and al. [3–6, 16]. In physical
terms the problem can be stated as follows: build a membrane of prescribed shape and mass
using materials of varying densities, in such a way that the basic frequency is the smallest
possible. As shown in [3] and [4] the composite membrane problem can be considered as a
special instance of a more general eigenvalue optimization problem, which we are going to
introduce in R

n, n ≥ 2, keeping in mind that the physically relevant case is n = 2.
Let Ω ⊂ R

n be a non-empty open, bounded and connected set with Lipschitz boundary
∂Ω. For every A ∈ [0, |Ω|], we denote

D := {D ⊂ Ω : D measurable set, |D| = A}

the class of admissible sets and for any set D ∈ D, let χD be its characteristic funtion. For
every α > 0 and D ∈ D we consider

{

−∆u+ αχDu = λu on Ω
u = 0 on ∂Ω.

(1.1)

The lowest eigenvalue of this problem is denoted λΩ(α,D). The eigenvalue optimization
problem given by the infimum of D 7→ λΩ(α,D) can be also considered, i.e.,

ΛΩ(α,A) := inf
D∈D

λΩ(α,D). (1.2)
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2018 “Regolarità per problemi ellittici e del calcolo delle variazioni: non convessi, discontinui, degeneri,
singolari”, E.V. is partially supported by the INdAM-GNAMPA Project 2018 “Problemi di curvatura relativi
ad operatori ellittico-degeneri”.

1



2 G. CUPINI AND E. VECCHI

A variational characterization of ΛΩ(α,A) is given by

ΛΩ(α,A) = inf
06=u∈H1

0
(Ω),D∈D

ˆ

Ω
|∇u|2 + α

ˆ

Ω
χDu

2

ˆ

Ω
u2

.

Any minimizer D in (1.2) is called an optimal configuration for the data (Ω, α, A). If
moreover u satisfies (1.1) then (u,D) is called an optimal pair. Due to the variational
characterization of (1.2), changing D by a set of measure zero does not affect λΩ(α,D) nor
u. Therefore we consider sets D that differs by a null-set as equal.

In this context, uniqueness of optimal pairs is a delicate issue and cannot concern the
function u. Indeed, if (u,D) is an optimal pair, then for every constant c 6= 0, also (cu,D) is
an optimal pair of the same problem. Therefore, it is interesting to look only for uniqueness
of optimal configurations D. Nevertheless, this cannot be expected in general, as shown
in [3, Theorem 7], but on balls there is a unique optimal configuration, see [3, Corollary
5]. Moreover, if u solves (1.1) then, denoted by u⋆ (u⋆) its Schwarz decreasing (increasing)
symmetrization, by Ω⋆ the ball centered at the origin and volume |Ω⋆| = |Ω| and by D⋆ the
set defined through its characteristic function,

χD⋆
(x) := (χD)⋆(x), x ∈ Ω⋆, (1.3)

then (u⋆, D⋆) is an optimal pair of (1.2) on Ω⋆, see the proof of [3, Theorem 4]. We stress
that quite simple computations show that the set D⋆ is an annuli containing the boundary,
see [3, Corollary 5] and Remark 2.7.

When α = 0 (or A = 0) a solution u ∈ H1
0 (Ω) of (1.1) is an eigenfunction of −∆, and

λ(Ω) is the first Dirichlet eigenvalue of −∆. It is well known, see e.g. [9, 14], that the
balls minimize Ω 7→ λ(Ω) among all the sets of given measure. This result is known in the
literature as Faber-Krahn inequality. We refer to [10,13] for a proof and related results. In

particular, since λ(Ω)|Ω|2/n is invariant under dilation, we have that

λ(Ω) ≥ βn|Ω|
−2/n, (1.4)

where βn is the lowest eigenvalue of a ball of unit volume.

In this note we address a similar problem for the problem (1.2) with suitable constraints
on the parameter α > 0. To state our result, we need to define the constant αΩ(A). Given
Ω and A ∈ [0, |Ω|), there exists a unique positive number, denoted by αΩ(A), such that

ΛΩ(αΩ(A), A) = αΩ(A),

see Section 2. Notice that in the interval (0, αΩ(A)), where α takes its values, problem
(1.2) and the composite membrane problem are in one-to-one correspondence. We refer to
Section 2 for more details.

