
01 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Garofalo A., Rusci M., Conti F., Rossi D., Benini L. (2019). PULP-NN: A computing library for quantized
neural network inference at the edge on RISC-V based parallel ultra low power clusters. 345 E 47TH ST,
NEW YORK, NY 10017 USA : Institute of Electrical and Electronics Engineers Inc.
[10.1109/ICECS46596.2019.8965067].

Published Version:

PULP-NN: A computing library for quantized neural network inference at the edge on RISC-V based parallel
ultra low power clusters

Published:
DOI: http://doi.org/10.1109/ICECS46596.2019.8965067

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/767263 since: 2020-07-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICECS46596.2019.8965067
https://hdl.handle.net/11585/767263

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Garofalo, M. Rusci, F. Conti, D. Rossi and L. Benini (2019). PULP-NN: A Computing
Library for Quantized Neural Network inference at the edge on RISC-V Based Parallel
Ultra Low Power Clusters. In 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), Genoa, Italy, 2019, pp. 33-36 DOI:
10.1109/ICECS46596.2019.8965067

The final published version is available online at:
http://doi.org/10.1109/ICECS46596.2019.8965067

Rights / License:

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works

https://cris.unibo.it/
http://doi.org/10.1109/ICECS46596.2019.8965067

PULP-NN: Accelerating Quantized Neural
Networks on Parallel Ultra-Low-Power RISC-V

Processors
Angelo Garofalo†, Manuele Rusci†, Francesco Conti†∗, Davide Rossi† and Luca Benini†∗

DEI, University of Bologna, Italy† IIS lab, ETH Zurich, Switzerland∗

{angelo.garofalo, manuele.rusci, davide.rossi}@unibo.it {fconti, lbenini}@iis.ee.ethz.ch

Abstract—We present PULP-NN, an optimized computing
library for a parallel ultra-low-power tightly coupled cluster
of RISC-V processors. The key innovation in PULP-NN is a
set of kernels for Quantized Neural Network (QNN) inference,
targeting byte and sub-byte data types, down to INT-1, tuned for
the recent trend toward aggressive quantization in deep neural
network inference. The proposed library exploits both the digital
signal processing (DSP) extensions available in the PULP RISC-
V processors and the cluster’s parallelism, achieving up to 15.5
MACs/cycle on INT-8 and improving performance by up to 63×
with respect to a sequential implementation on a single RISC-V
core implementing the baseline RV32IMC ISA. Using PULP-NN,
a CIFAR-10 network on an octa-core cluster runs in 30× and
19.6× less clock cycles than the current state-of-the-art ARM
CMSIS-NN library, running on STM32L4 and STM32H7 MCUs,
respectively. The proposed library, when running on GAP-8
processor, outperforms by 36.8× and by 7.45× the execution on
energy efficient MCUs such as STM32L4 and high-end MCUs
such as STM32H7 respectively, when operating at the maximum
frequency. The energy efficiency on GAP-8 is 14.1× higher than
STM32L4 and 39.5× higher than STM32H7, at the maximum
efficiency operating point.

I. INTRODUCTION

The Internet-of-Things has favored a rapid growth of the
number of wireless-connected nodes for a large variety of
applications, including agriculture [1], health monitoring [2],
surveillance [3], structural monitoring [4]. Such a massive un-
constrained increment poses severe challenges to the network
infrastructure, due to the exponential increase of data flowing
through the network. Capacity, security and reliability issues
are exacerbated as the number of IoT nodes increases expo-
nentially together with the ability to produce high-bandwidth
data.

To address IoT scalability issues, data must be filtered at
the edge of the network, on the sensor system itself [5], using
compression and analytics algorithms. To this aim, Machine
Learning (ML), including also state-of-the-art Deep Learn-
ing (DL), provides attractive solutions for edge processing.
ML algorithms “squeeze” raw sensor data in a much more
semantically dense format (i.e. classes or extracted high-
level features/symbols), eventually packed into few bytes of
information for wireless transmission.

To empower IoT nodes with smart capabilities [6], the
design process of edge devices must trade-off the high compu-
tation and memory requirements of leading DL methods with

the usual scarcity of resources of deeply embedded systems,
powered by batteries or energy harvesters. Typically, deep
network inference tasks run on GPUs or FPGAs devices,
which however have a power envelope significantly higher
than what can be sustained on extreme-edge devices, integrated
with the sensors. On the other side of the spectrum, resource-
constrained MCUs are flexible, due to their software pro-
grammability, low-cost, low-power and suitable for extreme-
edge usage, but they present severe limitations in memory
footprint and computation resources that may prevent meeting
application-specific latency and accuracy requirements.

To reduce the computational cost and memory footprint of
Neural Newtorks, so that they can fit the limited computing
capability and storage capacity of MCU-class devices, recent
progress in DL training methodologies has introduced novel
quantization methods, aiming at compressing either network
weights parameters or activations into 8-bit or smaller data
types, while incurring into a reduced or even negligible
accuracy loss [7]–[13]. Since Quantized Neural Networks
(QNNs) feature much lower memory requirements than 32-bit
floating point full precision models and low-bitwidth fixed-
point execution units can operate efficiently at the core of
the convolution routine, industry and academia are devoting a
major effort to develop hardware and software platforms for
efficient execution of QNNs on MCU-class devices.

In this work, we propose the first multicore computing
library for QNN inference on fully programmable edge de-
vices, which supports low bit-width (8-bit, 4-bit, 2-bit and
1-bit) operations. While efficient libraries for commercial
MCUs have been proposed for edge QNN inference [14],
[15], not many software solutions have been yet presented that
efficiently exploit a parallel MCU architecture. We fill this void
by building the back-end library upon the recent architectural
template of parallel ultra-low-power RISC-V based platforms
such as GAP8 [16], which improve energy efficiency and
performance in IoT edge devices coupling parallelism with low
voltage operation [17]. The main contributions of this paper
are the following:

• PULP-NN 1, an open-source optimized library based on
the CMSIS-NN [14], [15] dataflow including a full set of
kernels and utilities to support the inference of Quantized

1https://github.com/pulp-platform/pulp-nn

Neural Networks (8,4,2 and 1-bit) on a DSP-optimized
RISC-V based processor. By fully exploiting the DSP
extensions available within the ISA, we can achieve a
speedup of 9× with respect to a plainRV32IMC ISA;

• We optimized the library for a Parallel Ultra-Low-Power
(PULP) cluster of RISC-V processors, leading to near-
linear speedup with respect to single core execution,
increasing the throughput of each kernel by up to 7.5×
on eight cores;

• We optimized the convolution kernel, the most computing
intensive task of CNN workloads, by improving data
reuse, with a further 20% performance gain with respect
to the original kernel of CMSIS-NN [14], with a ∼1.9×
improvement with respect to the GAP-8 NN native library
and an overall efficiency of 49% in terms of MAC
utilization, which implies just 1.01 LD/ST per MAC, and
brings us to just a factor of 2 from the theoretical peak
MAC utilization achievable using only register operands;

• We compare our solution with State-of-the-Art architec-
tures and software, by running a CIFAR-10 quantized
model on the GAP8 8-core cluster, outperforming by
19.5× a high-end MCU (based on ARM CORTEX-M7)
running the same network using the CMSIS-NN library.
The inference with the proposed library also achieves
14.1× better energy efficiency with respect to a highly
energy efficient MCU (based on ARM CORTEX-M4).

