Table S1. Nutraceuticals in osteoarthritis (OA). Abbreviations: ACLT, anterior cruciate ligament transection; ADAMTS, A Disintegrin and Metalloproteinase with Thrombospondin motifs; AGE, advanced glycation end-product; AIA, adjuvant-induced arthritis; AMPK, 5' adenosine monophosphate-activated protein kinase; AP-1, activator protein 1; ASU, avocado/soybean unsaponifiables; CCN2, connective tissue growth factor; CHOP, C/EBP homologous protein; CIOA, collagenase-induced OA; COX-2, cyclooxygenase 2; CS, chondroitin sulfate; DHA, docosahexaenoic acid; DMM, destabilization of the medial meniscus; EGCG, epigallocatechin-3-gallate; eIF2 α , α -subunit of eukaryotic translation initiation factor 2; EPA, eicosapentaenoic acid; ER, endoplasmic reticulum; ERK1/2, extracellular signal-regulated kinase 1 and 2; GlcN, glucosamine; GM-CSF, granulocyte-macrophage colony-stimulating factor; GRO α , growth-related protein α ; HIF-2 α , hypoxia-inducible factor 2 α ; HO-1, heme oxygenase-1; HTRA1, high temperature requirement A serine peptidase 1; HT, hydroxytyrosol; IL, interleukin; iNOS, inducible nitric oxide synthase; JAK2/STAT3, Janus kinase 2/signal transducer and activator of transcription 3; JNK1/2, c-Jun N-terminal kinase 1 and 2; LC-PUFA, long-chain polyunsaturated fatty acid; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MIP-1 α , macrophage inflammatory protein 1α ; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; NF- κ B, nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2-related factor 2; OC, oleocanthal; OP, oleuropein; PAI-1, plasminogen activator inhibitor 1; PERK, protein kinase-like endoplasmic reticulum kinase; PGE2, prostaglandin E2; RUNX, Runt-related transcription factor; ROS, reactive oxygen species; SOCS3, suppressor of cytokine signalling 3; SOD, superoxide dismutase; SIRT, sirtuin; TGF- β , transforming growth factor- β ; TIMP-1, tissue inhibitor of matrix metalloproteinase 1; TLR4, toll-like receptor 4; TMJ, temporomandibular joint; TNF- α , tumor necrosis factor α ; TUG1, Taurine up-regulated gene 1; VEGF, vascular endothelial growth factor.

		In Vitro Settings (Cell Types and			
Nutraceutical	Ref	Culture)	In Vivo Setting	Results	Targeted Pathways
	N.	OA=osteoarthritic	0		0 ,
		N=normal			
GlcN and CS	[1]	Bovine (steers) N cartilage		GlcN and CS reduce expression of proteolytic	
Giervana Co	[+]	cultured as explants + IL-1 β		enzymes	
ClcN and CS	[2]	Equine N chondrocytes cultured		GlcN (but not CS) reduces expression of proteolytic	MAPKs (JNK
Gien and Co [2]	in monolayer + IL-1 β		enzymes	transcription)	
		Human N (post-trauma)		ClcN reduces II -18 expression via enigenetic	
GlcN [3]	[3]	chondrocytes cultured in		mechanism (reduced hyperstylation)	NF-ĸB
	monolayer + IL-1 β + oncostatin M		mechanism (reduced hypomethylation)		
		Human OA chondrocytes			
Hyaluronic	[4]	cultured in monolayer + IL-1 α		Hyaluronic acid reduces IL-1 α -induced ADAMTS-4	NF-ĸB
acid	[4]	w/wo High Molecular weight (800		expression and activity	MAPKs (ERK1/2)
		and 2700) hyaluronic acid			
		Revine N shondrogutes gultured		ASU stimulate expression of TGF β 1, TGF β 2 and	
ASU	[5]	in monolayor		PAI-1	
		in monorayer			
		Human OA chondrocytes		ASU counteract the inhibition of matrix components	
ASU	[6]	cultured in alginate beads with		everted by QA osteoblasts	
		osteoblasts from sclerotic zones		exerted by OA osteoblasts	
		Human N chondrocytes cultured		Conjutain raduces protain expression of COV and	
Genistein	[7]	in monolayer, pretreated with		release of NO	
		genistein prior to LPS exposure		release of two	
Genistein	[8]	Human OA chondrocytes	Surgically induced OA in rats	Genistein in vitro counteracts the IL-1-induced	Nrf2

		in monolayer + IL-1 β w/wo	(anterior cruciate ligament	expression of iNOS, COX-2, MMPs and stimulates	
		genistein	transection, ACLT) receiving	HO-1 expression thus reducing oxidative stress. In	
			genistein by diet	vivo it delays progression of OA	
			Collagenase-induced OA in rats	Genistein in vivo counteracts NF-KB activation and	
Genistein	[9]		(TMJ OA model) receiving genistein	reduces expression of IL-1 β and TNF α , thus	NF-ĸB
			by diet	delaying OA progression	
		Bovine N chondrocytes		ALA EDA and DUIA in dress the mDNIA level of	
Omega-3	[10]	pre-treated 8 h in the absence or		ALA, EFA and DHA reduce the mKNA level of	
LC-PUFAs	[10]	presence of fatty acids, before		ADAM15-4, ADAM15-5, MMP-3, MMP-13, COX-2,	
		IL-1 α treatment		IL-1 α , IL-1 β and INF- α	
				Intra-articular injection of EPA protects	
		Sodium nitroprusside-induced	C57BL/6J mice divided into 4	chondrocytes from apoptosis and reduces MMP-13	
EPA	[11]	human N chondrocytes after 8 h	groups: sham, DMM, DMM + corn	expression.	MAPKs (p38)
		pre-incubation with EPA	oil, and DMM + corn oil + EPA	In in vitro study EPA decreases apoptosis and OA	
				markers	
		II 16 stimulated human 224	Rat model of adjuvant-induced		
DHA	[12]	chondrossereema SW1252 colla	arthritis (AIA) +diet containing	DHA blocks IL-1β-induced p38 activation	MAPKs (p38)
		chondrosarconia 5W 1555 cens	DHA (50 g/kg)		
		3D cell cultures of GRO α -induced			
		human OA chondrocytes.		Sulfaranhana protosta chandrosutas from ovidativa	
Sulforanhana	[12]	Human C-28/I2 chondrocytes +		strong and aportoris induced by inflammatory	$\mathbf{M} \wedge \mathbf{P} \mathbf{V}_{\alpha}$ (m28)
Sunoraphane	[13]	TNF- α /cycloheximide, or		stress and apoptosis induced by inflammatory	MAI KS (\$56)
		+N(1),N(11)-diethylnorspermine,		cytokines, chemokines and other sumun	
		or $+H_2O_2$			
Sulforanhana	[14]	Human OA chandrogetes	Surgically induced rat OA model	Sulforaphane–PLGA microspheres in vitro	
Sunoraphane	[14]	Tuman OA chondrocytes	(ACLT) +injection of	downregulate COX-2, ADAMTS-5 and MMP-2	

