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1 Introduction

Studies of semileptonic B meson decays have recently generated interest due to a number of

anomalies in experimental results. Measurements of the observables R(D) and R(D∗) [1–6]

have shown hints of lepton non-universality with a combined significance of over 3 σ [7].

To probe the flavour structure of possible new physics contributions to these decay modes,

it is desirable to make analogous measurements for decays involving different quark-level

processes, such as b→ u transitions. To that end, the decay mode B+ → pp`+ν` is promis-

ing experimentally, particularly when performing the measurement at a hadron collider.

The requirement of a proton anti-proton pair in the final state should significantly reduce

combinatorial background, which would otherwise be significant for final states with pions.

Semileptonic decays of B mesons to a final state containing multiple baryons are as

yet unobserved. A theoretical model of B+ → pp`+ν` decays has been constructed with

perturbative QCD (pQCD) [8]. This model is based on studies of several fully hadronic

B → Y Y
′
X decays where Y and Y

′
represent baryons and X one or more mesons. By

fitting the angular distributions and decay rates of the hadronic modes the authors of

refs. [8–10] estimate the differential rate of B+ → pp`+ν` decays. They also predict the

total branching fraction of the B+ → pp`+ν` decay to be (1.04± 0.38)× 10−4 for l = µ, e

leptons. This prediction motivated a search by the Belle collaboration for this channel

that lead to evidence for the B+ → ppe+νe decay mode with 3.0σ significance [11]. The

branching fraction was measured to be (8.2+3.7
−3.2 ± 0.6) × 10−6, one order of magnitude

smaller than the prediction.
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The measurements of the fully hadronic modes show features that merit further inves-

tigation. It is surprising that the branching fractions of decays of B mesons to final states

comprising only two baryons are suppressed compared to those of two baryons and one or

more extra final state particles [12]. For example, the branching fraction of B0 → pp is two

orders of magnitude smaller than that of the similar B0 → ppπ+π− decay [12, 13]. Fur-

thermore, the invariant-mass distributions of the baryon pair in B → Y Y
′
X decays show

a characteristic accumulation at low values, called the threshold enhancement effect [14–

17]. Measurements of B+ → pp`+ν` semileptonic decays provide the ideal environment

for understanding the 〈Y Ȳ ′|(q̄′b)V−A|B〉 matrix element that contributes to hadronic de-

cay modes.

In this paper, the first observation of the decay B+ → ppµ+νµ is presented. As the

dynamics of the transition are not known, the branching fraction is measured in bins of pp

invariant mass. These bins are then summed to obtain a measurement of the total branching

fraction. The decay B+ → J/ψK+, with J/ψ → µ+µ−, is chosen as the normalisation mode

as it is fully reconstructed and can pass similar selection requirements to the signal. The

branching fraction within a bin i is

Bi(B+ → ppµ+νµ) =
Ni(B

+ → ppµ+νµ)

N(B+ → J/ψK+)
× ε(B+ → J/ψK+)

εi(B
+ → ppµ+νµ)

× B(B+ → J/ψK+)× B(J/ψ → µ+µ−),

where Ni(B
+ → ppµ+νµ) is the yield of B+ → ppµ+νµ candidates in bin i,

N(B+ → J/ψK+) is the total yield of B+ → J/ψK+ candidates and ε represents the prod-

uct of the detector acceptance and the reconstruction and selection efficiencies of the two

modes. The branching fractions of B+ → J/ψK+ and J/ψ → µ+µ− decays are taken from

ref. [12].

The signal yields are extracted from fits to a variable called the corrected mass, which

accounts for the unreconstructed neutrino in the signal decay. It is defined as [18]

mcorr = |p⊥|+
√
|p⊥|2 +m2

ppµ, (1.1)

where |p⊥| is defined as the magnitude of the reconstructed ppµ+ momentum transverse

to the B flight direction and m2
ppµ is the square of the ppµ+ invariant mass.

This study uses the data collected with the LHCb detector in proton-proton collisions

in 2011, 2012 and 2016. This corresponds to integrated luminosities of 1.0, 2.0 and 1.7 fb−1

at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The 2011 and 2012 data sets

are treated together and collectively referred as the Run 1 data set. Charge conjugate

processes are implied throughout this paper.

