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Abstract: A complete analysis of the ac output current ripple in four-leg voltage source inverters 
considering multiple modulation schemes is provided. In detail, current ripple envelopes and peak-
to-peak profiles have been determined in the whole fundamental period and a comprehensive 
method providing the current ripple rms has been achieved, all of them as a function of the 
modulation index. These characteristics have been determined for both phase and neutral currents, 
considering the most popular common-mode injection schemes. Particular attention has been paid 
to the performance of discontinuous pulse width modulation (DPWM) methods, including 
DPWMMAX and DPWMMIN, and their four most popular combinations DPWM0, DPWM1, 
DPWM2, and DPWM3. Furthermore, a comparison with a few continuous techniques (sinusoidal, 
centered pulse width modulations, and third harmonic injection) has been provided as well. 
Moreover, the average switching frequency and switching losses are analyzed, determining which 
PWM technique ensures minimum output current ripple within the linear modulation range at 
different assumptions. Numerical simulations and laboratory tests have been conducted to 
extensively verify all the analytical claims for all the considered PWM injections. 

Keywords: inverter; three-phase; current ripple; harmonic distortion; four-leg; four-wire; pulse 
width modulation; optimization; switching losses; grid-connected 

 

1. Introduction 

The capability to handle neutral current is gaining interest in grid-connected power applications 
such as distributed generation systems [1,2], active rectifiers [3,4], and power filters [5]. Particular 
attention to this feature has been drawn by developing a new generation of electric vehicle (EV) 
charging infrastructures that are moving towards smart services known as vehicle-to-grid (V2G) and 
vehicle-for-grid (V4G), where four wire front-end solutions are widely adopted [6]. Among the 
multiple topologies available in the literature/market, three topologies are commonly utilized: split-
capacitor [7,8], four-leg [6,9], and independently controlled neutral module [10]. These voltage source 
inverters (VSIs) can either have or do not have a neutral inductor in the fourth wire. 

The two main pulse width modulation (PWM) techniques are space vector pulse width 
modulation (SVPWM) and carrier-based pulse width modulation (CBPWM). Although SVPWM 
guarantees a more straightforward understanding of the modulation theory, it has been outcompeted 
by the implementation simplicity of CBPWM in both analog and digital systems [11,12]. One of their 
main differences is the way they employ their degrees of freedom. In space vector modulation (SVM), 
it corresponds to the criterion used for sharing two ‘zero’ states. On the other hand, in the carrier-
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based (CB) implementation, it corresponds to the additive common-mode injection into the 
modulating signals. It has been demonstrated that SVPWM leads to the identical CBPWM gate 
signals pattern, and therefore, their performances are coinciding [13]. In the current paper, CB 
methodology has been employed, although the same results could have been obtained with the SVM 
approach as well. 

The two first-discovered CB modulation schemes are sinusoidal pulse width modulation 
(SPWM) and centered pulse width modulation (CPWM). Over the last decades, discontinuous pulse 
width modulation (DPWM) was introduced to reduce the number of commutations, consequently, 
increase the efficiency of high-power converters [14]. This objective is obtained by clamping for one-
third of the fundamental period each phase modulating signal to either the positive (DPWMMAX) 
or the negative (DPWMMIN) linear limits, avoiding any intersection with the carrier signal. In this 
class of injections (DPWM), the average switching frequency is equal to two-thirds of the one 
experienced in SPWM and CPWM. Soon after, new discontinuous injections were introduced, namely 
DPWM0, DPWM1, DPWM2, and DPWM3 [12,15–17]. In general, by alternating positive and negative 
clamping across a fundamental cycle, one could obtain virtually infinite discontinuous injections. 
With the specific task to reduce the switching losses in accordance with the required power factor, 
generalized discontinuous pulse width modulation (GDPWM) has been proposed. In the best 
working area, it is capable of halving losses associated with switches’ commutations [18–20]. 

However, the modulation principle does affect not only the switching losses but also the current 
ripple visible on the ac side of the converter. It is recognized that the current ripple has primary 
importance when it comes to satisfying grid compliance standards, filter design, efficiency 
evaluation, and optimization of modulation techniques. Furthermore, the current ripple analysis is 
critical for compensating inverter nonlinearities [21]. It could be used for designing active filter 
control systems and hysteresis current controllers [22]. Finally, variable switching frequency strategy 
can be developed basing on the knowledge of the ripple distribution over a fundamental period [23]. 

With reference to three-phase, three-wire inverter structure, a wide variety of publications is 
already available. In particular, the ripple peak-to-peak as a function of modulation index has been 
provided in [24]. Moreover, [25] compares ac current ripple characteristics in two-level and multilevel 
converts. The comparison of ac current ripple in DPWM and CPWM is given in [26], permitting 
optimization of inverter operation by amending the average switching frequency. 

Concerning the four-leg three-phase VSI configurations, only a few contributions have 
addressed the current ripple topic. In [6], the maximum peak-to-peak current ripple has been 
compared with the three-wire counterpart without providing any ripple profile in the fundamental 
cycle or rms estimation in either phase or neutral current. Although [27] proposed an envelope and 
rms evaluation, it has been done for SPWM injection only. Many authors have optimized specific 
inverter parameters in the four-leg topology. In particular, common-mode voltage and current are 
reduced by employing multiple carriers in [28]. Power loss reduction at high values of modulating 
index is achieved in [29] through dedicated common-mode injections. Finally, a neutral inductor 
designing procedure for SPWM-based inverters has been proposed in [30]. 

To the best of the authors’ knowledge, no manuscript has provided an extensive analytical ac 
current ripple evaluation of the peak-to-peak, envelopes, and rms, for both phase and neutral current 
with common-mode injections different from SPWM. Prior to this study, neither average switching 
frequency nor switching losses, in the case of DPWM, have not been taken into account to optimize 
the performance of four-leg inverters. The target of this manuscript is to provide a thorough 
analytical description of the phase and neutral current ripple characteristics in three-phase, two-level, 
four-leg, grid-connected inverters for the most popular PWM schemes, such as SPWM, CPWM, 
DPWM, and third harmonic injection (THIPWM). Current ripple envelopes (peak values) have been 
determined in the whole fundamental period, and true rms expressions have been derived as a 
function of modulation index. Focusing solely on grid-connected applications, ‘balanced’ grid 
voltages have been considered in the current ripple analysis for both phase and neutral findings. Due 
to small ac coupling reactance (usually 0.05–0.08 p.u.), relevant unbalanced currents can be driven by 
slightly asymmetric inverter voltages. Therefore, the three modulating signals can be considered 
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quasi-balanced leading to a unique modulation index. The aim of this assumption is to simplify 
computation efforts while preserving the applicability of the derived expressions in grid-connected 
applications. 

Another contribution given by this work is a comparison of the considered modulation strategies 
in terms of different metrics, i.e., switching losses, average switching frequency, rms and peak-to-
peak of ac current ripple. Specifically, the comparison is realized equalizing one of the metric 
parameters and comparing the others. This procedure allows indicating which PWM injection could 
most effectively match optimization problems during the inverter design procedure. All the 
analytical expressions have been broadly verified by performing numerical simulations and 
laboratory experiments for each of the considered modulation case. The excellent matching ensures 
the validity and accuracy of the analytical evaluations. 

The paper is organized as follows. Section 2 provides basic assumptions on the considered 
topology and the carrier-based common-mode injection. In Section 3, a review of the DPWM injection 
classes is provided. Then, ripple performance examinations for phase currents and neutral current 
are presented in Section 4 and 5, respectively. Experimental results that are exhibited to validate the 
provided ripple study are given in Section 6. Finally, conclusions are drawn, summarizing the key 
outcomes of this paper. 

2. Basic Assumptions and Carrier-Based Modulation Principle 

2.1. Converter Model and Current Ripple Definition 

The converter configuration consists of four identical legs, each of them made up of two switches 
(as shown in Figure 1). The four-leg VSI is supplied by a constant dc source (Vdc) and tied up with the 
grid through magnetically independent ac-link inductors (L). The middle point (n) of the fourth leg 
is directly linked with the neutral point of a load/grid. Another popular three-phase, four-wire VSI 
configuration, namely four-leg VSI with the four-inductor arrangement (an inductor placed in each 
phase and neutral), is outside the scope of this paper. It has already been mentioned that this paper 
has the aim to report ac current ripple analysis in grid-tied applications, leading to an examination 
of unity power factor circuits. Nevertheless, for the sake of clarity, it must be mentioned that the ac 
current ripple characteristics are independent of the phase angle φ, so all of the expressions presented 
below are equally valid for any abstract power factor. 

 
Figure 1. Circuit scheme of a three-phase four-leg inverter. 

Concerning the considered system, the three-phase reference voltages are given by: 

⎩⎪⎨
⎪⎧𝑣̅௔(ϑ) = 𝑚௔ 𝑉ௗ௖ cos(ϑ)            𝑣̅௕(ϑ) = 𝑚௕ 𝑉ௗ௖ cos ൬ϑ − 2π3 ൰𝑣̅௖(ϑ) = 𝑚௖ 𝑉ௗ௖ cos ൬ϑ + 2π3 ൰  (1) 
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where ma, mb, and mc represent modulation indices of phase voltages ῡa, ῡb, and ῡc, respectively; ϑ = ω 
t is the phase angle, and ω is the fundamental (grid) angular frequency. The modulation index here 
is defined as the ratio between the amplitude of phase voltage fundamental component and dc bus 
voltage, so the signal modulation range, in per unit, is ±0.5 [27]. In the case of balanced modulation, 
ma = mb = mc = m, so the subscripts are omitted. Likewise, in some cases, the common-mode injections 
are independent from cross-referencing phase modulating signals. Therefore, the related findings are 
expressed with subscript x, which can be freely replaced with the considered phase (a, b, and c). This 
general notation also implies its validity independently from the case study, balanced or unbalanced. 
At the same time, in cumbersome computations, the balanced conditions have been assumed only, 
and, therefore, no subscript has been introduced (assuming generally balanced modulation index m). 