These order-of-magnitude improvements with respect to State-
of-the-Art MCUs demonstrate for the first time that extreme-
edge inference of QNN models is indeed possible on today’s
parallel ultra-low power MCUs.

II. RELATED WORK

The success of Deep Learning (DL) has paved the way
to many different DL deployments on embedded computing
platforms of all kinds. In this section, we recap the state-of-
the-art and give insights on its applicability to CNN inference
at the extreme-edge, on IoT end-nodes.

FPGA Based Approaches: Recent heterogeneous FPGAs
such as Xilinx Zynq have enabled many solutions for CNN ac-
celeration, embedding general purpose processors that manage
the program flow, handle I/O and memory accesses, making
them easier to program. As DSP-capable FPGAs have a power
envelope in the order of Watts, numerical precision of the CNN
operands plays a crucial role to achieve high performance and
thus energy efficiency. While several architectures available
in literature feature a precision of 16-bit (fixed-point) [18]–
[21], more and more designs are moving towards lower
precision. For example, Qiu et al. [22] proposed a CNN
accelerator supporting 8 and 4-bit data, implemented on a
Xilinx Zynq platform. On this trail, even extreme quantiza-
tion approaches have been presented, exploiting ternary or
binary networks [23], [24]. While most DSP-capable FPGAs
currently do not offer a low enough power envelope to be
used in IoT end-nodes, Lattice recently announced SenseAI
class of FPGAs [25] providing a comprehensive hardware and
software solutions for always-on artificial intelligence (AI)

within a power budget between 1 mW and 1 W. However
these ultra-low power FPGAs are currently too expensive
for many applications where MCUs are traditionally chosen
because of their low cost. Furthermore, they report [26] a
measured performance of 8 fps with 64×64 RGB input for
a VGG8 like 16-bit CNN at a power consumption of 7 mW,
which maps to 0.88mJ/frame, and performance of 5 fps
for a VGG network consisting of 6 convolution layers and 4
fully connected at a power consumption of 3.3 mW with an
energy per inference of 0.66mJ/frame. Both the results are
significantly higher (4.63× and 3.48×, respectively) than the
energy per frame that we report at the maximum efficiency
point for our solution in sec. V.

Application Specific Architectures: On the other side of
the programmability spectrum, ASIC accelerators are known
to achieve best in class performance and energy efficiency.
Notable examples are Orlando [27] achieving energy effi-
ciencies in the order of a few Top/s/W, and Origami [28]
achieving a throughput of 274 Gop/s, with an efficiency of 803
Gop/s/W. Dropping the arithmetic precision of CNN operands
has demonstrated to be a useful technique to reduce the
memory footprint and the energy cost for computation [29]–
[32]. UNPU [33] is an example of an accelerator targeting
fully-variable weight bit-precision, achieving a peak energy
efficiency of 50.6 Top/s/W at a throughput of 184 Gop/s.
YodaNN [34] targets binary-weight networks and reaches
energy efficiency up to 61 Top/s/W. Other accelerators exploit
extreme quantization for the deployment of binary neural
networks on silicon using in- or near-memory computing
techniques (e.g., Brein [35], Conv-RAM [36]) with energy
efficiencies in the range 20-55 Top/s/W. Such high energy
efficiency and throughput achievable using ASIC accelerators
are counterbalanced by limited flexibility, being application
specific, which makes them unattractive to satisfy fully the
flexibility demand of IoT edge nodes.

Software Programmable Architectures: Software-
programmable general-purpose processors provide the highest
degree of flexibility in QNN inference at the edge. While
CNNs are traditionally executed on programmable high-
performance GPUs [40], [41] also with reduced precision
support [42], these platforms are typically not designed to
operate in the tight power envelope of IoT end-nodes, and
their cost is off-spec too. Some architectures exploit the
computing power of multi-core processors, such as Raspberry
Pi 3+ [43], powered by a Quad-core ARM CORTEX-A53.
Although these platforms are relatively inexpensive and
flexible, their power consumption is too high as well.

To fit the power budget of IoT edge devices, many low
power microcontrollers include ARM CORTEX-M cores.
Among these solutions, STMicroelectronics proposed low-end
(STM32L4 family based on ARM CORTEX M-4 cores and
high-end (STM32H7 family featuring ARM CORTEX M-7
cores) microcontrollers supporting DL processing at the edge
[37], [38]. To improve the computing capabilities of such tiny
and cheap computing platforms, ARM recently announced the
development of the ARMv8.1-M [44] architecture, featuring

Summary of CNN Embedded Inference Computing Platform

Performance Energy Efficiency Power Budget Flexibility

ASICs [27], [28], [33], [34] 1 - 10 Tops/s 10 - 100 Tops/s/W 1 mW - 1 W Low

FPGAs [18]–[22] 10 - 200 Gops/s 1 - 10 Gops/s/W 1 W - 10 W Medium

MCUs [37], [38] 100 - 300 Mops/s 1 - 3 Gops/s/W 1 mW - 1 W High

PULP SoCs [6], [16], [39] 1 - 2 Gops/s 30 - 50 Gops/s/W 1 mW - 100 mW High

TABLE I
THE TABLE SHOWS THE TRADE-OFFS AMONG THE CNN COMPUTING PLATFORMS DESCRIBED IN THE RELATED WORK SECTION.

Helium, an ISA extension tailored for DSP-oriented work-
loads, such as an inference task. However, such an extension
is not supported yet by any device.