			sulforaphane-poly(lactic-co-glycolic	mRNA.	
			acid) (PLGA) microspheres	Intra-articular sulforaphane–PLGA microspheres	
				delay the progression of OA	
		SW-1353 human chondrosarcoma			
		cell line.	DMM on C57BL/6 mice	Sulforaphane inhibits the expression of key	
Sulforaphane	[15]	Human OA chondrocytes.	+sulforaphane by diet	metalloproteinases and blocks inflammation at the	NF-ĸB
		Fibroblast-like synovial cells from	Sufficience by alect	level of NF-KB in vitro and in vivo	
		the synovial tissue of OA patients.			
		Human monocyte THP1cell line +			
		20 ng/ml phorbol myristate			
Sulforanhane	[16]	acetate to differentiate into		Sulforaphane has immunomodulatory effect	MAPKs (ERK1/2, JNK)
Sunoraphane	[10]	matured monocytes/macrophages.		mediated by MAPKs	
		Human monocytes from blood of			
		human healthy donors			
Sulforanhano				Allicin, sulforaphane and lycopene reduce	
sulforaphane,	[17]] Human OA chondrocytes + H ₂ O ₂		apoptosis, expression of inflammatory factors,	N-42
anicin,	[17]			hypertrophic differentiation and enhance	INT12
lycopene				chondrogenic matrix synthesis, via Nrf2	
OC	[18]	ATDC5 murine chondrogenic cell		OC decreases iNOS expression and NO production	
		line + LPS		OC inhibits I PS induced NO production in 1774	
				magraphagas degrasses MIP 1g and IL 6 mPNA	
				macrophages, decreases in -14 and 12-6 mining	
OC	[19]	ATDC5 murine chondrogenic cell		expression and protein synthesis, in both ATDC5	
		line, and J774 macrophages + LP5		chondrocytes and J/74 macrophages. It also inhibits	
				IL-I β , INF- α and GM-CSF protein synthesis in	
				macrophages	
OC	[20]	Human OA chondrocytes + LPS		OC decreases LPS-mediated inflammatory response	NF-ĸB

			and MMP-13 and ADAMTS-5 induction via MAPKs/NF-kB pathways	MAPKs (ERK1/2)
OP	[21]	Human OA chondrocytes + IL-1β	OP suppresses inflammation mediators by MAPKs/NF-kB pathways	NF-ĸB MAPKs (ERK1/2, p38 JNK)
HT	[22]	Human OA chondrocytes + H2O2, 3D cultures of human OA chondrocytes + GROα	HT decreases apoptosis and gene expression of COX-2, iNOS, MMP-13, RUNX-2 and VEGF	
HT	[23]	C28-I2 chondrocytes and human OA chondrocytes + H2O2	HT protects cells by inducing autophagy via SIRT-1 and p62 expression	SIRT-1
HT	[24]	Human OA chondrocytes + H2O2	HT decreases miR-9 which targets SIRT-1	SIRT-1
HT	[25]	Rat N chondrocytes + TNF- α	HT protects cells by inducing autophagy via SIRT-6	SIRT-6
HT	[26]	C28-I2 chondrocytes + H2O2	HT opposes hypomethylation of miR-9 promoters induced by oxidative stress	SIRT-1
EGCG	[27]	Human OA chondrocytes + IL-1β	EGCG decreases NO and PGE2 production	
EGCG	[28]	Human OA chondrocytes + IL-1β	EGCG inhibits the IL-1β-induced production of NO by interfering with the activation of NF-κB	NF-ĸB
EGCG	[29]	Human OA chondrocytes + AGEs	EGCG inhibits AGE-stimulated cartilage degradation by suppressing MAPKs and NF-кB activation	NF-ĸB MAPKs (p38, JNK)
EGCG	[30]	Human OA chondrocytes + IL-1β	EGCG inhibits IL-1β-induced COX-2 expression or PGE2 production via up-regulation of hsa-miR-199a-3p	
Green tea polyphenols	[31]	ATDC5 murine chondrogenic cell line + LPS	Green tea polyphenols decrease apoptosis and proinflammatory cytokine production by p38	NF-κB MAPKs (p38)

			MAPK and NF-κB
		Surgical induction of OA (DMM) or	l
		C57BL/6 mice. EGCG (25 mg/kg) or	
FCCC	[32]	vehicle control was administered	EGCG decreases inflammation, cartilage
LGCG	[52]	daily for four or eight weeks by	degradation markers and OA-associated pain
		intraperitoneal injection starting on	
		the day of surgery	
		ACLT rat model of OA. At 24 week	3
Quarcatin	[33]	post-operation, intra-articular	Quercetin promotes symptom relief and delays the
Quercetin		injection of saline, hydrogel, or	progression of OA
		hydrogel + quercetin	
		70 rats were divided into 14 groups	
		7 groups each for DMM- and	
		MIA-induced OA. After 28 days	
Quercetin and		from induction, SHAM and	
Ageratum		negative group received gel base	Quercetin-loaded nanonarticle gel and A comuzoides
conyzoides L.	[3/]	topically; positive group received	L extract gel after tonic application protect from
extract	[94]	sodium diclofenac gel; three-dose	cartilage degradation
(containing		group received each 0.84, 1.68, 3.36	carmage degradation
quercetin)		mg/g quercetin-loaded	
		nanoparticles gel; and A. conyzoides	
		L. group received A. conyzoides L.	
		extract gel.	
Chondroprote		13 dogs underwent tibial plateau	Oral supplement provides early improvement of the
ctive oral	[35]	leveling osteotomy and were	joint inflammatory microenvironment
formulation		randomly allocated to treatment (n	john mitaninatory meroenvironment