Theorem 1.1. Given a ball Ω⋆ centered at the origin, A ∈ (0, |Ω⋆|) and α ∈ (0, αΩ⋆(A)),
then

ΛΩ⋆(α,A) ≤ ΛΩ(α,A)

for every open and bounded connected set Ω ⊂ R
n with Lipschitz boundary, with |Ω| = |Ω⋆|.

Moreover, the equality holds if and only if Ω = Ω⋆ up to translations.

To prove Theorem 1.1 we adapt to our setting the proof of the classical Faber-Krahn
inequality due to Kesavan [12], which relies on a well known result by Talenti, see Theorem
2.3 in Section 2. We stress that, in our situation, we need to pay attention to the presence
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of the infimum among all the sets D ⊂ Ω of given measure |D| = A. The crucial ingre-
dient of the proof is Proposition 3.3, which provides an explicit expression of the Schwarz
symmetrization of a function on which we apply the above mentioned theorem of Talenti.

Recently, in [7,8], some of the results proved for the composite problem in [3] have been
extended to the fourth-order case of the composite plate problem. It would be interesting
to address Faber-Krahn-type problems in that context as well.

Our second result is a Lieb-type inequality for the intersection of two composite mem-
branes, see Theorem 1.2. To state it precisely, we have to introduce the following notation:
for every non-empty set Ω ⊂ R

n and for every x ∈ R
n, we denote the translated of Ω by x

as
Ωx := Ω + x = {y ∈ R

n : y = z + x, z ∈ Ω}. (1.5)

Our result extends to the case α > 0 in (1.1) a result proved by Lieb [15, Theorem 1] for
the first Dirichlet eigenvalue of −∆. Roughly speaking, Lieb’s Theorem states that given
two open and bounded sets Ω1,Ω2 ⊂ R

n, if we denote by λΩ1
, λΩ2

be the lowest eigenvalue
of −∆ with Dirichlet boundary conditions, then there exists a set Σ ⊆ R

n, |Σ| > 0, such
that for a.e. x ∈ Σ, it is |Ω1 ∩ Ω2,x| > 0, and

λΩ1∩Ω2,x
< λΩ1

+ λΩ2
, for every x ∈ Σ.

Even more, since the map x 7→ λΩ1∩Ω2,x
is upper semicontinuous, the set Σ is open.

Our result in this context reads as follows:

Theorem 1.2. Let Ω1, Ω2 ⊂ R
n be two open connected and bounded sets in R

n with

Lipschitz boundary. Fixed Ai ∈ [0, |Ωi|] and αi > 0, i ∈ {1, 2}, let D1 and D2 be optimal

configurations for (Ω1, α1, A1) and (Ω2, α2, A2), respectively. Then there exists a set Σ ⊆ R
n,

|Σ| > 0, such that for a.e. x ∈ Σ it is |Ω1 ∩ Ω2,x| > 0 and, for every α ∈ (0, α1 + α2] and
for every A ∈ [0, |D1 ∩D2,x|], we have

ΛΩ1∩Ω2,x
(α,A) < ΛΩ1

(α1, A1) + ΛΩ2
(α2, A2).

We point out that both in Theorem 1.1 and in Theorem 1.2 we required the boundaries
of Ω, Ω1 and Ω2 to be Lipschitz continuous. Even if this assumption does not explicitly play
a role along the proofs of our results, we must ask for it because it guarantees the existence
of optimal pairs, see [3, Theorem 1]. Notice that this regularity on the sets is not necessary
neither for the Faber-Krahn inequality nor the Lieb inequality for the Laplacian −∆.

We finally remark that sort of reversed Faber-Krahn and Lieb inequality have been re-
cently proved for the first eigenvalue of a degenerate operator called truncated Laplacian,
see [2].

The paper is organized as follows: in Section 2 we recall basic facts on Steiner/Schwarz
rearrangements and the composite membrane problem studied in [3]. In Section 3 we prove
a few technical results that are needed in Section 4, where we prove Theorem 1.1. Finally,
in Section 5 we prove Theorem 1.2.

2. Preliminaries

The first part of this section is devoted to a brief summary of the definitions and the
basic properties of Steiner and Schwarz rearrangements needed for the proof of Theorem
1.1. We refer to the monographs [11, 13] and the references therein for a more comprehen-
sive introduction to the subject. The second part of this section contains part of the results
proved in [3] on the composite membrane problem.
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Let Ω ⊂ R
n be a measurable set with finite n-dimensional Lebesgue measure |Ω| < +∞.