Furthermore, it must be highlighted that in most of the grid-connected applications, it is natural 
to drive unbalanced currents by means of even small modulation index unbalances (in the order of a 
few percent). Therefore, it is acceptable to assume having unbalanced currents at ma ≅ mb ≅ mc = m. As 
will be shown further, this presumption does not introduce detrimental effects on the validity of the 
findings. From now on, the notation ix and in refers to phase and neutral currents, respectively. 

The current ripple can be seen as an integral of the instantaneous voltage difference between the 
output voltage and the sinusoidal reference voltage in (1). This expression, neglecting the voltage 
drop on the resistance (R), can be written as: 𝚤̂௫(𝑡) ≅ 𝚤̂௫(0) + 1𝐿 න ሾ𝑣௫(𝑡) − 𝑣̅௫(𝑡)ሿ𝑑𝑡௧

଴  (2)

where îx is the switching current ripple component and vx is the instantaneous voltage. 
The amplitude of the peak-to-peak current ripple over a switching period Tsw can be defined as: 𝚤̂௣௣(𝑡) = maxሾ𝚤̂௫(𝑡)ሿ| ೞ்ೢ − minሾ𝚤̂௫(𝑡)ሿ| ೞ்ೢ (3)
The inverter instantaneous voltage vx is expressed as: 𝑣௫(𝑡) = 𝑉ௗ௖൫𝑔௫(𝑡) − 𝑔௡(𝑡)൯ (4) 

corresponding to the difference between the phase and the neutral pole voltages defined by the mean 
of their respective gate signals gx and gn. 

2.2. Carrier-Based Common-Mode Injection 

In the carrier-based implementation, it is possible to achieve multiple optimizations for a 
considered modulation method, some of them are higher dc-link utilization (maximization of the 
modulation index) and reduction of commutations in each fundamental period. This procedure 
consists of injecting into all sine-like modulating signals the common-mode component γ(ϑ), as: 𝑢௔∗ (ϑ) = 𝑢௔(ϑ) + γ(ϑ)𝑢௕∗ (ϑ) = 𝑢௕(ϑ) + γ(ϑ)𝑢௖∗(ϑ) = 𝑢௖(ϑ) + γ(ϑ)𝑢௡(ϑ) = γ(ϑ)  (5)

where ux is the reference phase voltage of (1) scaled by a factor of Vdc and un is the neutral leg 
modulating signal. 

In SPWM, the common-mode component is kept equal to zero in the whole fundamental cycle. 
Despite the simplicity of the implementation, it does not provide any benefits neither in dc-bus 
voltage utilization (the modulation index mx is ranging from 0 up to 0.5) nor in minimization of 
switching losses. Equation (6) shows the SPWM common-mode injection. γ(ϑ)|ୗ୔୛୑ = 0 (6)

On the other hand, it is feasible to maximize the dc-link voltage utilization by means of the so-
called centered PWM (CPWM). It can be considered as the carrier-based implementation of the space 
vector PWM (SVPWM), and it shares the same benefits of a +15% bus utilization improvement 
(modulation index can reach 1/√3). Its mathematical definition can be derived from the following 
magnitude test: 
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γ(ϑ)|େ୔୛୑ = − 12 ሼmaxሾ𝑢௔(ϑ), 𝑢௕(ϑ), 𝑢௖(ϑ)ሿ + minሾ𝑢௔(ϑ), 𝑢௕(ϑ), 𝑢௖(ϑ)ሿሽ (7) 

However, CPWM is not the only one modulation strategy that can maximize the dc-link 
utilization. In this context, DPWM methods can be useful as well. One could identify a set of 
modulation schemes that can provide a lower amount of commutations in one fundamental period 
diminishing switching losses. In Section 3, the most common DPWM injections are explained in 
detail. 

For the sake of completeness, THIPWM is discussed here as well. Due to the rigorous procedure 
that is necessary for generating a third harmonic signal, this class of injection has lost its industrial 
and academic interest. The two most popular injections of this kind are THIPWM1/6 and 
THIPWM1/4, which respectively have a magnitude of one-sixth and one-quarter of the fundamental 
component. They can be analytically described as: γ(ϑ)|୘ୌ୍୔୛୑ଵ/଺ = − 𝑚6 cos(3ϑ) (8) γ(ϑ)|୘ୌ୍୔୛୑ଵ/ସ = − 𝑚4 cos(3ϑ) (9) 

Differently from SPWM, CPWM, and some of the DPWM injections, THIPWM, with definitions 
given in Equations (8) and (9), can be effectively employed on a balanced system only [12]. Moreover, 
THIPWM1/4 reaches only +12% in bus utilization in comparison with CPWM. Due to the mentioned 
drawbacks, THIPWM has been commonly replaced with more practical CPWM/SVPWM injections. 
All the here discussed injections are depicted in Figure 2 at m = 0.5. 

  
(a) (b) 

  
(c) (d) 

Figure 2. Phase (u*) and neutral (un) modulating signals (at m = 0.5) of: (a) SPWM; (b) CPWM; (c) 
THIPWM1/6; and (d) THIPWM1/4. 

3. Discontinuous PWM Review 

Similarly to CPWM/SVPWM, DPWM enlarges the voltage utilization range up to m = 1/√3. 
However, the main feature of this modulation class is in switching losses reduction. All the DPWM 
injections here studied, decrease by one third in the number of switching operations in each 
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fundamental cycle. This feature is achieved by the injection of a proper common-mode signal γ(ϑ), 
which can “shift” the modulating signals in a position that guarantees, at any switching instance, at 
least one non-commutating leg. 

3.1. DPWMMAX and DPWMMIN 

The two most popular DPWM injections are DPWMMAX and DPWMIN, in the following 
equations and figures labeled as DMAX and DMIN, respectively. They consistently clamp one of the 
modulating signals to the maximum (0.5) or minimum (−0.5) value, respectively. The common-mode 
injection can be obtained through: γ(𝑡)|ୈ୑୅ଡ଼ = 12 − maxሾ𝑢௔(ϑ), 𝑢௕(ϑ), 𝑢௖(ϑ)ሿ (10) 

γ(𝑡)|ୈ୑୍୒ = − 12 − minሾ𝑢௔(ϑ), 𝑢௕(ϑ), 𝑢௖(ϑ)ሿ (11) 

By assuming a balanced system (unique modulation index for all phases), Equations (10) and 
(11) can be explicitly rewritten as: 

γ(ϑ)|ୈ୑୅ଡ଼ = 12 −
⎩⎪⎨
⎪⎧𝑚 cos ൬ϑ + 2π3 ൰ −π ≤ ϑ ≤ − π3𝑚 cos(ϑ) − π3 ≤ ϑ ≤ π3𝑚 cos ൬ϑ − 2π3 ൰ π3 ≤ ϑ ≤ π  (12) 

γ(ϑ)|ୈ୑୍୒ = − 12 −
⎩⎪⎨
⎪⎧𝑚 cos ൬ϑ + 2π3 ൰ 0 ≤ ϑ ≤ 2π3𝑚 cos(ϑ) 2π3 ≤ ϑ ≤ 4π3𝑚 cos ൬ϑ − 2π3 ൰ 4π3 ≤ ϑ ≤ 2π (13) 

Both DPWMMAX and DPWMMIN are depicted in Figure 3. It is visible that, for one-third of the 
fundamental period, modulating signals u* do not intersect the carrier cr and therefore do not cause 
commutations. 

  
(a) (b) 

Figure 3. Phase (u*) and neutral (un) modulating signals for: (a) DPWMMAX; and (b) DPWMMIN. 

It can be easily noticed that: γ(ϑ)|ୈ୑୅ଡ଼ = −γ(ϑ + π)|ୈ୑୍୒ (14) 
Moreover, since both Equations (12) and (13) are unipolar, one could claim that both injections 

do not share the advantage of the half-wave symmetry properties. Therefore, the modulating signals 
are not half-wave symmetric as well. This last statement suggests already that the current ripple 
waveform must be studied on the whole fundamental period rather than only on half-cycle (as 
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typically done in most of the injections). However, by examining Equation (14), it is possible to state 
that (for phase a): 

𝑢௔∗ (ϑ)|ୈ୑୅ଡ଼ = 𝑢௔(ϑ) + γ(ϑ)|ୈ୑୅ଡ଼ = ൞ 𝑢௔(ϑ) + γ(ϑ)|ୈ୑୅ଡ଼ − π2 ≤ ϑ ≤ π2−ሾ𝑢௔(ϑ − π) + γ(ϑ − π)|ୈ୑୍୒ሿ π2 ≤ ϑ ≤ 3π2  (15) 

𝑢௔∗ (ϑ)|ୈ୑୍୒ = 𝑢௔(ϑ) + γ(ϑ)|ୈ୑୍୒ = ൞ 𝑢௔(ϑ) + γ(ϑ)|ୈ୑୍୒ − π2 ≤ ϑ ≤ π2−ሾ𝑢௔(ϑ − π) + γ(ϑ − π)|ୈ୑୅ଡ଼ሿ π2 ≤ ϑ ≤ 3π2  (16) 

Thanks to Equation (15), one can study the second half cycle of the current ripple, in case of 
DPWMMAX, referring to the opposite of the first half cycle in the case of DPWMMIN. Similarly, with 
Equation (16), one could examine ripple in the case of DPWMMIN taking advantage of DPWMMAX 
computations. This relationship between the two injections suggests that their performance in terms 
of current ripple peak-to-peak and rms is the same. 