containing			6) and control groups (n = 7), the		
GlcN, CS,			former receiving the oral		
quercetin,			supplement for 90 days		
vitamin E and					
Omega-3					
LC-PUFAs					
			48 rabbits to establish OA model by		
			Hulth modified method (medial		
			parapatellar incision, followed		
			by opening knee joints, transecting		
			anterior cruciate ligaments, and		
			meniscectomy), and subsequently	Oral administration of quercetin up-regulates SOD	
Quercetin	[36]		randomized into untreated OA	and TIMP-1, down-regulates MMP-13, and	
			group, celecoxib treated group	counteracts cartilage degeneration	
			(celecoxib 100 mg kg-1 by gavage),		
			and quercetin treated group (25 mg		
			kg-1 by gavage).		
			16 non-operated rabbits as the		
			normal controls		
			Meniscal surgery-induced OA rats	Occurrentia de manage POC en demonstrat	
Overactin	[27]		w/wo quercetin post-treatment	guercetin decreases KOS and promotes	SIRT-1
Quercetin	[37]		(100 mg/Kg/day orally		AMPK
			administration)	pattway	
		Tort butyl	Medial meniscotibial ligament was	In vitro quercetin inhibits ER stress by activating	PERK- ale2 a- CHOP
Quercetin	[38]	hydroperovide-stimulated rat	transected, leading to DMM OA in	AMPK/SIRT-1 pathway.	SIRT_1
Querceuit	[00]	chondrocytes	rats. Immediately after the	In vivo it decreases cartilage degeneration and	AMPK
		chonarocy its	surgery, quercetin was injected	chondrocytes apoptosis	

Quercetin	[39]	Rat N chondrocytes +IL-1β +quercetin post-treatment. Co-culture with macrophages	intra-peritoneally 18 rats divided into three groups: control group, OA group (by removing the medial meniscus and cutting the anterior meniscotibial ligament), and OA + quercetin group (intra-articular injection)	<i>In vitro</i> quercetin reduces inflammation and apoptosis in chondrocytes and modulates synovial macrophages polarization to M2 macrophages promoting cartilage repair. <i>In vivo</i> quercetin intra-articular injection decreases OA	NF-κB Akt/mTOR
Curcumin	[40]	Rabbit articular chondrocytes +AGEs then treated with		Curcumin exerts an inhibitory activity on AGE-mediated progression of OA by blocking NF-кB activation	NF-ĸB
Curcumin	[41]	Rat chondrocytes were stimulated with IL-1β to induce an OA-like inflammatory response and treated with curcumin		Curcumin upregulates expression of type II collagen and down-regulates MMP13 expression via IκBα mediated NF-κB inhibition	NF-ĸB
Curcumin	[42]		Intra-articular administration of curcumin in ACTL rats	Curcumin exerts a protective effect by inhibiting TLR4 and its downstream targets	NF-ĸB
Curcumin	[43]		DMM mice subjected to oral administration of curcumin	Curcumin <i>in vivo</i> promotes autophagy through modulation of Akt/mTOR pathway, thus contributing to reduced apoptosis and matrix degradation	Akt/mTOR
Curcumin	[44]		ACLT rat model of OA subjected to oral administration of curcumin	Curcumin treatment reduces oxidative stress and ER stress by upregulating SIRT-1/PERK- eIF2α- CHOP pathway, thus ameliorating progression of	PERK- eIF2α- CHOP SIRT-1
Curcumin	[45]	Human chondrocytes + LPS then treated with curcumin in combination with other compounds		Curcumin exerts a synergistic anti-inflammatory effect in combination with other natural compounds with potential benefits in OA progression	

-

Curcumin	[46]	Human chondrocytes (HCH-c) and RAW 264.7 cell line in monolayer co-treated with curcumin and lecithin after LPS stimulation		Curcumin and lecithin complex <i>in vitro</i> showed anti-inflammatory effects in chondrocytes, thus proving to be potentially beneficial in OA	
Curcumin	[47]	Human TMJ chondrocytes cultured in monolayer and co-treated with IL-1β and curcumin	36 male rats into 3 groups: a degeneration group (injections of complete Freund's adjuvant only), an NS group (weekly injections of NS containing 0.1% DMSO), and a curcumin group (weekly injections of 40 μM curcumin in NS)	Curcumin <i>in vivo</i> exerts anti-inflammatory effects in cartilage by reducing major inflammatory mediators of OA via ROS/Nrf2 pathway	Nrf2
Resveratrol	[48]		OA was surgically induced in ACTL rabbit model and resveratrol was injected	Resveratrol intra-articular injection <i>in vivo</i> shows protective properties against OA development	
Resveratrol	[49]	Human articular chondrocytes were pre-stimulated with IL-1β and subsequently treated with resveratrol		Resveratrol <i>in vitro</i> inhibits in a dose and time-dependent fashion IL-1β –induced activation of apoptosis in OA chondrocytes	
Resveratrol	[50]	Primary human articular chondrocytes, cultured in monolayer and treated with resveratrol		Resveratrol <i>in vitro</i> exerts anti-inflammatory and anti-apoptotic effects through the suppression of IL-1 β and p53	
Resveratrol	[51]	Healthy human articular chondrocytes were pre-stimulated with resveratrol and co-treated with IL-1β		Resveratrol anti-inflammatory properties occur through the modulation of NF-κB pathway in IL-1β induced <i>in vitro</i> OA model	NF-ĸB

		Human OA chondrocytes in			
Decreated	[50]	monolayer were pre-stimulated		Resveratrol anti-apoptotic effects in OA could be	
Resveratroi	[52]	with resveratrol and co-treated		related to inhibition of COX-2 and PGE ₂	
		with IL-1β			
Resveratrol	[53]	Pig articular chondrocytes were cultured in monolayer and subsequently treated with resveratrol		Resveratrol <i>in vitro</i> protects cartilage from AGEs- dependent degradation by modulation of NF-кB and MAPK pathways	NF-ĸB MAPKs (p38)
Resveratrol	[54]	Articular chondrocytes isolated from Wistar rats were transfected with SIRT-1 siRNA and treated with resveratrol		Resveratrol <i>in vitro</i> inhibits NF-κB and activates SIRT-1 suggesting a protective role against OA development	NF-κB SIRT-1
Resveratrol	[55]	Huma articular OA chondrocytes in monolayer were pre-stimulated with IL-1β before treatment with resveratrol		Resveratrol exerts chondroprotective effects in OA <i>in vitro</i> model through modulation of TLR4/NF-κB	NF-ĸB
Resveratrol	[56]		OA was induced surgically (DMM) in C57BL/6 mice subsequently treated with intra-articular injections of resveratrol	Resveratrol <i>in vivo</i> protects cartilage from OA via NF-κB/SIRT-1/HIF-2α modulation	NF-кВ SIRT-1
Resveratrol	[57]		Oral administration of resveratrol in C57BL/6 mice fed with high-fat diet	Resveratrol <i>in vivo</i> partially inhibits development of OA induced by high-fat diet	
Resveratrol	[58]	Human articular chondrocytes in monolayer were treated with resveratrol following IL-1β pre-stimulation		Resveratrol <i>in vitro</i> exerts chondroprotective effects in OA both in a TLR4-dependent and -independent mechanism	
Resveratrol	[59]	-	Oral administration of resveratrol in	Resveratrol in vivo ameliorates progression of high	