2 Detector and simulation

The LHCb detector [19, 20] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c

quarks. The detector includes a high-precision tracking system consisting of a silicon-

strip vertex detector surrounding the pp interaction region [21], a large-area silicon-strip
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detector located upstream of a dipole magnet with a bending power of about 4 Tm, and

three stations of silicon-strip detectors and straw drift tubes [22, 23] placed downstream

of the magnet. The tracking system provides a measurement of the momentum, p, of

charged particles with a relative uncertainty that varies from 0.5% at low momentum to

1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the im-

pact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is the

component of the momentum transverse to the beam in GeV/c. Different types of charged

hadrons are distinguished using information from two ring-imaging Cherenkov (RICH)

detectors [24]. Photons, electrons and hadrons are identified by a calorimeter system con-

sisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic

calorimeter. Muons are identified by a system composed of alternating layers of iron and

multiwire proportional chambers [25].

The online event selection is performed by a trigger [26], which consists of a hardware

stage that performs some basic selection, followed by a software stage, which applies a

full event reconstruction. At the first level, a track consistent with being a muon with

significant pT is required to be present in the event. Subsequently in the software stage,

two tracks are required to form a secondary vertex with significant displacement from a

pp interaction vertex. A multivariate algorithm [27] is used to identify vertices that are

consistent with the decay of a b hadron.

Simulation is used to determine the efficiency of the signal mode and estimate the

shapes of the signal and several backgrounds modes in the fits to the mcorr distribution.

In the simulation, pp collisions are generated using Pythia [28, 29] with a specific LHCb

configuration [30]. Decays of unstable particles are described by EvtGen [31], in which

final-state radiation is generated using Photos [32]. The interaction of the generated parti-

cles with the detector, and its response, are implemented using the Geant4 toolkit [33, 34],

as described in ref. [35]. The generated B meson p and pT spectra are corrected to match

the data distributions. A boosted decision tree (BDT) weighter [36] is trained on samples

of B+ → J/ψK+ data and simulation, independent of those used for the normalisation of

the branching fraction. This is then used to correct all the simulation samples used in

the analysis.

3 Selection

Signal candidates are constructed from three charged tracks which are required to be of

good quality and well separated from any PV. The tracks must also have particle iden-

tification consistent with their particle hypothesis. The requirement for positive proton

identification enforces a minimum value of p of 18 GeV/c such that the protons are above

the threshold for radiating in the RICH. Similarly, the muons must have p above 3 GeV/c

to propagate through the muon stations. All the tracks must have pT larger than 1.5 GeV/c

and form a good-quality vertex significantly displaced from the PV with which the can-

didate is associated. The signal muon must have fired the hardware trigger and the re-

constructed B+ candidate formed by the three tracks must be consistent with the object

that fired the software trigger. Potential decays of ηc, J/ψ and ψ(2S) mesons to pp are
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removed with vetoes in the pp invariant mass of ±50 MeV/c2 around their respective known

masses [12].

The selection of the B+ → J/ψK+ normalisation mode is aligned with that of the

signal to reduce systematic uncertainties. The selection criteria for the signal protons are

applied to the kaon and the muon of opposite sign (K+µ−), with the exception of the

particle identification criteria. The selection of the other muon is the same as that of the

muon in the signal decay.

Further selection is used to reduce several sources of backgrounds relative to the signal.

In total there are five variables to which selection is applied, with the chosen criteria on each

optimised together. These variables, and the backgrounds targeted by them are described

in the following paragraphs.

The largest background contribution comes from a mixture of partially reconstructed

decays producing two protons and a muon in the final state. It is expected that the largest

among these originates in b→ c quark transitions. The most pernicious is B → Λ−c pµ
+νµX

decays, whereX represents any number of charged or neutral pions (including none) and the

Λ−c baryon decays to a final state including one proton. The other major background arises

from B → ppDX decays, where the D meson may be of any variety (D0, D−, D∗−, etc.)

and ultimately decays to a final state with a muon. The contribution of B → pΛ−c X decays

with the Λ−c baryon decaying semileptonically is comparatively small, as the semileptonic

branching fraction is dominated by Λ−c → Λl−ν̄l decays. The Λ baryon flies a sufficient

distance within the detector before decaying such that the resulting proton is not associated

with the B decay vertex. Another source of partially reconstructed background is formed

of B → ppµ+νµX decays, where X denotes one or more charged or neutral pions. These

decays may proceed with intermediate N∗ or ∆ resonances and could naively be expected

to have similar branching fractions to the signal.