Other solutions move toward heterogeneous architectures,
coupling microcontrollers with dedicated CNN accelerators,
to deal with the extremely regular CNN workload. ARM
proposed Trilium [45], a heterogeneous compute platform
which provides flexible support for ML workloads. Conti et
al. [46] proposed a convolution engine to be integrated in a
microcontroller to speed up the convolutional kernels while
Kendryte [47] is a dual-core RISC-V SoC outfitted with a
CNN accelerator for AI applications. Flamand et al. proposed
GAP8 [16], a multi-GOPS fully programmable RISC-V IoT-
edge computing engine, featuring a cluster of 8 cores with
dedicated DSP extensions and a CNN-specialized accelerator.
These accelerators can give the MCU a 5 to 10× energy
efficiency boost, but they are proprietary, closed, platform
specific and currently not fully supported by the software
design flows. Hence, their acceptance and penetration among
application developers is still quite low.

Table I summarizes the trade-offs among the CNN comput-
ing platforms described so far. Next section will describe the
State-of-the-Art of software solutions for MCU platforms, the
main focus of this work.

Optimized Software Libraries: On the MCU side, the lim-
ited computational and memory capabilities make aggressive
software and algorithmic optimizations necessary to deploy
DNN inference models on them. An efficient solution to
reduce DNN memory footprint is to use fixed-point arithmetic
and quantization of both weights and activations into 8-bit or
smaller data types, at the cost of a minor drop in accuracy [7],
[8], [13]. Relying on fixed-point quantized networks, ARM
proposed the CMSIS-NN library [14], which maximizes the
performance of the DL kernels on CORTEX-M series cores,
supporting 16-bit and 8-bit fixed-point data. On the same
trail, targeting a parallel MCU architecture such as GAP-8,
the Greenwaves Technologies company released open-source
a set of QNN kernels (16- and 8-bit data precisions) as part
of a proprietary tiling solution [16]. The tiling procedure,
exploiting the DMA controller available on GAP-8, hides the
latency of fetching/storing activations and weights along the
memory hierarchy introducing only a small overhead (a few
%), thus enabling the processing of large networks whose

single layers may not fit the MCU on-board memory. In
this work we focus on the computational aspects of reduced
precision quantized CNN inference. In this context, despite the
demonstrated effectiveness of sub-byte aggressive quantization
[11], only Rusci et al. [15] explored the impact of using low-
precision (4-, 2- or 1-bit) convolution kernels on a Cortex-M7
microcontroller.

Our work aims at bridging this gap, leveraging the results
of [11] and focusing on the computational side to enable
efficient QNN inference at the edge on fully programmable
devices. To this purpose, we propose an open-source QNN
library targeting 8-bit as well as sub-byte quantized data types,
down to 1-bit data, targeting parallel ultra-low-power (PULP)
architectures. By exploiting the ISA extensions available on
PULP architectures and tightly coupled cluster, our contribu-
tions outperform the CMSIS-NN based solutions by one order
of magnitude in terms of performance and energy efficiency.

III. BACKGROUND

A. Quantized Neural Networks

A Deep convolution Neural Network (CNN) is made of
several layers stacked one on top of the other. Each layer
can be considered as a computation kernel, and the most
computive-intensive ones are the convolution and the fully
connected layers.

To favor the deployment of CNN models into resource-
constrained devices, a set of constraints can be applied to the
numeric domain of either network parameters or activation
values, turning the original model into a Quantized Neural
Network (QNN). One of the most effective approaches [7] to
quantize a real-valued weight parameter w to a Q-bit signed
fixed-point number q(w) is by using the following quantization
function:

q(w) = clip[−1,1)(2
−(Q−1) · round(w · 2(Q−1)) , (1)

where clip[a,b)(x) = max(a,min(x, b)). We define then the
integer W = q(w) · 2(Q−1) as the corresponding INT-Q
representation of w. According to [7], the quantization rule (1)
applies also to any activation value. In this work, we explore
the case of INT-8, INT-4, INT-2 and INT-1 data types as they
are the most natural ones to fit in a 32-bit register of the
targeted MCUs. If both weights and activations are INT-Q

values, the convolution becomes a sum of products operation
in the integer domain:

ϕ(w, x) = 2−2(Q−1)
∑
i∈C

WiXi
.
= 2−2(Q−1) · Φ(W,X) . (2)

where C is the number of input channels and ϕ is the convo-
lution operation. Φ(W,X) is the accumulator value with high
precision, i.e. INT-32 for INT-8 operands and INT-16 for sub-
byte (INT-4, INT-2, INT-1) operands. To produce an output
activation value, the accumualtion is compressed back into Q
bits, working as input for the next layer. For INT-8 data we
adopt the compression approach proposed by Lai et al. [14],
which relies on scaling and clamp operations, while for the
2 and 4 bit cases a thresholding-based 2 compression is
considered, described by the staircase function that generalizes
(1):

Y = q
(
ϕ(x)

)
=

2Q−1−1∑
p=−2Q−1

(
p · χ[τp,tp+1) · Φ(W,X)

)
, (4)

where χs(·) it the characteristic function of the interval s.
In this equation also the threshold values feature high pre-
cision (INT-16), since they are meant to be compared with
INT-16 accumulations. The staircase function is optimally
implemented through a balanced binary tree where an INT-
16 comparison takes place at every node. To produce a Q-bit
output, 2Q−1 threshold values per channel must be stored for
any convolution layer. The INT-1 format, where activation and
weight values are expressed by binary values, is a special case
because the convolution can be reduced to a logical XNOR
and a bit-count operation:

Φbin(X) = popcount(W xnorX) (5)

where popcount(·) is the bitcount operator. Also in this
scenario, a thresholding procedure is applied for compression.

On the model accuracy side, it has been demonstrated that,
through specific re-training techniques, the accuracy drop-off
of quantized fixed-point networks can be significantly reduced
[7], [10], [13]. Choi et al. [48], for example, have proved that
a 4-bit quantization leads to an accuracy level close to single-
precision floating point representation. The accuracy drop is
limited to 3% when running ResNet50 on Imagenet with 2-bit
weights and 4-bit activations and to 6.5% when downscaling
the weights and activations to 2 bits. Furthermore, the authors
of [11] investigated the trade-off between energy efficiency
and accuracy of QNNs, highlighting the practical effectiveness
of the sub-byte fixed-point networks. At the cost of specific
retraining procedures, the accuracy drop of is kept very close
to the single-precision floating point counterpart while the

2The τp thresholds absorb bias, batch normalization and the 2−2(Q−1)

factor. Specifically, considering the batch-normalized y = γ/σ(b+ϕ−µ)+β
(where b is the bias, γ, σ, β, ϕ are the batch normalization parameters), the
thresholds are

τp = [2Q−1(p · σ/γ − 2Q−1 · (b− µ) + β · σ/γ] . (3)

Fig. 1. (a) Dataflow of the spatial convolution kernel (b) Convolution inner
loop computation as a matrix multiplication.

energy efficiency gain, at the iso-accuracy, is orders of magni-
tude higher. Moreover, for the investigated networks, trained
on CIFAR-10 and MNIST datasets, the energy consumption
achieved with 1- to 4-bit fixed-point networks, at iso-accuracy,
outperforms the 8-bit counterpart by up to 10×.