			C57BL/6 mice fed with high-fat diet	fat-induced OA through modulation of TLR4	
				pathway	
Resveratrol	[60]		Surgical induction (DMM) of OA in C57BL/6 mice subjected to intra-articular injections of resveratrol	Resveratrol <i>in vitro</i> concurs to a delay of cartilage degradation in OA through modulation of autophagy	Akt/mTOR
Resveratrol	[61]	ATDC5 murine chondrogenic cell line + LPS and subsequently treated with resveratrol Mice primary articular		Resveratrol <i>in vitro</i> regulates miR-146 thus inhibiting pivotal pathways in LPS-induced inflammatory response in OA	NF-ĸB MAPKs (p38)
Resveratrol	[62]	chondrocytes were isolated and infected with lentivirus targeting SOCS3	Oral administration of resveratrol in C57BL/6 mice fed with high-fat diet	Resveratrol modulation of JAK2/STAT3 pathway ameliorates obesity-related OA	JAK2/STAT3
Wogonin	[63]	Rabbit articular chondrocytes +1, 10, 50, or 100 μ M of wogonin, followed by incubation in the presence or absence of IL-1 β (10 ng/mL) for 24 h	4 groups of rats: control, IL-1β, 50 μM wogonin +IL-1β, 100 μM wogonin +IL-1β.	Wogonin decreases gene expression and production of MMP-3 <i>in vitro</i> and <i>in vivo</i> .	
Scutellaria baicalensis extract (containing wogonin)	[64]	Human OA chondrocytes pre-treated with fractions of Scutellaria baicalensis extract, then stimulated with IL-1β		Wogonin protects chondrocytes by the suppression of c-Fos/AP-1 activity	
Wogonin	[65]	Human OA chondrocytes pre-treated with wogonin, then stimulated with IL-1β		Wogonin exerts chondroprotective effects through the activation of ROS/ERK/Nrf2 signalling	MAPKs (ERK1/2) Nrf2
Wogonin	[66]	Human OA chondrocytes		Wogonin localizes in the cell nucleus.	

		pre-treated with wogonin, then stimulated with IL-1β		In <i>in silico</i> molecular docking experiments wogonin intercalates between DNA bases	
Wogonin	[67]		Surgical induction of OA (DMM) in C57B6 mice + topical application of cream containing wogonin	Wogonin attenuates OA severity, via MMP-13, NF-кB and HTRA1 decrease	NF-ĸB
Berberine	[68]	Rabbit articular chondrocytes were isolated and treated with various concentration of berberine		Berberine exerts a regulatory function on OA associated genes, such as MMP-3, TIMP-1 and ADAMTS-5	
Berberine	[69]	Healthy rat articular chondrocytes were pre-stimulated with IL-1 β then treated with berberine	Rats were randomly divided into four groups. IL-1 β was used to stimulate OA then berberine was injected in the joints	Berberine exerts anti-catabolic and anti-inflammatory effects on OA development	
Berberine	[70]	Neonatal rat articular cartilage stimulated with IL-1 β and treated with increasing concentrations of berberine	ACTL rats were divided into 6 groups including control + low/middle/high dose of intra-articular injections of berberine	Berberine protects articular cartilage from OA-linked damage through Akt signalling pathway	Akt/mTOR
Berberine	[71]	Synovial tissue was isolated from OA patients, lately fibroblasts were isolated stimulated with CCN2 and treated with berberine	Collagenase-induced OA (CIOA) rat model, intraperitoneal administration of berberine	Berberine <i>in vivo</i> prevents CCN2 inflammatory function, thus preventing cartilage damage in OA model via p38 pathway	
Berberine	[72]	Neonatal rat articular chondrocytes in monolayer were co-treated with increasing doses of berberine and specific inhibitors of the investigated signalling pathways	ACTL rats were divided into 4 groups (low/high dose + control) and subsequently subjected to intra-articular injections of berberine	Berberine reduces NO-induced apoptosis in OA model by modulation of p38/AMPK pathway	MAPKs (p38) AMPK

-

			Surgically induced (ACTL + medial		
			menisci resection) OA rats divided	Berbaring conjugated with chitesan papenarticles	
Berberine	[73]		in five groups with combinations of	reduces aportosis, thus ampliorating QA	
			intra-articular berberine +chitosan	reduces apoptosis, thus amenorating OA	
			injections		
			Surgically induced (ACTL + medial		
		Primary rat articular chondrocytes	menisci resection) OA rats were		
D 1 .	1 - 1 -	in monolayer were pre-stimulated	divided into 4 grouped (low/high	Berberine <i>in vivo</i> promotes chondrocytes	
Berberine	[74]	with berberine then co-treated	dose + control) and subsequently	proliferation in SNP-stimulated chondrocytes via	
		with sodium nitroprusside	subjected to intra-articular	Wht/ β -catenin pathway activation	
			injections of berberine		
		Primary rabbit articular			
		chondrocytes co-treated with		Berberine <i>in vitro</i> cooperates in cytoskeleton	
Berberine	[75]	jasplakinolide to induce		reorganization by blocking Akt/p38 mediated	MAPKs (p38)
		reorganization of cytoskeleton		differentiation of chondrocytes	Akt/mTOR
		and berberine			
		Primary articular chondrocytes			
		isolated from SD rats cultured at		Berberine exerts anti-catabolic and	
Berberine	[76]	80% confluence were stimulated		anti-inflammatory properties through inhibition of	MAPKs (p38)
		with IL-1 β and treated with		MAPK- mediated IL-1β inflammatory response	1
		berberine			
				Fisetin exerts anti-inflammatory effects through	NF-ĸB
Fisetin	[77]	RAW264.7 cells + LPS		inhibition of NF-κB and JNK	MAPKs (JNK)
	_	Human OA chondrocytes	DMM induction of OA in mice,	In vitro fisetin decreases inflammation and	
Fisetin	[78]	pre-treated with fisetin + IL-1 β	followed by gavage 20 mg/kg fisetin	degradation markers by maintaining SIRT-1 levels	SIRT-1
Naringin	[79]	Murine N chondrocytes +	DMM induction of OA in mice,	Naringin protects from cartilage degradation by	NF-ĸB