We denote by Ω⋆ the open ball centered at the origin and measure |Ω⋆| = |Ω|. We also
denote by ωn the measure of the unit ball.

Let u : Ω → R be a measurable function. The distribution function µu : R → R of u is
defined as

µu(τ) := | {x ∈ Ω : u(x) > τ} |, (2.1)

whose image is in [0, |Ω|]. To simplify the notation, in the following we will write {u > τ}
in place of {x ∈ Ω : u(x) > τ}, and similarly for (sub-)level sets.

The decreasing Steiner rearrangement u♯ : [0, |Ω|] → R of u is defined as

u♯(s) :=

{

ess supu, s = 0,
inf {τ : µu(τ) < s} , 0 < s ≤ |Ω|.

(2.2)

The increasing Steiner rearrangement u♯ : [0, |Ω|] → R of u is defined as

u♯(s) :=

{

ess supu, s = |Ω|,
inf {τ : |{u < τ}| > s} , 0 ≤ s < |Ω|.

Remark 2.1. The function u♯ is left-continuous, see [13, Proposition 1.1.1].

The decreasing Schwarz symmetrization u⋆ : Ω⋆ → R of u is defined as

u⋆(x) := u♯(ωn‖x‖
n), x ∈ Ω⋆, (2.3)

and the increasing Schwarz symmetrization u⋆ : Ω
⋆ → R of u is defined as

u⋆(x) := u♯(ωn‖x‖
n), x ∈ Ω⋆.

It follows from the previous definitions that the increasing and decreasing Steiner rear-
rangements are related as follows:

u♯(s) = −(−u)♯(s) and u♯(s) = −(−u)♯(s), for a.e. s (2.4)

and the analogous relations hold for the Schwarz symmetrizations as well.

We recall also the Hardy-Littlewood inequality, which follows combining [13, Corollary
1.4.1, Equation (1.3.3)] and (2.4):

Proposition 2.2. Let f ∈ Lp(Ω) and g ∈ Lq(Ω) with 1
p + 1

q = 1. Then

ˆ

Ω
f(x)g(x) dx ≥

ˆ

Ω⋆

f⋆(x)g
⋆(x) dx.

Due to its importance in the proof of Theorem 1.1, we recall here the following result
due to Talenti, see [17]:

Theorem 2.3. Let Ω ⊂ R
n be an open set and let Ω⋆ be the ball centered at the origin and

measure |Ω⋆| = |Ω|. Let f ∈ L2(Ω) and let f⋆ be its Schwarz symmetrization. If u ∈ H1
0 (Ω)

is a weak solution of
{

−∆u = f, in Ω,
u = 0, on ∂Ω,

and v ∈ H1
0 (Ω

⋆) is a weak solution of
{

−∆v = f⋆, in Ω⋆,
v = 0, on ∂Ω⋆,

then v(x) ≥ u⋆(x) for almost every x ∈ Ω⋆.
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Remark 2.4. The equality case in the above theorem is particularly interesting because it
yields rigidity results. In particular, it holds that for f ≥ 0, if u⋆ = v a.e. then Ω must be
a ball. We refer to [1, Theorem 1] and [13, Proposition 3.2.2] for a proof.

We end this section with a brief recap on the optimization eigenvalue problem (1.2). We
refer to [3] for proofs and more results. The next theorem condensates parts of the content
of [3, Theorem 1, Theorem 2, Proposition 10].

Theorem 2.5 (Chanillo-Grieser-Imai-Kurata-Ohnishi, [3]). For any α > 0 and A ∈ [0, |Ω|]
there exists an optimal pair (u,D) with u positive. Moreover, every optimal pair satisfies

the following properties:

(i) u ∈ H2(Ω) ∩ C1,δ(Ω) ∩ Cγ(Ω), for some γ > 0 and every δ < 1.
(ii) There exists a positive number t = t(A,Ω, u) > 0 such that

D = {x ∈ Ω : u(x) ≤ t} .

(iii) D contains a tubular neighborhood of the boundary ∂Ω of Ω.
(iv) ΛΩ(α, ·) is strictly increasing for fixed α > 0, and the function ΛΩ(·, A) is strictly

increasing for fixed A > 0. Moreover, ΛΩ(α,A) − α is strictly decreasing in α for

any fixed A ∈ (0, |Ω|).
(v) Given A ∈ [0, |Ω|), there exists a unique positive number αΩ(A) > 0 such that

ΛΩ(αΩ(A), A) = αΩ(A).

