SUPPLEMENTARY MATERIALS (SM) FOR:

Synthesis and Reactivity of Poly(propyleneimine) Dendrimers Functionalized with Cyclopentadienone *N*-Heterocyclic-Carbene Ruthenium(0) Complexes

Cristiana Cesari, Riccardo Conti, Andrea Cingolani, Valerio Zanotti, Maria Cristina Cassani, Luca Rigamonti and Rita Mazzoni

Index

- pp. S2-S3 Scheme S1: PPIs dendrimers g1-5 used as support for ruthenium complexes.
- pp. S4-S5 **Figures S1–S4**: ¹H and ¹³C NMR, IR and MS-ESI spectra of **2**.
- pp. S6-S16 **Figures S5–S21**: ¹H and ¹³C NMR, IR and MS-ESI spectra of **3g1–5**.
- pp. S17-S18 **Figures S22–S23** and **Tables S1–S2**: ¹⁹F NMR spectra and conversion data for catalytic transfer hydrogenation of 4-fluoroacetophenone with **3g1–5**.

DAB-dendr-(NH2)4, g1:

DAB-dendr-(NH2)8, g2:

DAB-dendr-(NH2)32, g4:

DAB-dendr-(NH2)64, g5:

Scheme S1. Polypropilenimine (PPIs) dendrimers **g1-5** used as support for ruthenium complexes in this work.

Figure S1. ¹H NMR spectrum of 2 in CDCl₃ (singlet at 5.3 ppm is given by CH₂Cl₂).

Figure S2. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S3. FT-IR spectrum of 2 (carbonyl CO and C=O region) in CH₂Cl₂.

Figure S4. MS-ESI+ spectrum of 2.

¹H and ¹³C NMR of functionalized neutral dendrimers

Figure S5. ¹H NMR spectrum of **3g1** in CDCl₃ (singlet at 5.3 ppm is given by CH₂Cl₂).

Figure S6. ¹³C NMR spectrum of **3g1** in CDCl₃.

Figure S7. ¹³C NMR spectrum of **3g1**: expanded zone in which CH₂ moieties of the branched dendrimers appear.

Figure S8. FT-IR spectrum of **3g1** (terminal CO and C=O zone) in CH₂Cl₂. FT-IR spectra of **3g2-3g5** are practically superimposable to this one, so they will be omitted.

Figure S9. MS-ESI+ spectrum of **3g1**. Mass spectra of the higher generations **3g2-3g5** exceeds the maximum molecular weight allowed for the techniques available.

3g2

Figure S10. ¹H NMR spectrum of 3g2 in CDCl₃ (singlet at 5.3 ppm is given by CH₂Cl₂).

Figure S11. ¹³C NMR spectrum of 3g2 in CDCl₃.

Figure S12. ¹³C NMR spectrum of **3g2**: expanded zone in which CH₂ moieties of the branched dendrimers appear.

Figure S13. ¹H NMR spectrum of 3g3 in CDCl₃ (singlet at 5.3 ppm is given by CH₂Cl₂).

Figure S14. ¹³C NMR spectrum of 3g3 in CDCl₃.

Figure S15. ¹³C NMR spectrum of **3g3:** expanded zone in which CH₂ moieties of the branched dendrimers appear.

Figure S16. ¹H NMR spectrum of 3g4 in CDCl₃ (singlet at 5.3 ppm is given by CH₂Cl₂).

Figure S17. ¹³C NMR spectrum of 3g4 in CDCl₃.

Figure S18. ¹³C NMR spectrum of **3g4**: expanded zone in which CH₂ moieties of the branched dendrimers appear.

3g5

Figure S19. ¹H NMR spectrum of 3g5 in CDCl₃ (singlet at 5.3 ppm is given by CH₂Cl₂).

Figure S21. ¹³C NMR spectrum of **3g5**: expanded zone in which CH₂ moieties of the branched dendrimers appear.

Time-conversion profile for 3g1 + CAN (1 eq.).

Figure S22. ¹⁹F NMR acquired on samples taken at different reaction times (30 min, 2 h, 4 h, 6 h, 8 h, 23 h) using **3g1** as catalyst and CAN as additive.

|--|

t [min]	Yield(%)
0	0
30	0
120	0
240	5
360	7
480	9
1380	17

Figure S23. ¹⁹F NMR acquired on samples taken at different reaction times (30 min, 2 h, 4 h, 6 h, 7 h, 24 h) using **3g1** as catalyst and pyridine as additive.

t [min]	Yield
0	0
30	0
120	0
240	0
360	0
420	0
1380	20