		+ TNF-α	followed by oral administration of	suppressing NF-кВ signalling pathway	
			naringin		
Naringin	[80]	RAW 264.7 macrophages + LPS + naringin	Oral administration of naringin	Naringin in vitro decreases the production of PGE2,	
			before MIA-induced OA procedure	NO, IL-6, and TNF- α . <i>In vivo</i> it protects from tissue	
			in rats	damage	
Emodin	[81]	ATDC5 murine chondrogenic cell line + LPS + emodin		Emodin decreases apoptosis and inflammatory markers by inhibiting the Notch and NF-κB pathways via up-regulation of lncRNA TUG1	NF-κB Notch
Emodin	[82]	Rat N chondrocytes pre-treated with emodin + IL-1β	ACLT-induced OA rats + post-treatment of low-concentration and high-concentration of emodin (intra-articular injection)	Emodin protects from cartilage degeneration by inhibiting NF-κB and Wnt/β-catenin signalling	NF-κB Wnt/β-catenin
Spermidine	[83]	Human N or OA chondrocytes, and HTB-94 chondrosarcoma cells + spermidine. Old/young C57BL/6 mice for <i>ex</i> <i>vivo</i> experiments		Spermidine protects from age-related impairment of autophagy	
Spermidine	[84]	Human OA chondrocytes pre-treated with spermidine + H2O2		Spermidine protects from DNA damage and NF-кВ activation, by autophagy induction	NF-ĸB

Supplementary References:

- 1. Chan, P.S.; Caron, J.P.; Orth, M.W. Effect of glucosamine and chondroitin sulfate on regulation of gene expression of proteolytic enzymes and their inhibitors in interleukin-1-challenged bovine articular cartilage explants. *Am J. Vet. Res.* 2005, *66*, 1870–1876.
- 2. Neil, K.M.; Orth, M.W.; Coussens, P.M.; Chan, P.S.; Caron, J.P. Effects of glucosamine and chondroitin sulfate on mediators of osteoarthritis in cultured equine chondrocytes stimulated by use of recombinant equine interleukin-1beta. *Am. J. Vet. Res.* **2005**, *66*, 1861–1869.
- 3. Imagawa, K.; de Andres, M.C.; Hashimoto, K.; Pitt, D.; Itoi, E.; Goldring, M.B.; Roach, H.I.; Oreffo, R.O. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes--implications for osteoarthritis. *Biochem. Biophys. Res. Commun.* **2011**, 405, 362–367.

- 4. Yatabe, T.; Mochizuki, S.; Takizawa, M.; Chijiiwa, M.; Okada, A.; Kimura, T.; Fujita, Y.; Matsumoto, H.; Toyama, Y.; Okada, Y. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. *Ann. Rheum. Dis.* **2009**, *68*, 1051–1058.
- 5. Boumediene, K.; Felisaz, N.; Bogdanowicz, P.; Galera, P.; Guillou, G.B.; Pujol, J.P. Avocado/soya unsaponifiables enhance the expression of transforming growth factor beta1 and beta2 in cultured articular chondrocytes. *Arthritis Rheum.* **1999**, *42*, 148–156.
- 6. Henrotin, Y.E.; Deberg, M.A.; Crielaard, J.M.; Piccardi, N.; Msika, P.; Sanchez, C. Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. *J. Rheumatol.* **2006**, *33*, 1668–1678.
- 7. Hooshmand, S.; Soung do, Y.; Lucas, E.A.; Madihally, S.V.; Levenson, C.W.; Arjmandi, B.H. Genistein reduces the production of proinflammatory molecules in human chondrocytes. J. Nutr. Biochem. 2007, 18, 609–614.
- 8. Liu, F.C.; Wang, C.C.; Lu, J.W.; Lee, C.H.; Chen, S.C.; Ho, Y.J.; Peng, Y.J. Chondroprotective Effects of Genistein against Osteoarthritis Induced Joint Inflammation. *Nutrients* **2019**, *11*.
- 9. Yuan, J.; Ding, W.; Wu, N.; Jiang, S.; Li, W. Protective Effect of Genistein on Condylar Cartilage through Downregulating NF-kappaB Expression in Experimentally Created Osteoarthritis Rats. *Biomed. Res. Int.* 2019, 2019, 2629791.
- 10. Zainal, Z.; Longman, A.J.; Hurst, S.; Duggan, K.; Caterson, B.; Hughes, C.E.; Harwood, J.L. Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. *Osteoarthritis Cartilage* **2009**, *17*, 896–905.
- 11. Sakata, S.; Hayashi, S.; Fujishiro, T.; Kawakita, K.; Kanzaki, N.; Hashimoto, S.; Iwasa, K.; Chinzei, N.; Kihara, S.; Haneda, M., et al. Oxidative stress-induced apoptosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid. *J. Orthop. Res.* 2015, *33*, 359–365.
- 12. Wang, Z.; Guo, A.; Ma, L.; Yu, H.; Zhang, L.; Meng, H.; Cui, Y.; Yu, F.; Yang, B. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism. *Int J. Mol. Med.* 2016, *37*, 1542–1550.
- 13. Facchini, A.; Stanic, I.; Cetrullo, S.; Borzi, R.M.; Filardo, G.; Flamigni, F. Sulforaphane protects human chondrocytes against cell death induced by various stimuli. *J. Cell.* **2011**, *226*, 1771–1779.
- 14. Ko, J.Y.; Choi, Y.J.; Jeong, G.J.; Im, G.I. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. *Biomaterials* 2013, 34, 5359–5368.
- 15. Davidson, R.K.; Jupp, O.; de Ferrars, R.; Kay, C.D.; Culley, K.L.; Norton, R.; Driscoll, C.; Vincent, T.L.; Donell, S.T.; Bao, Y., et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. *Arthritis Rheum.* **2013**, *65*, 3130–3140.
- 16. Pal, S.; Konkimalla, V.B. Sulforaphane regulates phenotypic and functional switching of both induced and spontaneously differentiating human monocytes. *Int. Immunopharmacol.* **2016**, *35*, 85–98.
- 17. Yang, J.; Song, X.; Feng, Y.; Liu, N.; Fu, Z.; Wu, J.; Li, T.; Chen, H.; Chen, J.; Chen, C., et al. Natural ingredients-derived antioxidants attenuate H2O2-induced oxidative stress and have chondroprotective effects on human osteoarthritic chondrocytes via Keap1/Nrf2 pathway. *Free Radic. Biol. Med.* **2020**, in press.
- 18. Iacono, A.; Gomez, R.; Sperry, J.; Conde, J.; Bianco, G.; Meli, R.; Gomez-Reino, J.J.; Smith, A.B., 3rd; Gualillo, O. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. *Arthritis Rheum.* **2010**, *62*, 1675–1682.
- 19. Scotece, M.; Gomez, R.; Conde, J.; Lopez, V.; Gomez-Reino, J.J.; Lago, F.; Smith, A.B., 3rd; Gualillo, O. Further evidence for the anti-inflammatory activity of oleocanthal: inhibition of MIP-1alpha and IL-6 in J774 macrophages and in ATDC5 chondrocytes. *Life Sci.* 2012, *91*, 1229–1235.
- 20. Scotece, M.; Conde, J.; Abella, V.; Lopez, V.; Francisco, V.; Ruiz, C.; Campos, V.; Lago, F.; Gomez, R.; Pino, J., et al. Oleocanthal Inhibits Catabolic and Inflammatory Mediators LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF-kappaB Pathways. *Cell Physiol. Biochem.* **2018**, *49*, 2414–2426.