(vi) If Ω is simply connected and α < αΩ(A), then D is connected.

Remark 2.6. The positive number t > 0 appearing in (ii) is defined as

t = t(A,Ω, u) := sup{s : |{u < s}| < A}.

We stress that the number αΩ(A) appearing in (v) is well defined due to (iv) of Theorem
2.5. An immediate consequence of (iv) and (v) is that

ΛΩ(α,A)− α > 0, for every α < αΩ(A). (2.5)

Remark 2.7. If D ⊆ R
n, then

(χD)♯(s) := inf{τ : |{χD < τ}| > s}.

Therefore, if D ⊂ Ω ⊆ R
n, D,Ω bounded sets, |Ω \D| > 0, then it is easy to prove that

(χD)♯(s) =

{

0 if s ∈ [0, |Ω \D|)
1 if s ∈ [|Ω \D|, |Ω|]

Taking into account that

(χD)⋆(x) = (χD)♯(ωn‖x‖
n),

we get

D⋆ = B

(

0,
(

|Ω|
ωn

)1/n
)

\B

(

0,
(

|Ω\D|
ωn

)1/n
)

= Ω⋆ \ (Ω \D)⋆.

Since (Ω \D)⋆ is a ball, then

|Ω⋆ \ (Ω \D)⋆| = |Ω⋆ \ (Ω \D)⋆| = |D⋆| = A. (2.6)

In other words, the set Ω⋆ \ (Ω \D)⋆ is an admissible set for problem (1.2) with Ω replaced
by Ω⋆.
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3. Technical Lemmas

In this section we prove several technical results needed to prove Theorem 1.1. Let Ω ⊂ R
n

be an open and bounded connected set with Lipschitz boundary. Let α ∈ (0, αΩ(A)), and
let (u,D) be an optimal pair which realizes the double infimum in (1.2). To simplify the
notation, in this section we will denote ΛΩ(α,A) by Λ.

We recall that by Theorem 2.5 (ii) there exists t > 0 such that

D = {x ∈ Ω : u(x) ≤ t}. (3.1)

This implies

µu(t) = |Ω \D|. (3.2)

Moreover, since Λ− α > 0, see (2.5), we also get

{x ∈ Ω : (Λ− α)u(x) > (Λ− α)t} = Ω \D.

We now introduce the function U : Ω → R as

U(x) := (Λ− αχD(x))u(x), x ∈ Ω. (3.3)

Lemma 3.1. The distribution function µU of U is

µU (τ) =























µu
(

τ
Λ

)

, if τ ≥ Λt,

|Ω \D|, if (Λ− α)t ≤ τ ≤ Λt,

µu
(

τ
Λ−α

)

, if τ ≤ (Λ− α)t.

(3.4)

Proof. By its definition in (2.1), the distribution function µU of U is

µU (τ) = |{x ∈ Ω : U(x) > τ}|.

By (3.1) and the definition of U the following properties easily follows:

{x ∈ D : U(x) > τ} = {x ∈ D : u(x) >
τ

(Λ− α)
} = ∅ ∀τ ≥ (Λ− α)t, (3.5)

{x ∈ Ω : U(x) > τ} = {x ∈ Ω \D : U(x) > τ}

= {x ∈ Ω \D : Λu(x) > τ} ∀τ ≥ (Λ− α)t.
(3.6)

Moreover,

{x ∈ Ω \D : U(x) ≤ τ} = {x ∈ Ω \D : Λu(x) ≤ τ} = ∅ ∀τ ≤ Λt (3.7)

and, equivalently,

{x ∈ Ω \D : U(x) > τ} = {x ∈ Ω \D : Λu(x) > τ} = Ω \D ∀τ ≤ Λt. (3.8)

We consider three possible cases.
Case I: τ ≥ Λt.

By the assumption on τ and (3.1)

{x ∈ D : Λu(x) > τ} = ∅,

therefore by (3.6) we get

{x ∈ Ω : U(x) > τ} = {x ∈ Ω \D : Λu(x) > τ} = {x ∈ Ω : Λu(x) > τ} .

This shows that µU (τ) = µu
(

τ
Λ

)

.
Case II: (Λ− α)t ≤ τ ≤ Λt.

By (3.5) and (3.8) we get

{x ∈ Ω : U(x) > τ} = Ω \D.
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Therefore µU (τ) = |Ω \D|. On the other hand, by (3.2), we know that µu(t) = |Ω \D| as
well.