B. Dataflow Schedule and Data Layout

In this subsection, we detail the dataflow schedule and
data layout as implemented in the CMSIS-NN library [14],
which is at the base of the proposed library. A convolution
layer, standing as the basic building block for a CNN or a
QNN model, produces an output feature map based on a set
of weight filters and the output from the previous layer. An
activation value of any output feature map is computed as the
dot product between a weights filter bank and a region of the
input feature map, i.e. the C features values of every point
under the area kw x kh of the filter. To efficiently implement
this operation on an MCU-like device, the convolution is
decomposed into two phases: an im2col step to load the input
features of the current convolution into a contiguous memory
array and a dot product. Besides the memory requirements
of the activation maps and the model parameters, the im2col
demands an extra memory footprint of C x kw x kh values,
on which the dot product operates. Fig 1(a) shows graphically
this operation. Given this, the computation of one value of the
output feature map, indicated as O(m,x, y) becomes:

O(m,x, y) = dot
(
W (m), im2col(x, y)

)
, (6)

where W (m) is the m-th bank of weight filter, im2col is
the unrolled input buffer of length C x kw x kh. The inner
loop of the convolution dot product is realized through a
matrix multiplication kernel, as depicted in Figure 1(b). In
general, s output features of r activation outputs (s=2 and
r=2 in the example in figure) can be computed at this low-
level stage. As a specific case, CMSIS-NN implements a
matrix multiplication kernel working on two spatially adjacent
pixels of two consecutive channels inside the inner loop of the

convolution kernel; we identify this configuration as 2×2, as
explained in detail in Section IV.IV-C.

Moreover, authors of [14] demonstrated the most conve-
nient data layout to be Height-Width-Channel (HWC), as it
introduces minor overhead when building the im2col buffer
with respect to the Channel-Height-Width (CHW) layout.
According to such a layout, the data along the channels is
stored with a stride of 1, data along the width is stored with
a stride equal to the number of channels C.

C. Target Architectures

The target architecture of this work is based on a Parallel
Ultra-Low-Power (PULP) cluster of RISC-V based processors.
A commercial embodiment of this architectural template is
GAP8 [16], on which we run our experiments. The GAP8
PULP cluster contains eight RISC-V cores, implementing a 4
stage in-order single-issue pipeline, supporting the RV32IMC
instruction set [49], plus extensions targeting energy-efficient
digital signal processing and machine learning (Xpulp) [50].
The cores are served by a 64kB L1 data memory, named
Tightly-Coupled Data Memory (TCDM), enabling shared-
memory parallel programming models such as OpenMP. The
shared L1 can serve all memory requests accessing different
banks in parallel with single cycle access latency. The 4
KB cluster program cache is also shared among the cores
[51]. The cluster is also provided by an Event Unit which
manages synchronization and thread dispatching, enabling
low-overhead and fine-grained parallelism, thus high energy
efficiency: each core waiting for a barrier is brought into
a fully clock gated state. The cluster features also a DMA
controller which manages the transfer between the L1 and the
L2 memory (512kB in size), the latter residing outside-of-
the-cluster of the GAP-8 architecture. The Xpulp extensions
available in the ISA3 include hardware loops, load/store with
post-increment, Multiply and Accumulate as well as dedicated
digital signal processing extensions inferred in the c code as
built-in functions, presented below.

The SIMD vectorial instructions allow processing more
sub-word data in parallel, most of them taking only one
clock cycle. The vectorial data types to be used with such
instructions are v4s and v2s: v4s allows to fill a 32bit register
with four INT-8 data, v2s does the same by filling the register
with two INT-16 integers, in one clock cycle. Sum of dot
products SIMD instructions are provided to process either two
16 bit (sdotp2) or four 8 bit (sdotp4) integer operands in a
single cycle. sdotp4 takes two v4s data operands as input and
computes the sum of dot products over the same accumulator,
which is the INT-32 output of the built-in function. The max4
instruction instead allows to compare two v4s operands by
returning the element-wise maximum, in one cycle.

bextract extracts, in one clock cycle, a specified number
of bits ("size") from a register, starting at a specified position
("offset"). The extracted bits are then sign-extended and stored
in the destination register. The natural counterpart is the

3https://github.com/pulp-platform/riscv/tree/master/doc

bitinsert built-in function, specifying the number of bits to
be inserted ("size") to the destination register, starting from
the specified position ("offset"). pack4 allows to pack four
INT-8 variables in a SIMD v4s data type in two clock cycles.
Finally, the popcnt built-in returns, in one cycle, the number
of bits set to one in a word which is passed to the function as
input.

IV. PULP-NN LIBRARY

This section introduces the PULP-NN library and de-
scribes the optimization of the kernels with the presented
RV32IMCXpulp extended ISA on a parallel cluster of eight
processors and the optimization of the main computational
kernel of the library: the matrix multiplication. We focus
on the computational part since we are interested in explor-
ing software solutions capable of achieving high computing
performance and energy efficiency, on top of parallel edge
architectures like PULP.

A. Implementation and Optimization on RISC-V

We present implementation details of the most significant
QNN kernels on the target RV32IMCXpulp ISA. The experi-
ments are conducted assuming that all the data resides in L1
memory of the PULP cluster.

INT-8 Kernels: The first layer for which we detail the im-
plementation is the convolution one. We first consider the INT-
8 kernel, as it also provides a basis for the implementation of
INT-4 and INT-2. Starting from the implementation presented
in section III.III-B, with a 2×2 matrix multiplication kernel,
we optimize it to fully exploit the RV32IMCXpulp ISA. Since
the matrix multiplication operation has to be looped over the
size of each filter bank (C x kw x kh), we take advantage of
the hardware loops to accelerate the for statement. In the inner
loop, we also exploit the load and store with post-increment
since the access pattern to the im2col and filter elements is
extremely regular by construction. In the same way, we use
the 8-bit SIMD instructions to increase the throughput of the
computation. Figure 2 graphically schematizes the execution
of the inner loop of the matrix multiplication kernel and reports
the corresponding assembly code.