In general, this statement can be extended by saying that: 𝑢௫∗ (ϑ)|ୈ୑୅ଡ଼ = −𝑢௫∗ (ϑ + π)|ୈ୑୍୒ (17) 

3.2. Generalized DPWM 

By alternating both DPWMMAX and DPWMMIN, there is a possibility to obtain virtually an 
infinite number of DPWM injections. In this context, one could find, in the literature, the so-called 
generalized DPWM (GDPWM). 

From the analytical point of view, it is necessary to introduce a set of dummy signals us that 
could be defined by shifting their angle as: 𝑢௦(ϑ, ψ௠) = 𝑢(ϑ + ψ௠) (18) 
where ψm is a phase angle that can range in the interval of [−π/6; π/6]. 

GDPWM injection can be obtained throughout the magnitude test Equation (19), as in [12]. 

γ(ϑ, ψ௠)|ୋୈ୔୛୑ =
⎩⎪⎨
⎪⎧12 signሾ𝑢௔(ϑ)ሿ − 𝑢௔(ϑ) |𝑢௔(ϑ, ψ௠)|௦| ≥ |𝑢௕(ϑ, ψ௠)|௦|, |𝑢௖(ϑ, ψ௠)|௦|12 signሾ𝑢௕(ϑ)ሿ − 𝑢௕(ϑ) |𝑢௕(ϑ, ψ௠)|௦| ≥ |𝑢௔(ϑ, ψ௠)|௦|, |𝑢௖(ϑ, ψ௠)|௦|12 signሾ𝑢௖(ϑ)ሿ − 𝑢௖(ϑ) |𝑢௖(ϑ, ψ௠)|௦| ≥ |𝑢௔(ϑ, ψ௠)|௦|, |𝑢௕(ϑ, ψ௠)|௦| (19) 

The three most common injections of this kind are DPWM0, DPWM1, and DPWM2. 

3.2.1. DPWM0 

By replacing ψm = −π/6 into Equations (18) and (19), it yields to: 

γ(ϑ)|ୈ୔୛୑଴ = ൞γ(ϑ)|ୈ୑୅ଡ଼ −π ≤ ϑ ≤ − 2π3 − π3 ≤ ϑ ≤ 0 π3 ≤ ϑ ≤ 2π3γ(ϑ)|ୈ୑୍୒ − 2π3 ≤ ϑ ≤ − π3 0 ≤ ϑ ≤ π3 2π3 ≤ ϑ ≤ π (20) 

3.2.2. DPWM1 

By substituting ψm = 0 into Equations (18) and (19), one could obtain: 

γ(ϑ)|ୈ୔୛୑ଵ = ൞γ(ϑ)|ୈ୑୅ଡ଼ − 5π6 ≤ ϑ ≤ − π2 − π6 ≤ ϑ ≤ π6 π2 ≤ ϑ ≤ 5π6γ(ϑ)|ୈ୑୍୒ − π2 ≤ ϑ ≤ − π6 π6 ≤ ϑ ≤ π2 5π6 ≤ ϑ ≤ 7π6  (21) 

3.2.3. DPWM2 

By introducing ψm = π/6 into Equations (18) and (19), the common-mode injection takes the form: 



Energies 2020, 13, 4352 8 of 32 

 

γ(ϑ)|ୈ୔୛୑ଶ = ൞γ(ϑ)|ୈ୑୍୒ −π ≤ ϑ ≤ − 2π3 − π3 ≤ ϑ ≤ 0 π3 ≤ ϑ ≤ 2π3γ(ϑ)|ୈ୑୅ଡ଼ − 2π3 ≤ ϑ ≤ − π3 0 ≤ ϑ ≤ π3 2π3 ≤ ϑ ≤ π (22) 

3.3. DPWM3 

Another popular injection is the so-called DPWM3. Likewise, DPWMMAX, DPWMMIN, and 
GDPWM, it is based on the magnitude test. However, this time the leading signal is the one that has 
intermediate magnitude [12]: 

γ(ϑ)|ୈ୔୛୑ଷ =
⎩⎪⎪⎨
⎪⎪⎧12 signሾ𝑢௔(ϑ)ሿ − 𝑢௔(ϑ) ൜|𝑢௕(ϑ)| ≥ |𝑢௔(ϑ)| ≥ |𝑢௖(ϑ)||𝑢௖(ϑ)| ≥ |𝑢௔(ϑ)| ≥ |𝑢௕(ϑ)|12 signሾ𝑢௕(ϑ)ሿ − 𝑢௕(ϑ) ൜|𝑢௔(ϑ)| ≥ |𝑢௕(ϑ)| ≥ |𝑢௖(ϑ)||𝑢௖(ϑ)| ≥ |𝑢௕(ϑ)| ≥ |𝑢௔(ϑ)|12 signሾ𝑢௖(ϑ)ሿ − 𝑢௖(ϑ) ൜|𝑢௔(ϑ)| ≥ |𝑢௖(ϑ)| ≥ |𝑢௕(ϑ)||𝑢௕(ϑ)| ≥ |𝑢௖(ϑ)| ≥ |𝑢௔(ϑ)|

 (23) 

In the same manner, this injection can be seen as an alternation of DPWMMAX and DPWMMIN: 

γ(ϑ)|ୈ୔୛୑ଷ = ൞γ(ϑ)|ୈ୑୍୒ − 5π6 ≤ ϑ ≤ − π2 − π6 ≤ ϑ ≤ π6 π2 ≤ ϑ ≤ 5π6γ(ϑ)|ୈ୑୅ଡ଼ − π2 ≤ ϑ ≤ − π6 π6 ≤ ϑ ≤ π2 5π6 ≤ ϑ ≤ 7π6  (24) 

Here one crucial notice must be made that differently from DPWMMAX and DPWMMIN, it is 
not possible to use GDPWM and DPWM3 in case of unbalanced modulation, having mx ≠ m. 

From Figure 4, one can note that DPWM0, DPWM1, DPWM2, and DPWM3 alternate every 60° 
the injections introduced by DPWMMAX and DPWMMIN. Moreover, the injection γ(ϑ), in these four 
cases, is half-wave symmetric. Thus, the modulating signals and the related current ripple are half-
wave symmetric as well. As a result, the ripple analysis can be limited to one half fundamental cycle. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Phase (u*) and neutral (un) modulating signals for: (a) DPWM0; (b) DPWM1; (c) DPWM2; 
and (d) DPWM3. 
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Because of Equation (17), it can be observed that DPWM0 and DPWM2 have the same ripple 
performance as DPWMMAX and DPWMMIN in terms of maximum peak-to-peak and rms values.  

4. Phase Currents Ripple Analysis 

By considering one switching period of a generic injection, the ac current ripple and the voltage 
pulse disposition could be depicted as in Figure 5. The pulse arrangement employed in this section 
should be considered valid only for u ≥ 0, namely in case of phase a from −π/2 to π/2. As already 
thoroughly discussed in the previous sections, due to symmetry reasons, it is possible to restrict the 
analysis to half of a fundamental period by adopting the assumption above. All the findings shown 
in this section can be extended to the other phases. 

 
Figure 5. Current ripple waveform (phase a) (bottom) and voltage pulse disposition (phase a) (middle) 
generated by a generic modulation strategy in one switching period (top). 

Regarding Figure 5, the pulse timing about phase a could be identified as: 

⎩⎪⎪⎨
⎪⎪⎧𝑡଴ = 𝑇௦௪2 ቆ12 − 𝑢𝑎∗(𝑡)ቇ = 𝑇௦௪2 ቆ12 − 𝑢𝑎(𝑡) − γ(𝑡)ቇ𝑡ଵ = 𝑇௦௪2 ൫𝑢𝑎∗ (𝑡) − 𝑢𝑛(𝑡)൯ = 𝑇௦௪2 𝑢𝑎(𝑡)                      𝑡ଶ = 𝑇௦௪2 ቆ12 + 𝑢𝑛(𝑡)ቇ = 𝑇௦௪2 ቆ12 + γ(𝑡)ቇ              𝑢𝑎(𝑡)  ≥ 0 (25)

Moreover, with (26) two local maxima, indicated as primary and secondary, can be defined. 