Case III: τ < (Λ− α)t.
We have

{x ∈ Ω : U(x) > τ} = {x ∈ Ω : τ < U(x) ≤ (Λ− α)t} ∪ {x ∈ Ω : U(x) > (Λ− α)t}. (3.9)

By (3.6), (3.8) and (3.1)

{x ∈ Ω : U(x) > (Λ− α)t} = {x ∈ Ω \D : U(x) > (Λ− α)t}

= Ω \D = {x ∈ Ω : (Λ− α)u(x) > (Λ− α)t}.
(3.10)

Let us now consider the first set at the right hand side of (3.9). By (3.7)

{x ∈ Ω : τ < U(x) ≤ (Λ− α)t} = {x ∈ D : τ < U(x) ≤ (Λ− α)t}

= {x ∈ D : τ < (Λ− α)u(x) ≤ (Λ− α)t}.

On the other hand, from the characterization of D, see (3.1), it follows that

{x ∈ Ω \D : τ < (Λ− α)u(x) ≤ (Λ− α)t} ⊆ {x ∈ Ω \D : u(x) ≤ t} = ∅.

Thus, we get

{x ∈ Ω : τ < U(x) ≤ (Λ− α)t} = {x ∈ Ω : τ < (Λ− α)u(x) ≤ (Λ− α)t}. (3.11)

Combining (3.9), (3.10) and (3.11), we get the desired result. �

Lemma 3.2. The decreasing Steiner rearrangement U ♯ of U is

U ♯(s) =
(

Λ− αχ(|Ω\D|,|Ω|](s)
)

u♯(s). (3.12)

Proof. By definition,

0 ≤ µU (τ) ≤ |Ω| ∀τ ∈ R.

Let us first consider the case s = 0. By (2.2) and (3.3),

U ♯(0) = ess supU = Λ ess supu = Λu♯(0).

Thus, the equality (3.12) holds for s = 0. Let us now consider the case s ∈ (0, |Ω \ D|].
Keeping in mind (3.4) and the fact that µu(t) = |Ω \D|, we have that

µU (Λt) = |Ω \D| ≥ s. (3.13)

Therefore, by (2.2), (3.4) and (3.13) we have

U ♯(s) := inf{τ : µU (τ) < s}

= inf{τ > Λt : µU (τ) < s}

= inf{τ > Λt : |{x ∈ Ω : u(x) > τ
Λ}| < s}

= Λ inf{σ > t : µu(σ) < s},

(3.14)

where in the last equality we used the change of variable σ = τ
Λ .

Now, notice that, by (3.1) and s ≤ |Ω \D|,

µu(σ) ≥ µu(t) = |{x ∈ Ω : u(x) > t}| = |Ω \D| ≥ s ∀σ ≤ t.

Therefore

{σ > t : µu(σ) < s} = {σ : µu(σ) < s}

that implies

inf{σ > t : µu(σ) < s} = inf{σ : µu(σ) < s} = u♯(s).
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Combined with (3.14), this gives

U ♯(s) = Λu♯(s), ∀s ∈ (0, |Ω \D|]

and (3.12) follows.

Let us finally consider the case s ∈ (|Ω \D|, |Ω|]. The assumption on s and Lemma 3.1
imply

µU ((Λ− α)t) = |Ω \D| < s,

therefore

inf{τ : µU (τ) < s} = inf{τ ≤ (Λ− α)t : µU (τ) < s}.

This fact, together with the change of variable γ = τ
Λ−α , gives

U ♯(s) = inf{τ ≤ (Λ− α)t : µU (τ) < s}

= (Λ− α) inf{γ ≤ t : µU ((Λ− α)γ) < s}.
(3.15)

By Lemma 3.1

µu(γ) = µU ((Λ− α)γ) ∀γ ≤ t.

Therefore

inf{γ ≤ t : µU ((Λ− α)γ) < s} = inf{γ ≤ t : µu(γ) < s}. (3.16)

Since by (3.2)

µu(t) = |Ω \D| < s,

then

inf{γ ≤ t : µu(γ) < s} = inf{γ : µu(γ) < s}. (3.17)

Collecting (3.15), (3.16) and (3.17) we get

U ♯(s) = (Λ− α)u♯(s)

and (3.12) follows. This concludes the proof. �

Proposition 3.3. Let U : Ω → R be the measurable function defined in (3.3). Then

U⋆ : Ω⋆ → R is well defined and

U⋆(x) =
(

Λ− αχ
Ω⋆\(Ω\D)⋆

)

u⋆(x).