After filling two im2col buffers that are needed to compute
two spatially adjacent output pixels, the matrix multiplication
inner loop takes place as follows. At every iteration of the
loop, four consecutive elements are loaded into the register
file from each of the two im2col buffers (pointers pBuffer1 and
pBuffer2 in the figure), and from two weight banks (pointers
pWeight and pWeight2), after casting INT-8 pointers to v4s.
The total number of load operations required is four. In this
way we have sufficient elements to set four sdotp4 built-in
functions over four different accumulators. Hence, in a single
run of the inner loop of the matrix multiplication kernel, we
can compute four sdotp4 instructions, which correspond to 16
MAC operations, at the cost of four load instructions.

Since the fully connected kernel is a simple matrix by vector
multiplication, the previous methodology naturally scales to
it. Here there is no need to build the im2col buffer since the

A11 A12 A13 A14

A21 A22 A23 A24

B
1

1
B

1
2

B
1

3
B

1
4

B
2

1
B

2
2

B
2

3
B

2
4

S1 S2

S3 S4

×

pWeight2

pWeight

=

pBuffer pBuffer2

For i=0 to size/4

V4s A1 = *((v4s*) pWeight);

V4s A2 = *((v4s*) pWeight2);
V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);
S1 = sdotp4(A1,B1);
S2 = sdotp4 (A1, B2);
S3 = sdotp4(A2, B1);
S4 = sdotp4(A2, B2);

end

Pseudocode

lp.setup // hardware loop

p.lw w1, 4(a0!) // load with post-increment

p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
pv.sdotsp.b s1, w1, x1 // 4x8bit vectorial sdotp
pv.sdotsp.b s2, w1, x2
pv.sdotsp.b s3, w2, x1
pv.sdotsp.b s4, w2, x2

end

Disassembled pseudocode

Fig. 2. 2×2 sized matrix multiplication kernel for INT-8 data operands.

spatial dimension of the filters is the same size as the spatial
dimension of the input feature map. To reduce load instructions
and exploit a data reuse mechanism, the fully connected kernel
implements 2x1 matrix multiplication kernel within the inner
loop (see Section IV.IV-C and Figure 6). By loading two
different subsets of weights, we can compute two consecutive
output pixels along the channel dimension. By using the SIMD
ISA extensions as before, with three loads we are able to set
two sdotp4 vector operations per loop cycle, which translates
in 8 MACs.

Ancillary operations also take benefit of the DSP extensions.
ReLU, which consists of a simple max looped over the input
feature map, exploits hardware loops, load store with post-
increment and the SIMD max4 built-in instruction. The same
is also used to optimize the max-pooling kernel, which is
implemented in two steps: first along the width dimension,
working destructively in situ on the input buffer; then along
the height dimension.

Sub-byte Extensions: The smallest data type well sup-
ported by the ISA with the SIMD extensions is INT-8. To
exploit efficiently such vector operations, it is necessary to
provide additional support functions to convert sub-byte data,
i.e. INT-2 and INT-4, into INT-8. Having sub-byte operands
compactly stored in memory, in the case of INT-4 data two
consecutive elements are placed in a single byte. The casting
operation, realized through the pulp_nn_int4_to_int8 function,
takes place either when building the im2col buffer as well
as in the innermost loop of the matrix multiplication kernel
to "unpack" weight elements. To reduce the overhead due to
the unpacking operations, combined use of the bextract and
pack4 built-in functions allows to extract four INT-4 elements
(weights or pixels) with few instructions, as shown in Figure
3. After loading eight INT-4 data with a single load, four
elements are extracted by means of the bitextract built-in and
packed into one single SIMD v4s variable, which feeds the
matrix multiplication kernel.

The results of the matrix multiplication kernel (which is
always performed with the INT-8 data type) are 16-bit long,
as the accumulator features a precision higher than operands,

Src = *((v4s*) pSrc); //pointer casting
B1 = bextract(Src[0..3]); //bit extraction
B2 = bextract(Src[4..7]);
B3 = bextract(Src[8..11]);
B4 = bextract(Src[12..15]);
Res = pack4(B1, B2, B3, B4); // packing into a v4s var.

Pseudocode

p.lw Src, 0(a0); // vectorial load
p.bextract w1e, Src, 4, 0; //bextract built-in
p.bextract w2e, Src, 4, 4;
p.bextract w3e, Src, 4, 8;
p.bextract w4e, Src, 4, 12;
p.packhi.b Res, w3e, w4e; //pack built-in (two assembly insns)
p.packlo.b Res, w1e, w2e;

Disassembled Pseudocode
07 …

W8 W7 W6 W5 W4 W3 W2 W1

bextract
Sig.
ext.

W1
Sig.
ext.

W2
Sig.
ext.

W3
Sig.
ext.

W4

Sig.
ext.

W1
Sig.
ext.

W2
Sig.
ext.

W3
Sig.
ext.

W4

0

pack4

Src

Res

3

07

…

…

Fig. 3. INT-4 to INT-8 unpacking function.

Matrix Multiplication
(INT-8)

2x2 16-bit
accumulators

Thresholding
procedure

pulp_nn_int4_quant()

Packing INT-4 results
bitinsert()

* **

Pseudocode

q1 = pulp_nn_int4_quant(s1, thresholds); // restoring 4bit range precision *
q2 = pulp_nn_int4_quant(s2, thresholds);
q3 = pulp_nn_int4_quant(s3, thresholds);
q4 = pulp_nn_int4_quant(s4, thresholds);

Out = bitinsert(q1, offset=0, size = 4); // packing two INT-4 pixels in one INT-8 variable **
Out = bitinsert(q3, offset=4, size = 4);
Out2 = bitinsert(q2, offset=0, size = 4);
Out2 =bitinsert(q4, offset=4, size = 4);

Fig. 4. The compression procedure for INT-4 data types.

as described in Section III.III-A. A compression procedure is
thus needed to bring the result back to INT-4. Starting from
the considerations in [15], the 16-bit accumulator is compared
with the corresponding 24−1 threshold values, using an opti-
mal balanced binary tree function, named pulp_nn_int4_quant.
Such a procedure is necessary to restore the precision of the
results in a 4 bit range. To save memory footprint, two con-
secutive output INT-4 data are stored in a single-byte variable
using the bitinsert built-in function. A graphical explanation of
the compression mechanism is provided in Figure 4. A similar
process is implemented for INT-2 convolutions, by featuring
dedicated packing and unpacking functions.