⎩⎨
⎧ 𝚤̂௔,௣௞ᇱ (𝑡) = 𝑡ଶ 𝑉ௗ௖𝐿 𝑢௔(𝑡) = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) ൤12 + γ(𝑡)൨𝚤̂௔,௣௞ᇱᇱ (𝑡) = −𝑡଴ 𝑉ௗ௖𝐿 𝑢௔(𝑡) = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) ൤− 12 + 𝑢𝑎(𝑡) + γ(𝑡)൨ 𝑢𝑎(𝑡)  ≥ 0 (26) 

Equation (26) is the base of the following analysis of current ripple peak-to-peak and rms values, 
and it is valid regardless of the kind of injection γ(t) has been considered. It must be emphasized here 
that the total current ripple is composed by primary and secondary peaks, where the latter ones are 
usually omitted by researchers, despite playing significant role in true rms computation, as it will be 
shown in Section 4.2. 
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4.1. Phase Current Ripple Profile 

By extending Equation (26) to the whole fundamental period [0; 2π], one could find the actual 
current ripple envelopes that enclose primary and secondary peaks. It can be demonstrated that when 
u ≤ 0, primary and secondary envelopes can be mathematically described as: 

⎩⎨
⎧ 𝚤̂௔,௣௞ᇱ (𝑡) = − ൬𝑇௦௪2 − 𝑡ଶ൰ 𝑉ௗ௖𝐿 𝑢௔(𝑡) = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) ൤− 12 + γ(𝑡)൨𝚤̂௔,௣௞ᇱᇱ (𝑡) = ൬𝑇௦௪2 − 𝑡଴൰ 𝑉ௗ௖𝐿 𝑢௔(𝑡) = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) ൤12 + 𝑢𝑎(𝑡) + γ(𝑡)൨ 𝑢𝑎(𝑡)  ≤ 0 (27) 

Therefore, by combining Equations (26) and (27), the envelope expressions (positive and 
negative) are valid in the whole fundamental period and could be written as: 

⎩⎨
⎧ 𝚤̂௔,௣௞ᇱ (𝑡) = ± 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) ൜12 signሾ𝑢௔(𝑡)ሿ + γ(𝑡)ൠ𝚤̂௔,௣௞ᇱᇱ (𝑡) = ± 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) ൜− 12 signሾ𝑢௔(𝑡)ሿ + 𝑢𝑎(𝑡) + γ(𝑡)ൠ (28) 

Equation (28) can be normalized (using as a base Vdc/(2Lfsw)) yielding: 

൞ 𝑟̂௔,௣௞ᇱ (𝑡) = ±𝑢௔(𝑡) ൜12 signሾ𝑢௔(𝑡)ሿ + γ(𝑡)ൠ𝑟̂௔,௣௞ᇱᇱ (𝑡) = ±𝑢௔(𝑡) ൜− 12 signሾ𝑢௔(𝑡)ሿ + 𝑢𝑎(𝑡) + γ(𝑡)ൠ (29) 

The same normalization factor has been adopted to normalize the phase currents. Equations (28) 
and (29) are also valid in unbalanced conditions, i.e., modulation indices different (only in linear 
modulation range). 

For verifying the accuracy of Equation (29), simulation results for examined injections are 
presented from Figures 6–15. Subfigures marked with “(a)” demonstrate the actual capability of the 
topology to carry unbalanced currents in all the presented injections. The normalized current ripple 
component of phase a has been presented in subfigures labeled as “(b)”. A relatively low switching 
frequency (fsw = 3.6 kHz) has been chosen to clearly show the ripple profile with its primary and 
secondary envelopes. 

  

(a) (b) 

Figure 6. Primary (black) and secondary (gray) envelopes in case of SPWM at m = 0.5 and fsw = 3.6 kHz: 
(a) Normalized phase currents; (b) Normalized phase current ripple. 

It is noteworthy that CPWM (Figure 7), THIPWM1/6 (Figure 8), and THIPWM1/4 (Figure 9), 
share a similar profile of the common-mode signal (third harmonic of the fundamental component is 
dominant), their ripple contours are visually similar. Therefore, their performance in terms of peak-
to-peak and rms is expected to be close to one another. 



Energies 2020, 13, 4352 11 of 32 

 

  
(a) (b) 

Figure 7. Primary (black) and secondary (gray) envelopes in case of CPWM at m = 0.5 and fsw = 3.6 
kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

  
(a) (b) 

Figure 8. Primary (black) and secondary (gray) envelopes in case of THIPWM1/6 at m = 0.5 and fsw = 
3.6 kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

  
(a) (b) 

Figure 9. Primary (black) and secondary (gray) envelopes in case of THIPWM1/4 at m = 0.5 and fsw = 
3.6 kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

As discussed before, DPWMMAX (Figure 10) and DPWMMIN (Figure 11) do not present a half-
wave symmetry. However, as it has been shown in (17) for their modulating signals, also the current 
ripple could be interchangeably examined by DPWMMAX or DPWMMIN, but half-cycle displaced 
(+π). Both envelopes match with the simulation profiles. 

  
(a) (b) 

Figure 10. Primary (black) and secondary (gray) envelopes in case of DPWMMAX at m = 0.5 and fsw = 
3.6 kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 
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(a) (b) 

Figure 11. Primary (black) and secondary (gray) envelopes in case of DPWMMIN at m = 0.5 and fsw = 
3.6 kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

Since DPWM0 (Figure 12), DPWM1 (Figure 13), DPWM2 (Figure 14), and DPWM3 (Figure 15) 
alternate the positive and the negative clamping, their ripple profiles share part of the DPWMMAX 
and DPWMMIN contours. Moreover, rearranging sections of the plots in Figures 12b and 14b, it is 
possible to obtain the profiles given in Figures 10b and 11b, ensuring the same ripple characteristics 
of DPWMMAX and DPWMMIN. Again, in all the cases, analytical envelopes correctly bound 
numerically obtained current patterns. 

  
(a) (b) 

Figure 12. Primary (black) and secondary (gray) envelopes in case of DPWM0 at m = 0.5 and fsw = 3.6 
kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

  
(a) (b) 

Figure 13. Primary (black) and secondary (gray) envelopes in case of DPWM1 at m = 0.5 and fsw = 3.6 
kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

  
(a) (b) 

Figure 14. Primary (black) and secondary (gray) envelopes in case of DPWM2 at m = 0.5 and fsw = 3.6 
kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 
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(a) (b) 

Figure 15. Primary (black) and secondary (gray) envelopes in case of DPWM3 at m = 0.5 and fsw = 3.6 
kHz: (a) Normalized phase currents; (b) Normalized phase current ripple. 

Current Ripple Peak-to-Peak 

By introducing (29) into (3), the primary and secondary normalized peak-to-peak current ripples 
can be calculated as follows: ቊ 𝑟̂௔,௣௣ᇱ (𝑡) = 𝑢௔(𝑡)ሼsignሾ𝑢௔(𝑡)ሿ + 2γ(𝑡)ሽ𝑟̂௔,௣௣ᇱᇱ (𝑡) = 𝑢௔(𝑡)ሼ−signሾ𝑢௔(𝑡)ሿ + 2𝑢𝑎(𝑡) + 2γ(𝑡)ሽ (30) 

In the following pictures, current ripple peak-to-peak as a function of m and ϑ has been depicted 
for all the considered injections. 

As expected, peak-to-peak profiles of SPWM, CPWM, THIPWM1/6, and THIPWM1/4 depicted 
in Figure 16 have a half-wave symmetry. The secondary peak-to-peak pattern tends to remain 
confined inside the primary one. Differently from Figure 16, and as discussed before, peak-to-peak 
profiles of DPWMMAX and DPWMMIN shown in Figure 17 do not present any half-wave symmetry. 
However, as it has been declared in previous sections, they tend to have a mirrored profile. 

  
(a) (b) 

  
(c) (d) 

Figure 16. Normalized primary and secondary peak-to-peak phase current ripples in case of: (a) 
SPWM; (b) CPWM; (c) THIPWM1/6; and (d) THIPWM1/4. 
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(a) (b) 

Figure 17. Normalized primary and secondary peak-to-peak phase current ripples in case of: (a) 
DPWMMAX; (b) DPWMMIN. 

Being GDPWM made out of multiple slices of DPWMMAX and DPWMMIN, it can be easily 
recognized how both primary and secondary peak-to-peak profiles, presented in Figure 18, are the 
regrouped forms of those depicted in Figure 17. 

  
(a) (b) 

  
(c) (d) 

Figure 18. Normalized primary and secondary peak-to-peak phase current ripples in case of: (a) 
DPWM0; (b) DPWM1; (c) DPWM2; and (d) DPWM3. 

Moreover, it can be seen that when a phase is clamped, the term inside of the curly brackets of 
the secondary peak-to-peak expression in (30) becomes null, leading to the flat, zero profile visible in 
both Figures 17 and 18. It is also interesting to notice that for lower modulation indices (m ≤ 0.2) the 
maximum peak-to-peak values of ac current ripple for the four-leg configuration are pretty close their 
counterparts from the three-leg VSI (see left 2D axes of Figures 17 and 18). Furthermore, in Figure 
18d one can notice slightly better performance of the four-leg VSI over the three-leg one. For the 
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higher modulation indices (m > 0.2), it is well visible that in all of the studied modulation cases, the 
typical two-level, three-phase VSI configuration (“3leg”) outperforms the four-leg VSI architecture, 
in terms of maximum peak-to-peak current ripple. 

Figure 19 displays the normalized maximum peak-to-peak values of the studied injections that 
have been applied to the four-leg VSI. It can be seen that CPWM, THIPWM1/6 (“THI6”), and 
THIPWM1/4 (“THI4”) behave similarly in the whole m range, always remaining below SPWM trace. 
All the DPWM injections are presenting worse performance, especially for low m values, if compared 
with the other counterparts. It can be noticed that DPWMMAX (“DMAX”), DPWMMIN (“DMIN”), 
DPWM0 (“D0”), DPWM1 (“D1”), and DPWM2 (“D2”) share similar behavior. Among the studied 
here DPWM injections, DPWM3 (“D3”) is the one that reveal the best current ripple-related 
characteristics. Finally, it deserves to be mentioned the fact that as more these injections approach to 
its linear range m limit, as close one another, their characteristics become (Figure 19b). 