Proof. We have that

{x ∈ R
n : ωn‖x‖

n ≤ |Ω \D|} = B

(

0,
(

|Ω\D|
ωn

)1/n
)

= (Ω \D)⋆.

On the other hand,

{x ∈ R
n : |Ω \D| < ωn‖x‖

n < |Ω|} = B

(

0,
(

|Ω|
ωn

)1/n
)

\B

(

0,
(

|Ω\D|
ωn

)1/n
)

= Ω⋆ \ (Ω \D)⋆.

By (2.3),

U⋆(x) = U ♯(ωn‖x‖
n), x ∈ Ω⋆,

where U ♯ has been explicitly determined in Proposition 3.2. Therefore,

U⋆(x) =

{

Λu⋆(x), x ∈ (Ω \D)⋆,

(Λ− α)u⋆(x), x ∈ Ω⋆ \ (Ω \D)⋆,

and this closes the proof. �
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4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. To simplify the notation and since α and A are
fixed, we will write ΛΩ in place of ΛΩ(α,A).

Proof of Theorem 1.1. The proof consists of two steps. The first one is to show that

ΛΩ⋆ ≤ ΛΩ, (4.1)

for every Ω ⊂ R
n such that |Ω| = |Ω⋆|. To this aim, let (u,D) be an optimal pair which

realizes ΛΩ. This means that

ΛΩ =

ˆ

Ω
|∇u(x)|2 dx+ α

ˆ

Ω
χD(x)u

2(x) dx
ˆ

Ω
u2(x) dx

.

Let D⋆ be defined through its characteristic function in (1.3). Since the decreasing Schwarz
symmetrization u⋆ ∈ H1

0 (Ω
⋆), and, by definition, D⋆ ⊂ Ω⋆ with |D⋆| = |D| = A, we have

that (u⋆, D⋆) is an admissible pair for (1.2) on Ω⋆. Moreover, since u > 0 then u⋆ > 0 and
hence we get that

(u⋆)2(x) = (u2)⋆(x), for almost every x ∈ Ω⋆, (4.2)

see [13, Proposition 1.1.4] with ψ : R → R being the non-decreasing function

ψ(t) :=

{

0, if t ≤ 0,
t2, if t > 0.

Therefore, we have

ΛΩ⋆ =

ˆ

Ω⋆

|∇u⋆(x)|2 dx+ α

ˆ

Ω⋆

(χD)⋆(x)(u
⋆)2(x) dx

ˆ

Ω⋆

(u⋆)2(x) dx

≤

ˆ

Ω
|∇u(x)|2 dx+ α

ˆ

Ω
χD(x)u

2(x) dx
ˆ

Ω
u2(x) dx

= ΛΩ,

where in the second inequality we used (4.2), Proposition 2.2 and Pólya-Szegö. This shows
that (4.1) holds true.

The second step is to prove that the ball Ω⋆ is the unique minimizer. In other words, we
have to prove that

if ΛΩ = ΛΩ⋆ , then Ω = Ω⋆.

Since we assume ΛΩ = ΛΩ⋆ , we can simply write Λ omitting the dependance on the set. Let
us consider an optimal pair (u,D) of the double minimization problem (1.2) on Ω. Clearly,
they satisfy the second order Euler-Lagrange equation associated to (1.2), i.e.

{

−∆u = (Λ− αχD)u, in Ω,
u = 0, on ∂Ω,

where we stress that the right-hand side (Λ− αχD)u ∈ L2(Ω).
Let us now consider the function v ∈ H1

0 (Ω
⋆) which solves the following auxiliary boundary

value problem,
{

−∆v = [(Λ− αχD)u]
⋆ , in Ω⋆,

v = 0, on ∂Ω⋆.
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A direct application of Theorem 2.3 implies that

u⋆(x) ≤ v(x), for almost every x ∈ Ω⋆. (4.3)

Now, by Proposition 3.3, we have that v actually solves
{

−∆v =
(

Λ− αχ
Ω⋆\(Ω\D)⋆

)

u⋆, in Ω⋆,

v = 0, on ∂Ω⋆.
(4.4)

Therefore, by (2.5) and (4.3), we have

−∆v(x) =
(

Λ− αχ
Ω⋆\(Ω\D)⋆

(x)
)

u⋆(x) ≤
(

Λ− αχ
Ω⋆\(Ω\D)⋆

(x)
)

v(x)

for almost every x ∈ Ω⋆. Therefore, multiplying by v the former inequality and integrating
by parts,