Binary Convolution Kernel: For the INT-1 data represen-
tation no casting/unpacking is needed because of the natu-
ral support provided by the ISA for binary operations. We
exploit the bitwise instructions to implement the convolution
kernel, which is based on bitwise XNOR operations between
binary weights and binary inputs. The accumulator is filled by
counting the number of ones occurring after the XNOR. To
this purpose we use popcnt built-in. The 16-bit accumulator is
compared with a single threshold and results either in a zero
or one, stored back into memory by means of the bitinsert
built-in function.

B. Multicore Execution

As discussed above the convolution kernel execution con-
sists of two phases: the im2col function and the matrix
multiplication kernel. The proposed data-parallel multi-core
optimization is motivated by the HWC format used to store
pixels and weights and by the two phases of the dataflow.
Because of the HWC format, it is convenient to split the
workload along the spatial dimension of the output feature

H
EI

G
H

T 2x2 output pixels of
the Matrix

Multiplication kernel

WIDTH

H
EI

G
H

T

C
O

R
E0

C
O

R
E1

C
O

R
E2

C
O

R
E3

C
O

R
E4

C
O

R
E5

C
O

R
E6

C
O

R
E7

WIDTH

Im2col buffers needed
by core0 to compute the

red output pixels

OUTPUT FEATURE
MAP

16(W)x16(H)x64(C)

INPUT FEATURE
MAP

16(W)x16(H)x32(C) Chunk to be
assigned to the

i-th core

×

FILTER WEIGHTS

Fig. 5. The right side of the figure shows how the chunks are assigned to
the 8 cores of the PULP cluster. To take advantage of the HWC data-layout
each chunk is built along the spatial dimension of the output feature map.
The left side gives a graphical intuition of the need each core has to create its
private im2col buffer. Considering the 2×2 matrix multiplication kernel each
core requires two private buffers of such type.

V4s A1 = *((v4s*) pWeight);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);
S2 = sdotp4(A1,B2);

V4s A1 = *((v4s*) pWeight);
V4s A2 = *((v4s*) pWeight2);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);
S2 = sdotp4(A1,B2);
S3 = sdotp4(A2,B1);
S4 = sdotp4(A2,B2);

V4s A1 = *((v4s*) pWeight);
V4s A2 = *((v4s*) pWeight2);
V4s A3 = *((v4s*) pWeight3);
V4s A4 = *((v4s*) pWeight4);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);
S2 = sdotp4(A1,B2);
S3 = sdotp4(A2,B1);
S4 = sdotp4(A2,B2);
S5 = sdotp4(A3,B1);
S6 = sdotp4(A3,B2);
S7 = sdotp4(A4,B1);
S8 = sdotp4(A4,B2);

S1

S7

S3

S5

S2

S8

S4

S6

1x2 2x2 4x2
width

channel

Kernel Size MAC/Load

1x2 1.33

2x2 4

4x2 5.33

Inner Loop
1x2 2x2 4x2

Fig. 6. Inner loop of the matrix multiplication considering different sizes of
the kernel.

map, in a way that each core computes the full set of M
output features for a given output spatial coordinate, as shown
in Figure 5. To implement this strategy, each core requires a
private im2col buffer. More specifically, if we consider the
2×2 kernel, each core must allocate and load two im2col
buffers before running the matrix multiplication kernel. There-
fore, the parallelization boost comes at the cost of a small
amount of additional memory footprint for the extra im2col
buffers, which in the worst case (eight cores configuration)
is about 9% of the total when considering 16×16×32 sized
input feature map, 16×16×64 sized output feature map and
64×3×3×32 sized 3D convolution filter. The weights instead
are shared among the cores.

Since the fully connected layer generates a set of neurons as
output (i.e., the output feature map does not extend along any
spatial dimension), the only dimension along which we can
split the workload is the channel. We assign a balanced number
of neurons to be computed to each core. The parallelization
of the ReLu and the Max Pooling kernel is straight-forward:
the chunk to be assigned to each core is a balanced group of
pixels along the entire input feature map.

C. Matrix Multiplication Kernel Size Exploration

To further increase the throughput of a memory intensive
kernel such as matrix multiplication, it is important to reduce
the cost of loading the operands into the registers as much
as possible, by maximizing the data reuse at the register file
level.

The direct implementation of the Equation (6) would be
inefficient since, from a computation perspective, two loads

are required (one to fetch an im2col element and one to
fetch a weight parameter) to feed the MAC instruction. In this
scenario, one load stall will be necessarily paid, degrading the
IPC metric and reducing the throughput. To avoid the stall,
multiple output data can be computed within the inner loop
of the dot product routine, i.e., the inner loop of the matrix
multiplication kernel.

When applying equation (6) to compute the output data at
the spatial coordinate (x+ 1, y), the formula becomes:

O(m,x+ 1, y) = dot
(
W (m), im2col(x+ 1, y)

)
. (7)

We can notice that the same subset of weights is used in
the computation of the output data at coordinates (x, y) and
(x + 1, y) . What changes is only the im2col buffer. When
operating on these two point simultaneously, the inner loop
consists of two dot product operations, which are performed
over two different accumulators. By reusing the register that
stores the elements of W (m) along the spatial dimension we
can set two sdotp4 operations at the cost of one additional
load (three in total), needed to fetch the elements of the
second im2col buffer. So doing, we build the 1x2 sized
kernel and increment the MAC to load ratio. If extending this
strategy also to the feature dimension, the inner loop of the
convolution can operate on a 2×2 sized kernel, i.e. computing
four accumulations related to two features of two separate
output pixels (x, y) and (x+1, y). Such a kernel size is the one
used by ARM CMSIS-NN. In this case, an additional subset
of weights, W (m+1) is needed and, at the cost of four loads,
we can perform four sdotp4 operations in the inner loop. By
means of this upgrading, the MAC to Load ratio grows up to
4.

Let us consider the 4x2 sized kernel, which means we want
to compute two adjacent spatial pixels along four consecutive
channels of the output feature map. Following what we said
before, we need to build two im2col buffers, and we need
four different subsets of weights. The elements loaded in
the register file are reused similarly as presented before to
maximize the MAC to Load ratio. Figure 6 explains the
concept of register file data reuse. As a counterpart, we can
explore the 2x4 sized kernel. In this case, the reasoning is
reversed. The MAC to load ratio we can achieve in both
cases is 5.33, as we compute 32 MACs at the cost of 6 load
operations, in a single run of the inner loop. Thus we expect
a better throughput with respect to the 2×2 sized area. It is
interesting to notice that in the 2x4 case, the memory footprint
is slightly higher than the 4x2 sized kernel because of the
two additional im2col buffers. For the same performance, the
former is thus to be preferred between the two.