  
(a) (b) 

Figure 19. (a) Normalized maximum peak-to-peak value as a function of m for all the considered 
injections; (b) Magnification for high values of m. 

4.2. Phase Current Ripple RMS 

From Figure 5, one can notice that voltage pulses can retain only two possible levels. Therefore, 
all the positive current ramps have the same slope, similarly all negative current ramps have the same 
steepness. However, it can be easily seen that the ripple waveform in the switching period is not 
properly triangular. 

As done before, for symmetry reasons, it is possible to restrict the study on the right half of the 
switching period. The current ripple on the right side can be seen as a triangular waveform having a 
particular offset. Therefore, the rms of the phase current ripple can be determined by separately 
studying the dc contribution due to the offset and the ac component due to the triangular waveform. 
The current ripple rms within one switching period can be seen as: 

𝐼መ் ೞೢ(𝑚, ϑ) = ට𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶ + 𝐼መ் ೞೢ௔௖ (𝑚, ϑ)ଶ (31) 

where the rms due to the offset can be computed as: 

𝐼መ் ೞೢௗ௖ (𝑚, ϑ) = 𝚤̂௣௞ᇱ (𝑚, ϑ) + 𝚤̂௣௞ᇱᇱ (𝑚, ϑ)2 = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௫(𝑚, ϑ)ଶ + 2𝑢௫(𝑚, ϑ)γ(𝑚, ϑ)2  (32) 

Since the alternate component consists of a triangular waveform, its rms can be calculated basing 
on the crest factor √3 of a triangular waveform as: 

𝐼መ் ೞೢ௔௖ (𝑚, ϑ) = 𝚤̂௣௞ᇱ (𝑚, ϑ) − 𝚤̂௣௞ᇱᇱ (𝑚, ϑ)2√3 = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௫(𝑚, ϑ) − 𝑢௫(𝑚, ϑ)ଶ2√3  (33) 

The total current ripple rms can be obtained by integrating all the rms contributions provided 
by all the switching cycles within one fundamental period as: 
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𝐼መ(𝑚) = ඨ 12π න ൣ𝐼መ் ೞೢ(𝑚, ϑ)൧ଶ𝑑ϑଶ஠
଴ = ඨ 12π න ൣ𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶ + 𝐼መ் ೞೢ௔௖ (𝑚, ϑ)ଶ൧𝑑ϑଶ஠

଴  (34) 

Since Equation (33) is injection independent, its contribution is the same for all the modulation 
strategies. 

4.2.1. DPWMMAX and DPWMMIN 

As discussed before, the pulses arrangement visible in Figure 5 is valid only from −π/2 to π/2, 
therefore to study DPWMMAX and DPWMMIN rms in whole fundamental period it is necessary for 
further derivations to employ Equations (15) and (16). Considering modulating signal symmetries, 
Equation (34) can be rewritten as: 

𝐼መ(𝑚)ଶหୈ୑୅ଡ଼ = 12π න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑଷ஠ଶି஠ଶ = 1π න ቂ𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼ + 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒ቃ 𝑑ϑ஠ଶ଴  (35) 

𝐼መ(𝑚)ଶหୈ୑୍୒ = 12π න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑଷ஠ଶି஠ଶ = 1π න ቂ𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼ + 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒ቃ 𝑑ϑ஠ଶ଴  (36) 

which can be further simplified as: 

𝐼መ(𝑚)ଶหୈ୑୅ଡ଼ = 𝐼መ(𝑚)ଶหୈ୑୍୒ = 1π න ቂ𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୅ଡ଼ + 𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୍୒ + 2𝐼መ் ೞೢ௔௖ (𝑚, ϑ)ଶቃ 𝑑ϑ஠ଶ଴  (37) 

finally giving: 

𝐼መ(𝑚)หୈ୑୅ଡ଼ = 𝐼መ(𝑚)หୈ୑୍୒ = 𝑉𝑑𝑐2𝐿𝑓𝑠𝑤  𝑚2√6 ඨ4 − 16 + 54√33π 𝑚 + ቆ9 + 27√38π ቇ 𝑚2 (38) 

Simulation data points (olive green squares) and analytically derived rms expression (solid 
trace) displayed in Figure 20 demonstrate the validity of Equation (38) for both DPWMAX and 
DPWMMIN. All the depicted values were normalized using as a base Vdc/(2Lfsw) and displayed with 
symbol R, providing ripple rms functions invariant from system parameters (Vdc, L and fsw). Moreover, 
for lower modulation indices (m ≤ 0.2) current ripple rms is comparable with the three-leg counterpart 
(dashed black line in Figure 20). On the other hand, for high modulating index values, the considered 
four-leg topology is continuously outperformed by the standard three-leg configuration. 

  
(a) (b) 

Figure 20. Normalized current ripple rms as a function of m for: (a) DPWMMAX; (b) DPWMMIN. 
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4.2.2. DPWM0 and DPWM2 

Thanks to the half-wave symmetry of DPWM0 and DPWM2, the rms can be studied within one 
semi-cycle. Taking advantage of Equations (20) and (22), Equation (34) can be rewritten as: 

𝐼መ(𝑚)ଶหୈ୔୛୑଴ = 1π ൥න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑି஠ଷି஠ଶ + න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ଴
ି஠ଷ+ න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ஠ଷ଴ + න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ஠ଶ஠ଷ ൩ 

(39) 

𝐼መ(𝑚)ଶหୈ୔୛୑ଶ = 1π ൥න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑି஠ଷି஠ଶ + න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ଴
ି஠ଷ+ න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ஠ଷ଴ + න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ஠ଶ஠ଷ ൩ (40) 

which for symmetry reasons can be reconducted to: 

𝐼መ(𝑚)ଶหୈ୔୛୑଴ = 𝐼መ(𝑚)ଶหୈ୔୛୑ଶ = 1π න ቂ𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୅ଡ଼ + 𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୍୒ + 2𝐼መ் ೞೢ௔௖ (𝑚, ϑ)ଶቃ 𝑑ϑ஠ଶ଴  (41) 

providing the same rms value seen in Equation (38): 

𝐼መ(𝑚)หୈ୔୛୑଴ = 𝐼መ(𝑚)หୈ୔୛୑ଶ = 𝑉𝑑𝑐2𝐿𝑓𝑠𝑤  𝑚2√6 ඨ4 − 16 + 54√33π 𝑚 + ቆ9 + 27√38π ቇ 𝑚2 (42) 

Also for DPWM0 and DPWM2, rms formulations are supported by the simulation data 
displayed in Figure 21 (normalized using as a base Vdc/(2Lfsw)). Being Equation (42) identical to 
Equation (38), considerations above can be extended to DPWM0 and DPWM2. 

  
(a) (b) 

Figure 21. Normalized current ripple rms as a function of m for: (a) DPWM0; (b) DPWM2. 

4.2.3. DPWM1 

Similarly to what done before, thanks to quarter-wave symmetry and employing Equation (21), 
relation (34) can be rewritten as: 

𝐼መ(𝑚)ଶหୈ୔୛୑ଵ = 2π ൥න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ஠଺଴ + න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ஠ଶ஠଺ ൩ (43) 

which can be further simplified as: 
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𝐼መ(𝑚)ଶหୈ୔୛୑ଵ = 2π ൥න 𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ஠଺଴ + න 𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ஠ଶ஠଺ + න 𝐼መ் ೞೢ௔௖ (𝑚, ϑ)ଶ𝑑ϑ஠ଶ଴ ൩ (44) 

finally providing the rms expression: 𝐼መ(𝑚)หୈ୔୛୑ଵ = 𝑉𝑑𝑐2𝐿𝑓𝑠𝑤  𝑚2√6 ඨ4 − 1063π 𝑚 + ቆ9 + 27√312π ቇ 𝑚2 (45) 

The numerical results (normalized using as a base Vdc/(2Lfsw)) of Figure 22a confirm Equation 
(45). 

  
(a) (b) 

Figure 22. Normalized current ripple rms as a function of m for: (a) DPWM1; (b) DPWM3. 

4.2.4. DPWM3 

Similarly to what has been done for DPWM1 and employing Equation (24), relation (34) can be 
rewritten as: 

𝐼መ(𝑚)ଶหୈ୔୛୑ଷ = 2π ൥න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ஠଺଴ + න 𝐼መ் ೞೢ(𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ஠ଶ஠଺ ൩ (46) 

which can be further simplified as: 

𝐼መ(𝑚)ଶหୈ୔୛୑ଷ = 2π ൥න 𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୅ଡ଼𝑑ϑ஠଺଴ + න 𝐼መ் ೞೢௗ௖ (𝑚, ϑ)ଶหୈ୑୍୒𝑑ϑ஠ଶ஠଺ + න 𝐼መ் ೞೢ௔௖ (𝑚, ϑ)ଶ𝑑ϑ஠ଶ଴ ൩ (47) 

finally providing the rms function: 𝐼መ(𝑚)ห஽௉ௐெଷ = 𝑉𝑑𝑐2𝐿𝑓𝑠𝑤  𝑚2√6 ඨ4 + 74 − 108√33π 𝑚 + ቆ9 + 27√36π ቇ 𝑚2 (48) 

The simulation results (normalized using as a base Vdc/(2Lfsw)) of Figure 22b reasonably match 
with Equation (48). The classical three-leg rms trace (dashed black line) of Figure 22 outperforms both 
DPWM1 and DPWM3. 