If any of these partially reconstructed decay modes produces charged tracks in addition

to the ppµ+ candidate, it can be efficiently suppressed with an isolation technique. Once a

signal candidate has been constructed, the other tracks in the event close to the B decay

vertex are examined. A BDT is used to identify those nearby tracks that can be associated

with the signal candidate decay vertex. If the candidate is truly signal, there should be

few other tracks that can be associated with it and the BDT should classify them with

a low score. On the other hand, the extra track(s) from a partially reconstructed decay

returns a high score if such tracks are found. The isolation algorithm returns the BDT

output for the four tracks most likely to have come from the B vertex. These four numbers

are themselves combined into a single BDT classifier, known as the charged-isolation BDT.

This BDT is trained on simulation to discriminate signal from B+ → Λ−c pµ
+νµ decays,

which is expected to be the largest mode with extra charged tracks. The efficacy of this

BDT in reducing such background is shown in figure 1(a). The indicated requirement on

the charged BDT score rejects 80% of the major background decay B → Λ−c pµ
+νµX (with

all possible decay modes of the Λ−c considered), whilst retaining 93% of the signal.

For those partially reconstructed final states with only additional neutral particles,

further suppression is achieved by considering the kinematics of the decays. An additional

BDT, the so called part-reco BDT, considers 11 variables: the impact parameter signifi-

cance of the three final-state tracks, the pp pair and the B+ candidate with respect to the
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Figure 1. Result of training (a) the charged-isolation BDT and (b) the part-reco BDT. The chosen

selection on the classifier outputs are indicated by the dashed red line. For some candidates there

are no additional tracks near the B-decay vertex; these candidates are accepted and do not appear

in the charged-isolation BDT output. The background samples shown here have the Λ−c and D0

hadrons decaying via Λ−c → pK+π− and D0 → µ+X. The part-reco BDT is trained on a mixture

of background modes with only one shown here for illustration.

PV; the impact parameters of the tracks with respect to the fitted B+ decay vertex; the

χ2 of the B+ vertex fit; the angle between the B+ candidate momentum and displacement

vectors; and the difference between the p and p momenta. The part-reco BDT is trained on

simulation in order to discriminate signal from a mixture of all the considered background

modes. The result of this training is shown in figure 1(b). The selection on the part-reco

BDT output removes 18% of the decays B → ppD and keeps 98% of the signal.

An additional background arises from particles that are misidentified as protons

(misID). The particle identification requirements on the proton tracks are therefore further

tightened. Background due to hadrons being misidentified as muons is considered and

reduced to a negligible amount with a loose particle identification requirement. A back-

ground occurs due to the combination of two tracks from the decay of a heavy hadron with

a track from elsewhere in the event. This is referred to as combinatorial background. This

component is expected to have a small contribution due to the tight vertex requirements on

the ppµ+ candidate and the requirement for positively identifying two protons. Therefore

no additional selection is employed specifically to reduce it.

In addition to the two BDTs and proton identification criteria, one further quantity

is considered. The uncertainty on the corrected mass of the candidate may be used to

improve the separation between signal and background [37]. It is calculated from the

estimated uncertainties on the positions of the B+ primary and secondary vertices, and the

momenta of the tracks. Selecting lower values of the corrected-mass uncertainty produces

a sharper peak for the signal mode in the corrected mass distribution, which will aid the

discrimination of the signal from background in the fit to determine the yield.

In total the selection uses five quantities (two BDTs, the proton PID, the muon PID

and the corrected-mass uncertainty). In order to ascertain the optimum selection, a five

dimensional grid search is performed using pseudoexperiments. Data sets are generated

from the simulation samples with the expected proportions of each background. The
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Figure 2. Distribution of m(J/ψK+) with the fit result shown for the 2016 data set.

expected signal amount is taken from the central value of the B+ → ppe+νe branching

fraction reported by the Belle collaboration [11]. For the backgrounds, the current averages

for the branching fractions are used if they have been measured. For those backgrounds that

have not been measured, their branching fractions are estimated relative to that expected

for the signal, accounting for different CKM matrix elements and the available phase space.