It is important to notice that the upscaling of the kernel
size is limited by the resources available in the register file to
store operands and accumulators, thus limiting the data reuse
design space at this level. We explore such a space to find
the best register file data reuse condition which maximizes
the throughput. The experimental results and further consid-
erations are provided in Section V.V-C.

0

1

2

3

4

5

6

7

8

9

10

Convolution kernel
[INT-8]

Convolution kernel
[INT-4]

Convolution kernel
[INT-2]

Convolution kernel
[INT-1]

Sp
e

e
d

u
p

[w
.r

.t
.

R
V

3
2

IM
C

]
STM32L476 STM32H743 GAP8 (1 Core)

2.1x 1.42x

4.51x 2.54x

2.17x 1.52x

2.22x 1.41x

Fig. 7. Speed-up of PULP-NN conv kernels (single core execution on GAP-
8) and CMSIS-NN conv kernels (on STM32H7 and STM32L4) with respect
to RV32IMC ISA.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The solutions presented in this paper are evaluated on the
off-the-shelf GAP8 [16] microcontroller, which is an embod-
iment of the target PULP architecture with eight cores. The
same experiments can also be replicated on the open-source
PULP platform4 via RTL simulation.

A. Comparison with RV32IMC ISA

To evaluate the proposed library, which exploits the DSP
extensions available on the RI5CY processor [50], we first
compare the optimized single core execution of the convolu-
tion kernels with respect to a corresponding RV32IMC ISA
implementation, sweeping all the INT-Q datatypes supported.
This evaluation is performed by benchmarking a convolution
kernel operating on a 16x16x32 input tensor (HWC data-
layout) with a filter size of 64x3x3x32 (CxkwxkhxM). We
consider the convolution kernel as its workload is dominant
when inferring an entire QNN (about 96 % on the CIFAR-10).
As a second term of comparison, we run the kernels on off-
the-shelf STM32H743 [38] and STM32L476 [37] commercial
microcontrollers based on ARM CORTEX-M7 and CORTEX-
M4 cores respectively, using the CMSIS-NN [14] library. To
run the sub-byte quantized version of the convolution layer on
such MCUs, we refer to [15]; the extension to the CMSIS-
NN library is open access5. The results of the comparison are
presented in terms of speedup with respect to the RV32IMC
implementation and reported in Figure 7.

We achieve the best speedup on the INT-8 convolution
kernel, mainly thanks to the 8-bit SIMD sdotp instructions.
The ARM ISA features support for 16-bit instructions only,
dividing by a factor of 2 the MAC throughput with respect to
the RI5CY processor. Moreover additional rotate instructions
are required on ARM architectures to pack 16-bit vector data
to feed the MAC units [15]. Finally, hardware loops provide
another factor of improvement with respect to ARM. Thanks
to these extensions we outperform by 2.54× and 4.51× the
STM32H7 and L4 MCUs respectively, despite the CORTEX-

4https://github.com/pulp-platform.
5https://github.com/EEESlab/CMSIS_NN-INTQ

0

0,5

1

1,5

2

2,5

3

3,5

Convolution kernel
[INT-8]

Convolution kernel
[INT-4]

Convolution kernel
[INT-2]

Convolution kernel
[INT-1]

C
yc

le
s/

M
A

C

STM32L476 STM32H743 GAP-8 (1 core) GAP-8 (8 cores)

32.3x

18.2x

7.16x

15.3x

10.4x

7.3x

16.3x

11.5x

7.5x

17x

10.8x

7.7x

Fig. 8. Comparison in terms of cycles/MAC between the PULP-NN conv
kernels on one/eight core(s) of GAP-8 cluster and CMSIS-NN conv kernels
on STM32L4 and STM32H7.

M7 processor available in the STM32H7 featuring a dual-issue
pipeline.

When considering sub-byte data types, we notice a degra-
dation of the speedup with respect to RV32IMC which passes
from 8.8× (INT-8) to 3.69× and 4.22× for INT-4 and INT-
2 data respectively. Such degradation is due to the additional
instructions to unpack and cast INT-2/4 operands to INT-8
ones. Although these operations are implemented with bextract
and pack4 instructions, they do not achieve the same speedup
as the INT-8 convolution kernel, limiting the overall speedup
for sub-byte kernels, still leading to a speedup of 1.42×
and 2.1× with respect to STM32H7 and STM32L4 for INT-
4 kernel, respectively, and a speedup of 1.52× and 2.17×
with respect to H7 and L4 for INT-2 kernel, respectively. The
ARM CORTEX-M7/M4 processors do not have ISA support
for efficient bit manipulation instructions nor for popcount
instruction which is helpful for the INT-1 case. However most
of the computational load of this kernel is implemented with
xnor instructions available in all considered ISAs. Hence,
the proposed implementation, runs 1.41× and 2.22× faster
than the extended CMSIS-NN solution on STM32H7 and
STM32L4 respectively.

B. Multicore Execution Results

In this section, we focus on the analysis of the multicore
optimization of the kernels. Figure 8 shows a comparison of
the convolution kernels running on the 8-core cluster of GAP-8
with respect to the equivalent CMSIS-NN implementation on
STM32H7 and STM32L4. It is possible to notice that, due to
the additional operations required to execute sub-byte kernels,
their overall cycles/MAC are 0.186 for INT-4 and 0.181 for
INT-2, both 2.4× higher than the INT-8 case.However, we can
notice how the software-efficient exploitation of the parallel
processors cluster provides almost linear speedups (7.16× to
7.7×) with respect to the single core configuration, leading
to a dramatic improvement of performance with respect to
the equivalent execution on sequential RV32IMC (where the
overall speedup passes from 8.8× of the single-core execution
to up 63× when considering 8-cores) and on single-core

Configuration Nr. I$ stall TCDM cont. Load stall Total exec. Speedup
insns cycles cycles cycles cycles

Convolution
1 CORE 2546k 1.3k (0.05%) 0 18k (0.7%) 2586k 1×

2 CORES 1286k 4.5k (0.35%) 1.4k (0.11%) 11k (0.85%) 1299k 1.99×
4 CORES 636k 5.7k (0.86%) 3.8k (0.56%) 5.5k (0.83%) 660k 3.92×
8 CORES 318k 21.5k (5.96%) 6.6k (1.83%) 2.7k (0.75%) 361k 7.16×