ˆ

Ω⋆

|∇v(x)|2 dx+ α

ˆ

Ω⋆

χ
Ω⋆\(Ω\D)⋆

(x)v(x)2 dx
ˆ

Ω⋆

v(x)2 dx

≤ Λ,

for v ∈ H1
0 (Ω

⋆). Now, since |D⋆| = |Ω⋆ \ (Ω \D)⋆|, we get
ˆ

Ω⋆

|∇v(x)|2 dx+ α

ˆ

Ω⋆

χD⋆
(x)v(x)2 dx

ˆ

Ω⋆

v(x)2 dx

≤ Λ, (4.5)

for v ∈ H1
0 (Ω

⋆) and D⋆ ⊂ Ω⋆ with |D⋆| = A. Since (v,D⋆) is an admissible pair, then in
(4.5) the equality holds and (v,D⋆) must be an optimal pair. Therefore v solves

{

−∆v = (Λ− αχD⋆
) v, in Ω⋆,

v = 0, on ∂Ω⋆.
(4.6)

By (4.4) and (4.6), subtracting term by term, and keeping in mind (2.6) we get

0 = (Λ− αχ
Ω⋆\(Ω\D)⋆

)u⋆ − (Λ− αχD⋆
)v = (Λ− αχD⋆

)(u⋆ − v) a.e. in Ω⋆.

The assumption α < αΩ implies Λ − αχD⋆
> 0, see (2.5). Therefore the equality above,

together with (4.3), implies

v = u∗ a.e. in Ω⋆.

By Remark 2.4, this is enough to conclude that Ω = Ω⋆. This closes the proof. �

Remark 4.1. We point out that the validity of (4.1) is essentially already contained in [17,
Theorem 3] and in the proof of [3, Theorem 4]. We also want to stress that the assumption
α < αΩ⋆(A) is needed only in the second step of the proof, because we exploit that Λ−α > 0.

5. Proof of Theorem 1.2

In this section we will prove Theorem 1.2, adapting to our setting the Lieb’s proof in [15]
of the similar inequality for the lowest eigenvalue of −∆.

Proof of Theorem 1.2. We know from [3] that for every i = 1, 2, ΛΩi
(αi, A) is actually

achieved by (at least) one optimal pair (vi, Di), with vi ∈ H1
0 (Ωi) and |Di| = Ai. The

functions vi are uniquely determined, up to a scalar multiple, by Di, and may be chosen to
be positive in Ωi, see [3]. Without loss of generality, we can assume that

‖vi‖L2(Ωi) = 1. (5.1)
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Therefore

ΛΩi
(αi, Ai) =

ˆ

Ωi

|∇vi(x)|
2 dx+ αi

ˆ

Ωi

χDi
(x)vi(x)

2 dx, i ∈ {1, 2}. (5.2)

As in [15], from now on and with a slight abuse of notation, we assume the functions vi’s
to be defined on the whole of Rn, with

vi(x) = 0, if x /∈ Ωi.

For a.e. x ∈ R
n we define hx : Rn → R,

hx(y) := v1(y)v2(y − x).

Notice that hx = 0 a.e. in R
n \ (Ω1 ∩ Ω2,x), see (1.5), and hx ∈ L1. Since v1, v2, ∇yv1 and

∇yv2 are L2 functions, then wx(y) := ∇yv1(y)v2(y − x) + v1(y)∇yv2(y − x) ∈ L1, wx = 0
a.e. in R

n \ (Ω1 ∩ Ω2,x). Moreover, ∇yhx = wx in the sense of distributions. Even more, it
holds hx ∈ H1(Rn) and ∇yhx = wx ∈ L2, see [15, p. 445].

Let us consider the functions

T (x) :=

ˆ

Rn

|∇yhx(y)|
2 dy + (α1 + α2)

ˆ

Rn

χD1∩D2,x
(y)hx(y)

2 dy

=

ˆ

Ω1∩Ω2,x

|∇yhx(y)|
2 dy + (α1 + α2)

ˆ

Ω1∩Ω2,x

χD1∩D2,x
(y)hx(y)

2 dy

and

H(x) :=

ˆ

Rn

hx(y)
2 dy =

ˆ

Ω1∩Ω2,x

hx(y)
2 dy.