4.2.5. SPWM, CPWM, THIPWM1/6, and THIPWM1/4 

For the sake of completeness, here are also reported the rms values for SPWM, CPWM, 
THIPWM1/6, and THIPWM1/4. Following the same general approach used for the previous 
modulation cases, it can be demonstrated that the rms functions for the aforementioned continuous 
modulation strategies are: 

𝐼መ௫(𝑚௫)หୗ୔୛୑ = 𝑉ௗ௖2𝐿𝑓௦௪  𝑚௫2√6 ඨ1 − 163π 𝑚௫ + 3𝑚௫ଶ (49) 
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𝐼መ(𝑚)หେ୔୛୑ = 𝑉ௗ௖2𝐿𝑓௦௪  𝑚2√6 ඨ1 − 163π 𝑚 + ቆ92 − 27√38π ቇ 𝑚ଶ (50) 

𝐼መ(𝑚)ห୘ୌ୍୔୛୑ଵ/଺ = 𝑉ௗ௖2𝐿𝑓௦௪  𝑚2√6 ඨ1 − 163π 𝑚 + 83 𝑚ଶ (51) 

𝐼መ(𝑚)ห୘ୌ୍୔୛୑ଵ/ସ = 𝑉ௗ௖2𝐿𝑓௦௪  𝑚2√6 ඨ1 − 163π 𝑚 + 218 𝑚ଶ (52) 

Similar to what has been done above for DPWMs, Figure 23 displays a proper matching between 
numerical results and analytical findings for SPWM, CPWM, THIPWM1/6, and THIPWM1/4 
injections (normalized using as a base Vdc/(2Lfsw)). 

  
(a) (b) 

  
(c) (d) 

Figure 23. Normalized current ripple rms as a function of m for: (a) SPWM; (b) CPWM; (c) 
THIPWM1/6; and (d) THIPWM1/4. 

As visible from Figure 24, DPWMs have worse performance in terms of rms current ripple value 
within almost whole m range. However, similarly to what was noted for three-leg topology, for high 
values of m, DPWM profiles approach to the rms values achieved by CPWM making this class of 
injections particularly suitable in grid-connected applications. Among the DPWM class of injections, 
DPWM3 is the one presenting the most favorable rms profile. 

  
(a) (b) 

Figure 24. (a) Normalized current ripple rms as a function of m for all the considered injections. (b) 
Magnification for high values of m. The normalization base Vdc/(2Lfsw) has been used. 

  



Energies 2020, 13, 4352 20 of 32 

 

4.3. Injection Optimization Throughout Frequency Amending 

As explained above, the clamping action carried out by DPWMs reduces the number of 
switching instants, leading to the corresponded reduction of switching losses and optimization of 
switching frequency. To have a fair comparison between DPWMs and other continuous injections, it 
is necessary to consider the smaller average switching frequency among compared modulation 
methods and the lower switching losses by amending the switching frequency. 

4.3.1. Average Switching Frequency Compensation 

It is well-known that all the DPWM injections share common feature, namely each phase stays 
clamped for one-third of the fundamental period. In this way, it can be readily stated that the average 
switching frequency is lower than the one employed in SPWM, CPWM, THIPWM1/6, or 
THIPWM1/4. As visible in Figure 25a, reducing switching frequency of the CPWM (taken as a 
benchmark due to its popularity in industrial applications) by a factor 1/3, DPWM peak-to-peak 
ripple profile has lower values in comparison with the corresponding CPWM (displayed as 
3/2CPWM) for m > 0.21. Similarly, in Figure 25b, the DPWM3 (best among studied DPWM injections 
in terms of peak-to-peak and rms current ripple performance) rms current ripple profile starts to 
provide advantages already for m > 0.26 rather than from m = 0.39 as it happens in the three-leg 
counterpart [26]. The same outcome could have been achieved by increasing the DPWM switching 
frequency by a factor 50%. Finally, it is worth mentioning that for low m values, DPWM behavior 
comparable with the one shown by CPWM having increased the switching frequency (displayed as 
3/2CPWM). For this reason, the DPWM injections result to be particularly suitable in the systems 
where the current phase angle cannot be easily determined (conversely to what done in the next 
subsection) regardless of the modulation index considered. Higher rewards are provided for greater 
values of m, making DPWM class one of the best candidates for grid-connected applications. 

  
(a) (b) 

Figure 25. DPWM and CPWM compensated comparison of the normalized current ripple: (a) 
maximum peak-to-peak value; (b) rms. Average switching frequency compensation is labeled as “3/2 
CPWM”. Switching losses compensation is marked as “2CPWM”. The normalization base Vdc/(2Lfsw) 
has been used. 

4.3.2. Switching Losses Compensation 

Although DPWM techniques share the same principle, they clamp the signals in different 
regions of the fundamental period. Therefore, different values of phase current in the clamping region 
create different switching losses. In applications where phase angle φ is known, it is possible to 
compute the switching losses as [19]: 𝑝̅௦௪ = 𝑓௦௪2π 𝑘𝑉ௗ௖𝑡௖௢௠ න 𝑓(ϑ)dϑଶ஠

଴ where 𝑓(ϑ) = ൜                    0                    |𝑢௔∗ (ϑ)| ≥ 0.5𝑖(ϑ) = |𝐼ெ cos(ϑ + φ)| |𝑢௔∗ (ϑ)| < 0.5 (53) 

where tcom represents the commutation duration and k a shape factor usually ranging from 1/6 to 1/2. 
Normalizing all the switching losses by considering CPWM losses as a base, it is possible to 

define the switching losses function (SLF) [19]: 𝑆𝐿𝐹 = 𝑝ഥ𝑠𝑤𝑝ഥ𝑠𝑤ห஼௉ௐெ (54) 
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depicted in Figure 26 as function of the phase angle φ. 

  
(a) (b) 

Figure 26. Switching loss function in case of: (a) CPWM, DPWMMAX, DPWMMIN, DPWM0, 
DPWM1, DPWM2, and DPWM3; (b) Switching loss function in case of optimized GDPWM. 

As visible from Figure 26a, DPWM switching losses can be reduced up to half of the CPWM 
ones. Therefore, one could employ a switching frequency up to two times higher without leading to 
higher switching losses in comparison with CPWM. Moreover, it can be noticed that DPWMMAX 
and DPWMMIN have higher SLF with respect to at least one of the other DPWM injections in the 
whole range of phase angle φ. For |φ| ≥ 5π/12 (75°), DPWM3 is the one providing the best current 
ripple behavior. From −5π/12 to −π/12 DPWM2 is the best injection in this sense. Similarly, DPWM0 
performs better from π/12 to 5π/12. Finally, within [−π/12; π/12] range, DPWM1 happens to have the 
best current ripple characteristics. This switching losses capability has been exploited with the so-
called optimized GDPWM (Figure 26b) by setting ψm = φ in (19) when φ is within [−π/6; π/6] diapason 
[19]. In this way, switching losses are halved for power factors above 0.86 and, in general, at least cut 
by one third for all the remaining phase angles. 

As displayed in Figure 25, both DPWM current ripple peak-to-peak and rms characteristics in 
case of switching losses optimization (CPWM having half switching frequency) outperform similar 
indicators of CPWM (displayed as 2CPWM) in the whole m range. Likewise, the same result could 
be obtained by doubling the DPWM switching frequency. 

Overall, systems in which φ is known can be strongly optimized if DPWM is jointly employed 
with a switching frequency increment by a factor ranging from 50% to 100%. Especially when cos(φ) 
> 0.86, peak-to-peak, and rms can be roughly halved although having the same switching losses. 

In any case, compensating the sole average switching losses (switching frequency increased by 
50%) can provide a good tradeoff between ripple mitigation (about −30%) and lower switching losses. 
Although DPWM3 is the best injection among the others, from the current ripple performance point 
of view, GDPWM could provide additional improvement margins if switching losses are 
compensated (switching frequency increased up to 100%) with ripple diminished by about 50%. 

4.3.3. Performance Comparison 

Aiming to provide more straightforward comparison in the converter performances under 
different PWM schemes, a set of Kiviat diagrams (radar/spider-like charts) are depicted in Figure 27. 
To create the subplots, five metrics have been considered, namely switching frequency (fsw), average 
switching frequency (𝑓௦̅௪ ), SLF, normalized current ripple rms (𝑅෠௫ ), and normalized maximum 
current ripple peak-to-peak (𝑟̂௫,௣௣௠௔௫). In this context, unity power factor (φ = 0) and m = 0.5 have been 
considered. In the five depicted subcases, one metric per time has been equalized with the 
corresponding characteristic of CPWM (SVPWM), for all the injections, permitting to compare the 
remaining parameters. In Table 1. the five metrics of above are listed considering the same switching 
frequency for all the injections. Row of Table 1 with CPWM indicators has been used as benchmark. 
The metrics equalization can be achieved by tuning the switching frequency, as visible from Figure 
27b to Figure 27e where fsw ≠ 1 p.u. Switching frequency and average switching frequency are 
expressed in p.u. In Figure 27, the aligned characteristics are displayed in red.  
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Table 1. Same switching frequency performance comparison data for φ = 0 and m = 0.5. 