- 21. Feng, Z.; Li, X.; Lin, J.; Zheng, W.; Hu, Z.; Xuan, J.; Ni, W.; Pan, X. Oleuropein inhibits the IL-1beta-induced expression of inflammatory mediators by suppressing the of NF-kappaB and MAPKs in human osteoarthritis chondrocytes. *Food Funct.* **2017**, *8*, 3737–3744.
- 22. Facchini, A.; Cetrullo, S.; D'Adamo, S.; Guidotti, S.; Minguzzi, M.; Borzi, R.M.; Flamigni, F. Hydroxytyrosol prevents increase of osteoarthritis markers in human chondrocytes treated with hydrogen peroxide or growth-related oncogene alpha. *PLoS One* **2014**, *9*, e109724.
- 23. Cetrullo, S.; D'Adamo, S.; Guidotti, S.; Borzi, R.M.; Flamigni, F. Hydroxytyrosol prevents chondrocyte death under oxidative stress by inducing autophagy through sirtuin 1-dependent and -independent mechanisms. *Biochim. Biophys. Acta* **2016**, *1860*, 1181–1191.
- 24. D'Adamo, S.; Cetrullo, S.; Guidotti, S.; Borzi, R.M.; Flamigni, F. Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death. *Osteoarthritis Cartilage* **2017**, *25*, 600–610.
- Zhi, L.Q.; Yao, S.X.; Liu, H.L.; Li, M.; Duan, N.; Ma, J.B. Hydroxytyrosol inhibits the inflammatory response of osteoarthritis chondrocytes via SIRT6-mediated autophagy. *Mol. Med. Rep.* 2018, *17*, 4035–4042.
- D'Adamo, S.; Cetrullo, S.; Borzi, R.M.; Flamigni, F. Effect of oxidative stress and 3-hydroxytyrosol on DNA methylation levels of miR-9 promoters. J. Cell. Mol. Med. 2019, 23, 7885–7889.
- 27. Ahmed, S.; Rahman, A.; Hasnain, A.; Lalonde, M.; Goldberg, V.M.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. *Free Radic. Biol. Med.* **2002**, *33*, 1097–1105.
- Singh, R.; Ahmed, S.; Islam, N.; Goldberg, V.M.; Haqqi, T.M. Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. *Arthritis Rheum.* 2002, 46, 2079–2086.
- 29. Rasheed, Z.; Anbazhagan, A.N.; Akhtar, N.; Ramamurthy, S.; Voss, F.R.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase-13 in human chondrocytes. *Arthritis Res. Ther.* **2009**, *11*, R71.
- 30. Rasheed, Z.; Rasheed, N.; Al-Shobaili, H.A. Epigallocatechin-3-O-gallate up-regulates microRNA-199a-3p expression by down-regulating the expression of cyclooxygenase-2 stimulated human osteoarthritis chondrocytes. J. Cell Mol. Med. 2016, 20, 2241–2248.
- 31. Zhang, Q.; Wang, Y.; Zhang, M.; Ying, H. Green tea polyphenols attenuate LPS-induced inflammation through upregulating microRNA-9 in murine chondrogenic ATDC5 *J. Cell Physiol.* 2019, 234, 22604–22612.
- 32. Leong, D.J.; Choudhury, M.; Hanstein, R.; Hirsh, D.M.; Kim, S.J.; Majeska, R.J.; Schaffler, M.B.; Hardin, J.A.; Spray, D.C.; Goldring, M.B., et al. Green tea polyphenol treatment chondroprotective, anti-inflammatory and palliative in a mouse post-traumatic osteoarthritis model. *Arthritis Res. Ther.* **2014**, *16*, 508
- 33. Mok, S.W.; Fu, S.C.; Cheuk, Y.C.; Chu, I.M.; Chan, K.M.; Qin, L.; Yung, S.H.; Kevin Ho, K.W. Intra-Articular Delivery of Quercetin Using Thermosensitive Hydrogel Attenuate Cartilage Degradation in an Osteoarthritis Rat Model. *Cartilage* **2018**, 1947603518796550.
- 34. Permatasari, D.A.; Karliana, D.; Iskandarsyah, I.; Arsianti, A.; Bahtiar, A. Quercetin prevent proteoglycan destruction by inhibits matrix metalloproteinase-9, matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5 expressions on osteoarthritis model rats. *J. Adv. Pharm Technol Res.* **2019**, *10*, 2–8.
- 35. Martini, F.M.; Brandstetter de Bellesini, A.; Miolo, A.; Del Coco, L.; Fanizzi, F.P.; Crovace, A. Combining a joint health supplement with tibial plateau leveling osteotomy in with cranial cruciate ligament rupture. An exploratory controlled trial. *Int. J. Vet. Sci. Med.* **2017**, *5*, 105-112.
- 36. Wei, B.; Zhang, Y.; Tang, L.; Ji, Y.; Yan, C.; Zhang, X. Protective effects of quercetin against inflammation and oxidative stress in a rabbit model of knee osteoarthritis. *Drug Res.* **2019**, *80*, 360–367.