For each point in the grid, the selection is applied to the simulation to estimate the efficiency

for each component. The efficiency of the PID requirements on the simulation is estimated

with a method based on data control samples [38]. For each data set the mcorr variable is

simulated and the expected relative uncertainty on the signal yield is found by a fit to the

simulated pseudodata. These fits are not binned in m(pp) but consider the entire sample.

The selection that produces the smallest relative uncertainty on the signal yield is chosen.

4 Signal and normalisation yields

The yields of the signal and normalisation modes are ascertained with unbinned extended

maximum-likelihood fits. In the case of the normalisation mode, the invariant mass dis-

tribution of the J/ψK+ candidates is fitted. The 2011, 2012 and 2016 data sets are fitted

separately and then the yields combined. The fit to the 2016 data set is shown in figure 2.

For the signal mode, the corrected mass is fitted. The distribution of this variable

peaks at the B+ mass for candidates where one massless particle is not reconstructed. On

the other hand, candidates from partially reconstructed decays that are missing one or

more massive particles in addition to the neutrino have wide distributions concentrated at

lower corrected mass values. The Run 1 and 2016 data are combined and fitted together

to improve the fit stability.

The shapes for the signal component and contributions from partially reconstructed de-

cays are determined using simulation. The shape of the signal probability density function

(PDF) is parametrised by the sum of four bifurcated Gaussian functions with a common

mean. The parameters of the Gaussian functions as well as their relative fractions are
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all fixed in the fit. All of the background PDFs are accounted for with kernel density

estimation [39].

The shape of the proton misID background comes from a separate independent data

sample in which the particle identification requirements on one of the protons have been

removed. In this sample the true number of each hadron species can be unfolded and

so the probability of a hadron being misidentified as a proton can be estimated. These

probabilities are used to weight this sample to estimate both the template shape for the

fit component and the yield of misID events.

A background component due to random combinations of protons and muons, referred

to as the combinatorial background, is included in the fit. A sample of data for which the

B+ decay vertex quality selection has been reversed is used to estimate the shape of this

background.

The yields of the signal, proton misID, combinatorial and partially reconstructed de-

cays are determined by the fit, as are the relative fractions of each partially reconstructed

mode. All of the fit parameters are free to vary with the exception of the misID yield which

is constrained.

The fit in each m(pp) bin is performed independently. The mcorr distributions in

each bin, and the resulting fits are shown in figure 3. In each bin the fits are validated

using pseudoexperiments. An ensemble of 105 data sets is generated and fitted with the

component yields taken from the fits to data. Some small biases on the signal yield are

found and these are considered as a source of systematic uncertainty.

5 Efficiency

The efficiencies for the signal and normalisation modes to be reconstructed and selected are

both assessed with simulation. Corrections are applied to account for known differences

between data and simulation in the track-reconstruction efficiency [40] and the efficiency

of the hardware trigger [41]. The efficiency of the particle identification requirements on

each track is evaluated with data [38] and applied to the simulation.

The binning in m(pp) reduces the dependence on the model of the B+ decay when

calculating the efficiency of the signal mode. However, as there are selection requirements

on kinematic quantities of the candidates, there is still some residual dependence on the

dynamics of the decay. The simulation is therefore weighted to represent the pQCD model

of ref. [8] as the current best estimate of how the decay proceeds. This weighting corrects

the distribution of the invariant mass of the µ+νµ system. The variation of the parameters

of this model is considered as a source of systematic uncertainty.

The ratio of selection efficiencies between the signal and normalisation modes in each

bin of m(pp) is shown in table 1. These efficiencies are presented separately for the Run 1

and 2016 samples. They are combined to form an overall efficiency ratio, accounting for

the difference in sample sizes between Run 1 and 2016. This combination is calculated

using the measured B+ production cross-sections [42] and integrated luminosities of each

data set.
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Figure 3. Distributions of mcorr in each m(pp) bin with the fit results shown.
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m(pp)i [ GeV/c2]
ε(B → ppµν)i/ε(B → J/ψK)

Run 1 2016 Run 1 & 2016

Bin 1: 1.87− 2.0 0.37 ± 0.02 0.57 ± 0.03 0.48 ± 0.02

Bin 2: 2.0− 2.2 0.37 ± 0.02 0.51 ± 0.03 0.45 ± 0.02

Bin 3: 2.2− 2.4 0.36 ± 0.02 0.50 ± 0.03 0.44 ± 0.02

Bin 4: 2.4− 2.6 0.36 ± 0.02 0.52 ± 0.03 0.45 ± 0.02

Bin 5: 2.6− 5.0 0.35 ± 0.02 0.49 ± 0.02 0.43 ± 0.02

Table 1. Relative efficiencies for Run 1 and 2016 and the weighted combination of both.