The same computations performed in [15], allows to get that
ˆ

Rn

ˆ

Rn

|∇yhx(y)|
2 dy dx =

ˆ

Ω1

|∇v1|
2 dx+

ˆ

Ω2

|∇v2|
2 dx. (5.3)

Let us now consider

W (x) :=

ˆ

Ω1∩Ω2,x

χD1∩D2,x
(y)hx(y)

2 dy.

Since χD2,x
(·) = χD2

(· − x) and Di ⊆ Ωi, using also (5.1) we have
ˆ

Rn

W (x) dx =

ˆ

Rn

ˆ

Rn

χD1
(y)χD2

(y − x)v1(y)
2v2(y − x)2 dy dx

=

ˆ

Rn

χD1
(y)v1(y)

2 dy

ˆ

Rn

χD2
(y)v2(y)

2 dy

≤
α1

α1 + α2

ˆ

D1

v1(y)
2 dy

ˆ

Ω2

v2(y)
2 dy +

α2

α1 + α2

ˆ

D2

v2(y)
2 dy

ˆ

Ω1

v1(y)
2 dy

=
α1

α1 + α2

ˆ

D1

v1(y)
2 dy +

α2

α1 + α2

ˆ

D2

v2(y)
2 dy.

Therefore

(α1 + α2)

ˆ

Rn

W (x) dx ≤ α1

ˆ

D1

v1(y)
2 dy + α2

ˆ

D2

v2(y)
2 dy. (5.4)

Combining (5.3), (5.4) and (5.2), we obtain
ˆ

Rn

T (x) dx ≤ ΛΩ1
(α1, A1) + ΛΩ2

(α2, A2) =: Θ. (5.5)

By (5.1) it holds that
ˆ

Rn

H(x) dx =

ˆ

Rn

v21(y) dy

ˆ

Rn

v2(x)
2 dx = 1,
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therefore (5.5) can be rewritten as
ˆ

Rn

(T (x)−ΘH(x)) dx ≤ 0.

We claim that it is not T = ΘH a.e. in R
n. Once we have proved this, by the inequality

above we get that there exists Σ ⊆ R
n, |Σ| > 0, such that 0 ≤ T (x) < ΘH(x) a.e. in Σ.

Therefore, denoting
Ax := |D1 ∩D2,x|, (5.6)

by definition of ΛΩ1∩Ω2,x
(α1 + α2, Ax)

ΛΩ1∩Ω2,x
(α1 + α2, Ax) ≤

T (x)

H(x)
< Θ for a.e. x ∈ Σ

and we conclude by using that ΛΩ1∩Ω2,x
(·, Ax) and ΛΩ1∩Ω2,x

(α, ·) are strictly increasing
functions, see (iv) of Theorem 2.5.

Let us prove the claim, by contradiction. Assume that T = ΘH a.e. in R
n. Since

K(x) := (χΩ1
∗ χΩ2

)(x) = |Ω1 ∩ Ω2,x|,

is a continuous function with compact support, then for every ε > 0 there exists a non
empty open set Cε such that 0 < K(x) < ε for x ∈ Cε. Moreover, the positivity of K a.e.
in Cε and of y 7→ v1(y) and y 7→ v2(y − x) in the open set Ω1 ∩ Ω2,x, imply that H(x) > 0
for a.e. x ∈ Cε. Therefore,

ΛΩ1∩Ω2,x
(α1 + α2, Ax) ≤

T (x)

H(x)
= Θ for a.e. x ∈ Cε, (5.7)

where Ax is defined in (5.6).
It is trivial that

ΛΩ1∩Ω2,x
(α1 + α2, Ax) ≥ inf

06=u∈H1

0
(Ω1∩Ω2,x)

ˆ

Ω1∩Ω2,x

|∇u(y)|2 dy

ˆ

Ω1∩Ω2,x

|u(y)|2 dy
=: λ(Ω1 ∩ Ω2,x),

where λ(Ω1 ∩ Ω2,x) is the lowest eigenvalue of −∆ in Ω1 ∩ Ω2,x with Dirichlet boundary
conditions. Therefore, by (5.7) and by the Faber-Krahn inequality (1.4),

Θ ≥ ΛΩ1∩Ω2,x
(α1 + α2, Ax) ≥ βn|Ω1 ∩ Ω2,x|

−2/n

= βnK(x)−2/n > βnε
−2/n for a.e. x ∈ Cε.

This is impossible for sufficiently small ε. This concludes the proof of the claim. �
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