- 37. Qiu, L.; Luo, Y.; Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. *Biomed. Pharmacother*. **2018**, *103*, 1585–1591.
- Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J. Cell. Physiol. 2019, 234, 18192–18205.
- 39. Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. *Free Radic. Biol. Med.* **2019**, *145*, 146–160.
- 40. Yang, Q.; Wu, S.; Mao, X.; Wang, W.; Tai, H. Inhibition effect of curcumin on TNF-alpha and MMP-13 expression induced by advanced glycation end products in *Pharmacology* **2013**, *91*, 77–85.
- 41. Wang, J.; Ma, J.; Gu, J.H.; Wang, F.Y.; Shang, X.S.; Tao, H.R.; Wang, X. Regulation of type II collagen, matrix metalloproteinase-13 and cell proliferation by interleukin-1beta is mediated by curcumin via inhibition of NF-kappaB signaling in rat chondrocytes. *Mol. Med. Rep.* **2017**, *16*, 1837–1845.
- 42. Yan, D.; He, B.; Guo, J.; Li, S.; Wang, J. Involvement of TLR4 in the protective effect of intra-articular administration of curcumin on rat experimental osteoarthritis. *Acta Cir. Bras.* **2019**, *34*, e201900604.
- 43. Zhang, G.; Cao, J.; Yang, E.; Liang, B.; Ding, J.; Liang, J.; Xu, J. Curcumin improves age-related and surgically induced osteoarthritis by promoting autophagy in mice. *Biosci.* **2018**, *38*.
- 44. Feng, K.; Ge, Y.; Chen, Z.; Li, X.; Liu, Z.; Li, H.; Tang, T.; Yang, F.; Wang, X. Curcumin Inhibits the PERK-eIF2alpha-CHOP Pathway through Promoting SIRT1 Expression in Oxidative Stress-induced Rat Chondrocytes and Ameliorates Osteoarthritis Progression in a Rat Model. Oxid. Med. Cell Longev. 2019, 2019, 8574386.
- 45. D'Ascola, A.; Irrera, N.; Ettari, R.; Bitto, A.; Pallio, G.; Mannino, F.; Atteritano, M.; Campo, G.M.; Minutoli, L.; Arcoraci, V., et al. Exploiting Curcumin Synergy With Natural Products Using Quantitative Analysis of Dose-Effect Relationships in an Experimental In Vitro Model of Osteoarthritis. *Front. Pharmacol.* **2019**, *10*, 1347.
- 46. Kim, L.; Kim, J.Y. Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1beta via an anti-inflammatory mechanism. *Food Sci. Biotechnol.* **2019**, *28*, 547–553.
- 47. Jiang, C.; Luo, P.; Li, X.; Liu, P.; Li, Y.; Xu, J. Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation. *Cell Stress Chaperones* **2020**, *25*, 395–406.
- 48. Elmali, N.; Esenkaya, I.; Harma, A.; Ertem, K.; Turkoz, Y.; Mizrak, B. Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm. Res. 2005, 54, 158–162.
- 49. Shakibaei, M.; John, T.; Seifarth, C.; Mobasheri, A. Resveratrol inhibits IL-1 beta-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. *Ann. N. Y. Acad. Sci.* 2007, 1095, 554–563.
- 50. Csaki, C.; Keshishzadeh, N.; Fischer, K.; Shakibaei, M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. *Biochem. Pharmacol.* 2008, 75, 677–687.
- 51. Shakibaei, M.; Csaki, C.; Nebrich, S.; Mobasheri, A. Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. *Biochem. Pharmacol.* **2008**, *76*, 1426–1439.
- 52. Dave, M.; Attur, M.; Palmer, G.; Al-Mussawir, H.E.; Kennish, L.; Patel, J.; Abramson, S.B. The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production. *Arthritis Rheum.* 2008, *58*, 2786–2797.
- 53. Liu, F.C.; Hung, L.F.; Wu, W.L.; Chang, D.M.; Huang, C.Y.; Lai, J.H.; Ho, L.J. Chondroprotective effects and mechanisms of resveratrol in advanced glycation end products-stimulated chondrocytes. *Arthritis Res. Ther.* **2010**, *12*, R167.