PWM Injection Label 𝒇𝒔𝒘 𝒇ത𝒔𝒘 𝑺𝑳𝑭 𝑹෡𝒙 𝒓ො𝒙,𝒑𝒑𝒎𝒂𝒙 
SPWM SPWM 1 1 1 0.95 0.5 

CPWM 1 CPWM 1 1 1 0.9 0.43 
THIPWM1/4 THI4 1 1 1 0.9 0.43 
THIPWM1/6 THI6 1 1 1 0.9 0.44 
DPWMMAX DMAX 1 0.(6) 0.57 0.95 0.5 
DPWMMIN DMIN 1 0.(6) 0.57 0.95 0.5 

DPWM0 D0 1 0.(6) 0.57 0.95 0.5 
DPWM1 D1 1 0.(6) 0.5 0.97 0.5 
DPWM2 D2 1 0.(6) 0.57 0.95 0.5 
DPWM3 D3 1 0.(6) 0.63 0.93 0.49 

1 CPWM injection assumed as benchmark. 

   
(a) (b) (c) 

  

(d) (e) 

Figure 27. Converter performance comparative Kiviat diagrams at φ = 0 and m = 0.5. Metrics, 
switching frequency (a), average switching frequency (b), switching losses function (SLF) (c), 
normalized current ripple rms (d), and normalized maximum current ripple peak-to-peak (e). 

In detail, Figure 27a summarizes the data provided in previous sections and collected in Table 
1. At the same rate of switching frequency, DPWM injections experience an average switching 
frequency that is one-third lower and an SLF up to two times smaller in comparison with continuous 
PWMs. At the same time, as previously displayed in Figures 19 and 24, current ripple maximum 
peak-to-peak and rms are close to one another regardless of which injection is considered. 

Furthermore, Figure 27b,c depicts the cases where average switching frequency and 
commutation losses are compensated by an increase of switching frequency, respectively. As 
described previously in this section, it is possible to have a relevant improvement in terms of current 
ripple peak-to-peak and rms (Figure 25) by rising the switching frequency from +50% to +100% 
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without detrimental effects in the commutation losses. It is worth noticing that compensating the 
average switching frequency (Figure 27b), the switching losses (SLF) employing any method from 
DPWM class are still below values experienced by the continuous modulations, i.e., SPWM and 
CPWM. 

Finally, in Figure 27d,e, equalized ripple characteristics—maximum peak-to-peak and rms 
current ripple—are displayed, respectively. Those plots were derived by increasing the switching 
frequency by a factor that is ranging from 10% to 20%. Again, DPWM injections retain beneficial 
feature, providing huge switching losses (SLF) reduction with respect to CPWM, SPWM, 
THIPWM1/6, and THIPWM1/4. 

The switching frequency variation displayed in Figure 27 suggests that modulation from DPWM 
class should be employed when dealing with two-level, three-phase, four-leg converters. Overall, 
switching losses-related metrics (average switching frequency and SLF) are sharply improved in the 
case of DPWM with respect to continuous modulations when the same current ripple rms or 
maximum peak-to-peak is considered (Figure 27d,e, respectively). On the other hand, setting the 
same average switching frequency or SLF (Figure 27b,c, respectively) ensures a noticeable 
enhancement in current quality-related metrics (current ripple rms and maximum peak-to-peak). 

Thanks to the findings introduced in this section, one could compare performances at different 
values of modulation index and phase angle, permitting to choose which injection ensures the 
optimal solution according to given design constraints. This comparison shows the high grade of 
optimization offered by the considered topology when employed in grid-connected applications. By 
acting on the switching frequency, optimal tradeoff between switching losses, current ripple 
performances, power switches technology, filter size and overall cost can be found. As extensively 
described before, the proposed optimization is possible only when the DPWM class is considered. 

5. Analysis of Neutral Current Ripple 

Being the neutral current strongly affected by all the phase currents, a generic approach taking 
into account all possible unbalances results to be cumbersome. As done for the rms, the neutral 
analysis here presented should be considered valid in a modulation balanced case only. For 
symmetry reasons, the neutral current ripple waveform shown in Figure 28 is correct only from 0 to 
π/6. With respect to balanced modulation, secondary current ripples, present in phase currents, are 
canceling each other making it equal to zero in the neutral leg current ripple. Therefore, in one half 
of a switching period, only one peak is present. 

. 

Figure 28. Neutral current ripple waveform (bottom) and equivalent neutral voltage pulse disposition 
(top) in one switching period. 

The equivalent neutral voltage pulse timings are: 

⎩⎪⎨
⎪⎧𝑡௡ଵ = 𝑇௦௪2 ൫𝑢𝑎∗ (𝑡) − 𝑢𝑛(𝑡)൯ = 𝑇௦௪2 𝑢𝑎(𝑡)                   𝑡௡ଶ = 𝑇௦௪2 ቀ𝑢𝑛(𝑡) − 𝑢𝑏∗(𝑡)ቁ = − 𝑇௦௪2 𝑢𝑏(𝑡)              𝑡௡ଷ = 𝑇௦௪2 ൫𝑢𝑏∗(𝑡) − 𝑢𝑐∗(𝑡)൯ = 𝑇௦௪2 ൫𝑢𝑏(𝑡) − 𝑢𝑐(𝑡)൯ 0 ≤ ϑ ≤ π6 (55)
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From Equation (55) one could already observe that at balanced modulation the neutral current 
ripple is injection independent. 

5.1. Neutral Current Ripple Waveform 

Following a similar approach that has been applied in the previous section, neutral current 
ripple peak can be found from Figure 28 as: 𝚤̂௡,௣௞(𝑡) = 𝑡௡ଵ 𝑉ௗ௖𝐿 = 𝑉ௗ௖2𝐿𝑓௦௪ 𝑢௔(𝑡) 0 ≤ ϑ ≤ π6 (56) 

that if inserted in Equation (3) and normalized with Vdc/(2Lfsw) gives the simple peak-to-peak 
expression: 𝑟̂௡,௣௣(𝑡) = 2𝑢௔(𝑡) = 2𝑚𝑎 cos(ϑ) 0 ≤ ϑ ≤ π6 (57) 

Similarly, the possibility of wrapping an unbalanced neutral current (at balanced modulation) 
is verified in Figure 29a. The resulting neutral current is generated by the set of phase currents shown 
in Section 4. Likewise, in Figure 29b, the neutral current ripple is depicted. As it is well visible, the 
only significant envelope is the primary one of (56). Overall, the analytically derived expressions of 
neutral current ripple envelopes (normalized using the base Vdc/(2Lfsw)) nicely match with the 
simulation results, depicted in Figure 29. 

  
(a) (b) 

Figure 29. Profile and primary (black) envelope in case of m = 0.5 and fsw = 3.6 kHz: (a) Normalized 
neutral current; (b) Normalized neutral current ripple. 

By comparing Figures 5 and 28 it is well visible that the time instances of neutral ripple peaks 
correspond to the exactly the same moments when primary peaks of phase current ripples appear. 
The latter ones always happen at the neutral leg switching instances, therefore, a generic relation of 
neutral peak-to-peak current ripple can be found. By a straightforward summation of phase peak-to-
peak current ripple functions, it is possible obtain the neutral current peak-to-peak expression that is 
valid in the whole fundamental period as: 𝑟̂௡,௣௣(𝑡) = ෍ 𝑟̂௫,௣௣(𝑡)௫ୀ௔,௕,௖  (58) 

which can be rewritten as: 𝑟̂௡,௣௣(𝑡) = ±ሾ|𝑢௔(𝑡)| + |𝑢௕(𝑡)| + |𝑢௖(𝑡)|ሿ + γ(𝑡)ሾ𝑢௔(𝑡) + 𝑢௕(𝑡) + 𝑢௖(𝑡)ሿ (59) 
that in the case of SPWM (γ(t) = 0) or balanced modulation gives the injection invariant relation (for 
this reason only one ripple profile has been depicted in this section): 𝑟̂௡,௣௣(𝑡) = ±ሾ|𝑢௔(𝑡)| + |𝑢௕(𝑡)| + |𝑢௖(𝑡)|ሿ (60) 

It should be mentioned that in the case of SPWM, Equation (60) is also valid for unbalanced 
modulations. 

Moreover, in case of the balanced modulation only, Equation (60) can be rewritten as: 𝑟̂௡,௣௣(𝑡) = ±2 maxሾ𝑢௔(ϑ), 𝑢௕(ϑ), 𝑢௖(ϑ)ሿ (61) 
that if restricted in the interval [0, π/6] becomes equal to Equation (57). Figure 30 represents Equation 
(57) in a graphical way as a function of both ϑ and m. 
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Figure 30. Normalized primary peak-to-peak neutral current ripple profile. 