6 Systematic uncertainties

The systematic uncertainties can be split into two categories: those that affect the cal-

culation of the ratio of efficiencies of the signal and normalisation modes and those that

may change the determination of the signal yield in the fit. For the former, each of the

corrections to the simulation contributes a source of uncertainty both from the limited

sizes of the samples used to derive the corrections and from the method of deriving them.

The method of correcting the p and pT distributions of the B+ mesons in the simulation

may give rise to a systematic uncertainty. The parameters of the BDT weighter used to

correct these distributions are altered and the relative efficiencies recalculated, with the

difference to the nominal relative efficiency being the assigned uncertainty. An additional

uncertainty due to any residual differences between data and simulation is determined us-

ing the B+ → J/ψK+ decay mode. The difference in efficiency due to the selection on the

two BDTs and corrected-mass uncertainty is compared between data and simulation.

To account for the uncertainty in the correction of the simulation for the reconstruction

efficiency of each track, the applied weights are varied within their uncertainties and the

relative efficiencies recalculated. Similarly, an uncertainty is assessed for the particle-

identification weights applied to each track. The uncertainty due to the limited simulation

sample sizes used to calculate the efficiencies is also included.

A further uncertainty is due to the physics model that the simulation is weighted to

represent. The model affects the kinematic distributions of the final state tracks which feeds

into the efficiency calculation as these distributions are biased by the selection requirements.

Since the model is unproven a conservative uncertainty is taken. New sets of weights for the

simulation are created that sample extreme variations of the model parameters (±5σ), and

for each variation the efficiency is recalculated. Despite this extreme test, the systematic

uncertainty due to the physics model is not dominant, which reflects the flat selection

efficiency over the kinematic ranges in which the final-state particles lie within each bin of

m(pp). Finally, the uncertainties on the B+ production cross-section [42] and integrated

luminosities of the data samples are combined to give the systematic uncertainty on the

averaging of the efficiencies when combining Run 1 and 2016.

In the corrected-mass fit, uncertainties arise from potential variations in the shapes of

the components. This variation is assessed with pseudoexperiments. Data sets are gen-

erated with the nominal fit model and then fitted with both the nominal model and an

– 9 –



J
H
E
P
0
3
(
2
0
2
0
)
1
4
6

Source
Relative uncertainties on B [%]

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Kinematic weighting 0.7 0.6 0.4 0.5 0.4

Data-simulation agreement 0.4 0.4 0.4 0.4 0.4

Tracking efficiency 2.7 2.7 2.7 2.7 2.7

Particle identification 1.0 0.7 1.3 1.0 1.7

Simulation sample size 3.6 3.2 3.2 3.1 3.0

Physics model 0.3 0.6 0.6 0.4 0.3

Run 1 and 2016 combination 2.1 1.6 1.7 1.7 1.6

Kernel smoothing 0.0 1.1 2.7 7.9 3.5

Signal model 0.6 2.0 3.0 4.8 9.9

Simulation sample size 0.3 0.0 0.3 2.4 5.2

misID model 0.9 0.1 0.6 5.2 13.5

Combinatorial model 0.9 1.2 1.2 8.5 4.7

Fit bias 0.2 0.1 0.9 2.5 7.8

Total systematic uncertainty 5.3 5.2 6.5 15.6 20.8

Total statistical uncertainty 9.1 5.5 12.5 25.3 29.8

Table 2. Summary of the systematic uncertainties on the differential branching fractions. The

contributions pertaining to the efficiency estimate are first, those for the yield extraction are below.

The particle identification and tracking efficiency uncertainties are assumed to be 100% correlated

between Run 1 and 2016. The total correlations of the uncertainties between the bins are shown in

table 4.

alternative. The width of the distribution of differences between the nominal and alter-

native fits is taken as the uncertainty. For those components that rely on kernel density

estimators, a systematic uncertainty is assessed for the choice of smoothing parameter by

varying it. The uncertainty due to the choice of model for the signal shape is found by

replacing the nominal PDF with one constructed with kernel density estimators. The un-

certainty due to the limited sizes of the simulation samples is determined by generating new

simulation from the nominal fit PDFs with the same sample sizes and making alternative

PDFs with those samples. Similarly, an estimate of the uncertainty on the shape of the

proton misID background component is assessed. For the shape of the combinatorial back-

ground component, an alternative data sample is trialled which requires the two protons to

be of the same charge. Finally, the small biases in the fit noted in section 4 are included.