- 54. Lei, M.; Wang, J.G.; Xiao, D.M.; Fan, M.; Wang, D.P.; Xiong, J.Y.; Chen, Y.; Ding, Y.; Liu, S.L. Resveratrol inhibits interleukin 1beta-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-kappaB activity. *Eur. J. Pharmacol.* **2012**, 674, 73–79.
- 55. Liu, L.; Gu, H.; Liu, H.; Jiao, Y.; Li, K.; Zhao, Y.; An, L.; Yang, J. Protective effect of resveratrol against IL-1beta-induced inflammatory response on human osteoarthritic chondrocytes partly via the TLR4/MyD88/NF-kappaB signaling pathway: an "in vitro study". *Int. J. Mol. Sci* **2014**, *15*, 6925–6940.
- 56. Li, W.; Cai, L.; Zhang, Y.; Cui, L.; Shen, G. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2alpha. *J. Orthop. Res.* 2015, *33*, 1061–1070.
- 57. Gu, H.; Li, K.; Li, X.; Yu, X.; Wang, W.; Ding, L.; Liu, L. Oral Resveratrol Prevents Osteoarthritis Progression in C57BL/6J Mice Fed a High-Fat Diet. Nutrients 2016, 8, 233.
- 58. Gu, H.; Jiao, Y.; Yu, X.; Li, X.; Wang, W.; Ding, L.; Liu, L. Resveratrol inhibits the IL-1beta-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades. *Int. J. Mol. Med.* **2017**, *39*, 734–740.
- 59. Jiang, M.; Li, X.; Yu, X.; Liu, X.; Xu, X.; He, J.; Gu, H.; Liu, L. Oral Administration of Resveratrol Alleviates Osteoarthritis Pathology in C57BL/6J Mice Model Induced by a High-Fat Diet. *Mediators Inflamm.* 2017, 2017, 7659023.
- 60. Qin, N.; Wei, L.; Li, W.; Yang, W.; Cai, L.; Qian, Z.; Wu, S. Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy AMPK/mTOR pathway. J. Pharmacol. Sci. 2017, 134, 166–174.
- 61. Jin, H.; Zhang, H.; Ma, T.; Lan, H.; Feng, S.; Zhu, H.; Ji, Y. Resveratrol Protects Murine Chondrogenic ATDC5 Cells Against LPS-Induced Inflammatory Injury Through Up-Regulating MiR-146b. Cell. Physiol. Biochem. 2018, 47, 972–980.
- 62. Jiang, M.; He, J.; Gu, H.; Yang, Y.; Huang, Y.; Xu, X.; Liu, L. Protective effect of resveratrol on obesity-related osteoarthritis via alleviating JAK2/STAT3 signaling pathway is independent of SOCS3. *Toxicol. Appl. Pharmacol.* 2020, 388, 114871.
- 63. Park, J.S.; Lee, H.J.; Lee, D.Y.; Jo, H.S.; Jeong, J.H.; Kim, D.H.; Nam, D.C.; Lee, C.J.; Hwang, S.C. Chondroprotective Effects of Wogonin in Experimental Models of in vitro and in vivo. *Biomol. Ther. (Seoul)* 2015, 23, 442–448.
- 64. Khan, N.M.; Haseeb, A.; Ansari, M.Y.; Haqqi, T.M. A wogonin-rich-fraction of Scutellaria baicalensis root extract exerts chondroprotective effects by suppressing IL-1beta-induced activation of AP-1 in human OA chondrocytes. *Sci. Rep.* **2017**, *7*, 43789.
- 65. Khan, N.M.; Haseeb, A.; Ansari, M.Y.; Devarapalli, P.; Haynie, S.; Haqqi, T.M. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and effects through the activation of ROS/ERK/Nrf2 signaling pathways in human Osteoarthritis chondrocytes. *Free Radic. Biol. Med.* **2017**, *106*, 288–301.
- 66. Khan, N.M.; Ahmad, I.; Ansari, M.Y.; Haqqi, T.M. Wogonin, a natural flavonoid, intercalates with genomic DNA and exhibits protective effects in IL-1beta stimulated osteoarthritis chondrocytes. *Chem. Biol. Interact.* 2017, 274, 13–23.
- 67. Smith, J.F.; Starr, E.G.; Goodman, M.A.; Hanson, R.B.; Palmer, T.A.; Woolstenhulme, J.B.; Weyand, J.A.; Marchant, A.D.; Bueckers, S.L.; Nelson, T.K., et al. Topical Application Wogonin Provides a Novel Treatment of Knee Osteoarthritis. *Front. Physiol.* 2020, *11*, 80.
- 68. Moon, P.D.; Jeong, H.S.; Chun, C.S.; Kim, H.M. Baekjeolyusin-tang and its active component berberine block the release of collagen and proteoglycan from IL-1beta-stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. *Phytother. Res.* **2011**, *25*, 844–850.
- 69. Hu, P.F.; Chen, W.P.; Tang, J.L.; Bao, J.P.; Wu, L.D. Protective effects of berberine in an experimental rat osteoarthritis model. Phytother. Res. 2011, 25, 878–885.
- 70. Zhao, H.; Zhang, T.; Xia, C.; Shi, L.; Wang, S.; Zheng, X.; Hu, T.; Zhang, B. Berberine ameliorates cartilage degeneration in interleukin-1beta-stimulated rat chondrocytes and in rat model of osteoarthritis via Akt signalling. *J. Cell. Mol. Med.* **2014**, *18*, 283–292.
- 71. Liu, S.C.; Lee, H.P.; Hung, C.Y.; Tsai, C.H.; Li, T.M.; Tang, C.H. Berberine attenuates CCN2-induced IL-1beta expression and prevents cartilage degradation in a rat model of osteoarthritis. *Toxicol. Appl. Pharmacol.* 2015, 289, 20–29.

- 72. Zhou, Y.; Liu, S.Q.; Yu, L.; He, B.; Wu, S.H.; Zhao, Q.; Xia, S.Q.; Mei, H.J. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. *Apoptosis* 2015, 20, 1187–1199.
- 73. Zhou, Y.; Liu, S.Q.; Peng, H.; Yu, L.; He, B.; Zhao, Q. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. *Int. Immunopharmacol.* **2015**, *28*, 34–43.
- 74. Zhou, Y.; Tao, H.; Li, Y.; Deng, M.; He, B.; Xia, S.; Zhang, C.; Liu, S. Berberine promotes proliferation of sodium nitroprusside-stimulated rat chondrocytes and osteoarthritic cartilage via Wnt/beta-catenin pathway. *Eur. J. Pharmacol.* **2016**, *789*, 109–118.
- 75. Yu, S.M.; Cho, H.; Kim, G.H.; Chung, K.W.; Seo, S.Y.; Kim, S.J. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. *Exp. Biol. Med. (Maywood)* **2016**, 241, 800–807.
- 76. Li, X.; He, P.; Hou, Y.; Chen, S.; Xiao, Z.; Zhan, J.; Luo, D.; Gu, M.; Lin, D. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation rat articular chondrocytes. *Dru. Dev. Res.* 2019, *80*, 637–645.
- 77. Kim, S.C.; Kang, S.H.; Jeong, S.J.; Kim, S.H.; Ko, H.S. Inhibition of c-Jun N-terminal kinase and nuclear factor kappa B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264.7 cells. *Immunopharmacol. Immunotoxicol.* **2012**, *34*, 645–650.
- 78. Zheng, W.; Feng, Z.; You, S.; Zhang, H.; Tao, Z.; Wang, Q.; Chen, H.; Wu, Y. Fisetin inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. *Int. Immunopharmacol.* **2017**, *45*, 135–147.
- 79. Zhao, Y.; Li, Z.; Wang, W.; Zhang, H.; Chen, J.; Su, P.; Liu, L.; Li, W. Naringin Protects Against Cartilage Destruction in Osteoarthritis Through Repression of NF-kappaB Signaling Pathway. *Inflammation* **2016**, *39*, 385–392.
- 80. Xu, Q.; Zhang, Z.F.; Sun, W.X. Effect of Naringin on Monosodium Iodoacetate-Induced Osteoarthritis Pain in Rats. Med. Sci Monit 2017, 23, 3746-3751.
- 81. Liang, Z.; Ren, C. Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. *Biomed. Pharmacother.* **2018**, *103*, 897–902.
- 82. Ding, Q.H.; Ye, C.Y.; Chen, E.M.; Zhang, W.; Wang, X.H. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-kappaB and Wnt/beta-catenin signaling in-vitro and in-vivo. *Int Immunopharmacol* 2018, *61*, 222–230.
- 83. Sacitharan, P.K.; Lwin, S.; Gharios, G.B.; Edwards, J.R. Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300. *Exp. Mol. Med.* **2018**, *50*, 123.
- 84. D'Adamo, S.; Cetrullo, S.; Guidotti, S.; Silvestri, Y.; Minguzzi, M.; Santi, S.; Cattini, L.; Filardo, G.; Flamigni, F.; Borzi, R.M. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. *Free Radic. Biol. Med.* **2020**, *153*, 159–172.