5.2. Neutral Current Ripple RMS 

Differently from what has been done in the previous section with phase currents, it is not 
possible to take advantage of the current ripple triangular-like waveform. However, by considering 
each interval tnk as a sawtooth function, the ripple calculation approach presented before can be 
employed as well. In particular, by modifying Equation (31) as: 

𝐼መ௡, ೞ்ೢ(𝑚, ϑ) = ඩ 2𝑇௦௪ ෍ 𝑡௡௞ଷ
௞ୀଵ ൣ𝐼መ௧೙ೖௗ௖ (𝑚, ϑ)ଶ + 𝐼መ௧೙ೖ௔௖ (𝑚, ϑ)ଶ൧ (62) 

one can eventually obtain: 

𝐼መ௡(𝑚) = ඨ6π න ൣ𝐼መ௡, ೞ்ೢ(𝑚, ϑ)൧ଶ𝑑ϑ஠଺଴ = 𝑉ௗ௖2𝐿𝑓௦௪ ඥ𝑚ଷඨ2√3 − 2π  (63) 

Equation (63) can be normalized as: 

𝑅෠௡(𝑚) = ඥ𝑚ଷඨ2√3 − 2π  (64) 

Equation (64) results to be valid for computing the neutral current ripple rms in balanced 
modulation regardless of the injection considered. An approximated version was already available 
in [27]. Equation (64) perfectly matches with the numerical result presented in Figure 31 by olive 
green squares. 

 
Figure 31. Normalized neutral current ripple rms as a function of m. 

6. Experimental Results 

In this section, experimental results are presented to support analytical claims provided in this 
paper for all the considered PWM injections. The experimental setup, given in Figure 32a, consists of 
the four-leg VSI topology (see Figure 1) connected to the three-phase load depicted in Figure 32b. 
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This RLC topology permits to emulate a unity power factor, grid-connected system. (the same rule 
applies to IEEE Transaction journals). 

  
(a) (b) 

Figure 32. (a) Experimental laboratory workbench; (b) Unitary power factor load. 

Overall the setup is made out of a four-leg VSI, employing two standard three-phase insulated-
gate bipolar transistor (IGBT) power modules (PS22A76, 1200V, 25A, Mitsubishi Electric Corporation, 
Tokyo, Japan) and supplied by an adjustable dc supply (GEN100-33, 100V, 33A, TDK-Lambda 
Corporation, Tokyo, Japan). The series RL circuit is made of three magnetically independent air-core 
inductors. Meanwhile, the RC circuit utilizes a parallel connection of an ac capacitor and a resistor 
for each of the three phases. Circuital parameters are summarized in Table 2. The switching frequency 
that has been used in the experiments was selected so low on purpose to display ripple profiles more 
evidently. Phase and neutral currents are sensed by mean of Hall effect-based current transducers 
(LA 55-P, 55A, LEM Europe GmbH, Fribourg, Switzerland). Phase voltages are measured through 
differential isolated voltage probes (PICO TS057, Tyler, TX, USA). The VSI is driven by the digital 
signal processor (DSP) board (TMS320 F28379D, Texas Instruments, Dallas, TX, USA) via decoupling 
optical links. The DSP software is deployed via MATLAB/Simulink (MathWorks, Natick, MA, USA) 
platform in external mode, ensuring the real-time control of all the variables. The experimental 
datapoints were acquired using two digital oscilloscopes (DS1054Z, Rigol, Beijing, China) at a 
sampling rate of 5 MHz (without filtering action) and post-processed (plotted) via MATLAB. 

Table 2. Experimental setup circuital parameters. 

Parameter Symbol Value Unit 
dc link voltage Vdc 100 V 

RL circuit 
R 727 mΩ 
L 1.73 mH 

RC circuit 
Ro 6.6 Ω 
Co 45 μF 

Power factor @50Hz PF 1 - 
Switching frequency fsw 3.6 kHz 

Phase and neutral currents have been acquired using exactly the same setup but changing only 
the type of common-mode injection considered. In all the cases, a balanced modulation has been 
considered. 

From Figures 33–42, experimental phase currents, and the corresponding current ripple rms has 
been displayed. Subfigures labeled as “(a)” represent the currents at the highest modulation index 
available for the considered modulation. Subplots with a label “(b)” depict current ripple rms for 
phase b in the whole linear modulation range. It is evident from the figures that both primary and 
secondary envelopes correctly bond the phase current profiles for all implemented injections. The 
same observation can be done with the current ripple rms values (olive green circles in Figures 33b–



Energies 2020, 13, 4352 27 of 32 

 

42b) that were experimentally obtained with reasonable discretization of modulation range for all the 
studied injections. 

  
(a) (b) 

Figure 33. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of SPWM 
(m = 0.5); (b) Phase current ripple rms in case of SPWM. 

  
(a) (b) 

Figure 34. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of CPWM 
(m = 1/√3); (b) Phase current ripple rms in case of CPWM. 

  
(a) (b) 

Figure 35. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of 
THIPWM1/6 (m = 1/√3); (b) Phase current ripple rms in case of THIPWM1/6. 

  
(a) (b) 

Figure 36. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of 
THIPWM1/4 (m = 6√3/(7√7)); (b) Phase current ripple rms in case of THIPWM1/4. 
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(a) (b) 

Figure 37. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of 
DPWMMAX (m = 1/√3); (b) Phase current ripple rms in case of DPWMMAX. 

  
(a) (b) 

Figure 38. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of 
DPWMMIN (m = 1/√3); (b) Phase current ripple rms in case of DPWMMIN. 

  
(a) (b) 

Figure 39. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of DPWM0 
(m = 1/√3); (b) Phase current ripple rms in case of DPWM0. 

  
(a) (b) 

Figure 40. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of DPWM1 
(m = 1/√3); (b) Phase current ripple rms in case of DPWM1. 
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(a) (b) 

Figure 41. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of DPWM2 
(m = 1/√3); (b) Phase current ripple rms in case of DPWM2. 

  
(a) (b) 

Figure 42. (a) Phase currents with primary (black) and secondary (gray) envelopes in case of DPWM3 
(m = 1/√3); (b) Phase current ripple rms in case of DPWM3. 

Since the three-phase load is balanced and the modulating scheme is symmetric, neutral wire 
experiences the ripple component only. Therefore the neutral current depicted in Figure 43a happens 
to be equal to the neutral current ripple itself. Also for the neutral current, both envelopes (Figure 
43a) and rms values (Figure 43b) are validated through experimental results. For the sake of 
completeness, it should be mentioned that the case of Figure 43 represents a DPWMMAX injection. 
Nevertheless, as it has been verified that in all the analyzed modulations, neutral current ripple 
characteristics are injection invariant (balanced modulation only), thus, Figure 43 is valid for the other 
modulation methods. 

  
(a) (b) 

Figure 43. (a) Neutral current with primary (black) envelope (m = 1/√3); (b) Neutral current ripple rms. 

7. Conclusions 

This paper provides a detailed analysis of the switching ac current ripple in three-phase, four-
leg inverters employing the most popular PWM common-mode injections. Both phase and neutral 
currents ripple characteristics have been analyzed in detail. 

Firstly, generalized expressions of phase current ripple envelopes and peak-to-peak phase 
currents are provided in the whole fundamental period as a function of modulation index and phase 
angle. Moreover, an accurate phase current ripple rms expression as a function of the modulation 
index has been also derived for all the considered injections. It has been verified that DPWM 
performances in terms of current ripple and for high values of modulation index approach to the 
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ones of SPWM and CPWM (SVPWM). Similarly to the traditional three-phase inverter, it has been 
verified that DPWM1 is the worst injection within analyzed from DPWM class. Meanwhile, DPWM3 
is the one ensuring the best current ripple performances.  

Furthermore, neutral current ripple indicators have been discussed as well in this paper. It has 
been demonstrated that the neutral current ripple profile is independent of common-mode injections 
in the case of balanced modulation/voltages. Both envelopes and peak-to-peak expressions have been 
determined in the whole fundamental cycle as a function of modulation index and phase angle. 
Likewise, neutral current ripple rms have been derived as a function of modulation index. 

Finally, a fair comparison of continuous and discontinuous modulations was provided by fixing 
one of the five parameters at the constant value, namely switching frequency, average switching 
frequency, switching losses, normalized current ripple rms and normalized maximum peak-to-peak 
current ripple, while compare the rest. It has been proven that average switching frequency 
equalization (by using a switching frequency 50% higher) is an effective way to improve converter 
performances when the power factor is unknown. Applications with well-defined phase angle might 
still take advantage of this analysis for better utilization of the converter capabilities tuning the 
switching frequency (up to two times higher) for having same switching losses. In this context, it has 
been demonstrated that DPWM class outperforms other common-mode injections. 

Classical three-leg, three-wire inverter characteristics have been indicated as a reference point. 
In all the modulation cases, both peak-to-peak and rms values are practically doubled in the case of 
four-leg inverter. Therefore, the four-leg topology should be considered only when it is applied in 
systems with unbalanced currents and presence of neutral wire is necessary. In case of standard three-
phase, three-wire applications the neutral leg should be turned off. 

All analytical developments have been verified employing extensive numerical simulations and 
experimental measurement, for both phase and neutral current ripples and for every considered 
modulation schemes. All in all, the excellent matching among theoretical findings, simulation and 
experimental results has validated the given analysis accuracy and effectiveness. 

Overall, it has been shown that, if possible, DPWM with properly tuned switching frequency 
strategies should be preferred because able to guarantee strongly improved current ripple 
characteristics (from −30% to −50% of the magnitude of related ripple indicator obtained by CPWM 
scheme), without introducing detrimental effects on the switching losses and, therefore, on the total 
inverter efficiency. Alternatively, one could halve the switching losses without effecting output 
current quality. Moreover, this analysis permits optimization for the design of four-leg converters 
finding the optimal tradeoff between switching losses, current ripple characteristics, switching 
frequency, power switches technology, filter size, and overall cost. Additional studies could extend 
the current analysis for other modulation schemes and considering generic unbalances. 
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