A summary of the systematic uncertainties is presented in table 2. They are given as

relative uncertainties on the branching fraction with the combination accounting for the

correlation of the uncertainties between the two data sets. The correlations of the total

uncertainties between the bins are shown in table 4 and the covariance matrix is presented

in table 5, in the appendix.
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m(pp) [ GeV/c2] Signal Yield dB(B+ → ppµ+νµ)/dm(pp) [×10−6 GeV−1c2]

Bin 1: 1.87–2.0 1210± 110 12.9± 1.2± 0.7± 0.4

Bin 2: 2.0–2.2 1830± 110 12.9± 0.7± 0.7± 0.4

Bin 3: 2.2–2.4 530± 70 3.8± 0.5± 0.2± 0.1

Bin 4: 2.4–2.6 150± 40 1.04± 0.30± 0.16± 0.03

Bin 5: 2.6–5.0 88± 26 0.054± 0.016± 0.011± 0.002

Table 3. Number of observed B+ → ppµ+νµ candidates and differential branching fraction in

each bin of m(pp). The uncertainties on the signal yields are statistical only. For the differential

branching fractions the first uncertainties are statistical, the second systematic and the third from

the uncertainties on the branching fractions of the normalisation channel.

7 Results

The fitted yields for the signal mode are presented in table 3. The extracted yields of the

normalisation channel are 14 930± 260 for 2011, 31 380± 190 for 2012 and 49 270± 250 for

2016. Combining these with the efficiency ratios from section 5, the differential branching

fraction in each m(pp) bin is calculated. The results are presented in table 3. The relative

differential branching fractions are summed over the bins, with the correlation of the sys-

tematic uncertainties between the bins accounted for, to give the total relative branching

fraction of

B(B+ → ppµ+νµ)

B(B+ → J/ψK+)× B(J/ψ → µ+µ−)
= (8.75± 0.39± 0.35)× 10−2,

where the first uncertainty is statistical and the second systematic. Multiplying this by

the current average of the normalisation branching fraction [12] leads to

B(B+ → ppµ+νµ) = (5.27+0.23
−0.24 ± 0.21± 0.15)× 10−6,

where the third uncertainty is from the normalisation branching fraction. Finally, the

absolute differential branching fraction as a function of m(pp) is shown in figure 4, where

the indicated uncertainties include statistical, systematic and normalisation uncertainty

contributions. As expected from the theory model and the analogous hadronic decays, the

differential distribution peaks at a very low value and falls off sharply. The measured total

branching fraction agrees with the previous measurement from the Belle collaboration and

represents the first observation of the B+ → ppµ+νµ decay mode.
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A Correlation and covariance matrices

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

m(pp) [ GeV/c2 ] 1.87–2.0 2.0–2.2 2.2–2.4 2.4–2.6 2.6–5.0

1.87–2.0 1.00 0.19 0.11 0.05 0.04

2.0–2.2 — 1.00 0.15 0.07 0.06

2.2–2.4 — — 1.00 0.04 0.04

2.4–2.6 — — — 1.00 0.02

2.6–5.0 — — — — 1.00

Table 4. Correlations in the uncertainties between bins of m(pp).

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

m(pp) [ GeV/c2 ] 1.87–2.0 2.0–2.2 2.2–2.4 2.4–2.6 2.6–5.0

1.87–2.0 2.0× 10−12 2.8× 10−13 8.5× 10−14 2.3× 10−14 1.2× 10−15

2.0–2.2 — 1.1× 10−12 8.3× 10−14 2.3× 10−14 1.2× 10−15

2.2–2.4 — — 2.9× 10−13 6.9× 10−15 3.8× 10−16

2.4–2.6 — — — 9.6× 10−14 1.0× 10−16

2.6–5.0 — — — — 3.9× 10−16

Table 5. Covariance matrix for bins of m(pp).
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h Università di Genova, Genova, Italy
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