Fully connected
1 CORE 20.7k 0.03k (0.09%) 0 0 33k 1×

2 CORES 10.4k 1.1k (6.25%) 1k (5.69%) 0 17.6k 1.89×
4 CORES 5.2k 0.1k (1.19%) 0.2k (2.38%) 0 8.4k 3.92×
8 CORES 2.6k 0.1k (2.27%) 0.3k (6.81%) 0 4.4k 7.52×

TABLE II
THE TABLE SHOWS THE MULTICORE EXECUTION PROFILING OF THE KERNELS. THE MEASUREMENTS FOR MULTICORE CONFIGURATIONS ARE REPORTED

AS AN AVERAGE OF THE MEASUREMENTS TAKEN ON EACH CORE. THE PERCENTAGE VALUE HIGHLIGHTS THE IMPACT OF EACH MEASURED
CONTRIBUTION ON THE TOTAL EXECUTION CYCLES.

ARM architectures (10× to 32×). This huge performance gain
enables the exploitation of the benefits of heavily quantized
neural networks in terms of memory footprint, still performing
one order of magnitude better than state-of-the-art ARM-based
implementations.

To provide more insight on the multi-core optimizations, we
present an exhaustive study of the performance achieved on
the parallel cluster of GAP-8. First, we measure the amount
of executed instructions per each core providing an indication
of the Amdhal’s limit of the kernels, i.e. the amount of cycles
lost due to non-parallelizable code. As a second point, we
measure the the number of cycles in which the cores are
not waiting on a barrier (active cycle). Then we measure the
architectural sources of overhead: number of cycles lost due to
contention on the shared TCDM, cycles lost due to instruction
cache stalls and cycle lost due to load stalls (read after write).
The results for the convolution and fully-connected kernels are
summarized in Table II.

Considering the convolution kernel, we achieve a Speedup
of 7.16× with eight cores. By analyzing the table we can
notice that the Amdahl’s limit of the kernels is around 8×
(thus, ideal), but we lose a small number of cycles due to
architectural overheads: the 67% of this overhead is due to
I$ non-idealities, 8% is due to load stalls and 20% is due
to TCDM contention, which is reasonable as there are eight
cores that access the same shared L1 memory. The number
of I$ stalls increases with the number of cores due to the
increasing contentions in the shared cache banks [51] (the
banking factor of 8 can not completely remove the conflicts),
on top of the I$ misses due to the large inner loop of the kernel.
The parallel execution of the fully connected layer presents a
speedup higher than the convolution kernel mainly thanks to
the reduction of I$ stalls due to the smaller size of the kernel.
The speedup is never lower than 7× also when considering
the max-pooling and ReLU kernels running on eight cores.

C. Kernel Exploration

The exploration of the matrix multiplication kernel size
design space is carried out for the INT-8 operands, considering

0.6 0.8 1 1.2 1.4 1.6 1.8 2
[sdotp/Loads]

0

2

4

6

8

10

12

14

16

[M
AC

s/
cy

cl
e]

1x2
2x1 2x2

2x4
4x2

4x4

1x2
2x1

2x2
2x4

4x2

4x4

1x2
2x1

2x2

2x4
4x2

4x4

1x2
2x1 2x2 2x4

4x2 4x4

1 core
2 cores
4 cores
8 cores

Fig. 9. Performance of the convolution layer considering different sized matrix
multiplication kernels. On the x-axis we show the sdotp to load ratio to clarify
how many sdotp4 (equivalent to 4 MAC) we can set with one load. The label
of each point of the graph, in the form of a × b, specifies the kernel size
considered. a is the number of output features computed by the kernel, b is
the number of output activations.

sizes ranging from 1×2 to 4×4. The results are summarized
in Figure 9.

A peak throughput of 15.5 MACs/cycle is reached when
we consider a convolution kernel with a 4×2 sized matrix
multiplication kernel running over eight cores of the cluster,
achieving a result of just 1.01 LD/ST per MAC. This result
translates in an overall efficiency of 49% in terms of MAC
utilization, only a factor of 2 from the theoretical peak achiev-
able (32 MACs/cycle) on a cluster of eight programmable
cores with SIMD MAC units, i.e. considering the MAC units
constantly fed. Nearly the same throughput is achieved with
the 2×4 sized kernel, as the almost overlapping points in the
graph suggests.

Then, the optimal sized kernel has been chosen taking into
the account also the extra memory footprint needed to build
the im2col buffers in the two configurations, which results to
be lower for the 4×2 solution (see section 4.IV-C for more
details). As regards the 1×2, 2×1 cases, they appear to be
inefficient, as the amount of data reuse is meager and we pay
the overhead due to the higher number of loads. For these
configurations, the MAC to load ratio is slightly higher than 1.
The 4×4 case instead would demonstrate to be the best, since

643216842
Number of output channels

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pe

rf
or

m
an

ce
 [M

A
C/

cy
cl

e]

64 in chan
32 in chan

16 in chan
8 in chan

4 in chan
2 in chan

GWT-NN 64x64

GWT-NN 16x16

GWT-NN 4x4

PULP-NN

Fig. 10. Comparison between PULP-NN using a 4×2 kernel and the best
result obtained by GWT-NN.

the first indication of ideal data reuse is equal to 8 (MAC/load).
However, to set a 4×4 sized matrix multiplication kernel inner
loop we should have at least 24 registers available (16 for
the accumulators and 8 for the operands), while the target
RISC-V, like most MCU-dedicated micro-architectures, has a
register file with 32 general purpose registers. With only eight
usable registers, the compiler has to spill variables to the stack
to make room for the accumulators and operands, leading to
significant performance degradation.

D. Comparison with GAP8 Native Library

We compare our library with the optimized multi-core ker-
nels that are openly distributed by GreenWaves Technologies
as part of a proprietary tiling solution6 and tailored for the
GAP8 processor. We call this library GWT-NN. In this section,
we compare the performance of PULP-NN on INT-8 data with
that provided by GWT-NN. We focus on a 3×3 kernel in terms
of filter size as a representative example constituting the bulk
of most SoA DNNs.

Differently from PULP-NN, GWT-NN operates spatially on
CHW-formatted data with explicit convolution filters working
in a sliding window fashion, and accumulation over an appro-
priately sized INT-32 buffer. In the innermost loop, the GWT
3x3 kernel uses the register file to implement a sliding window
and uses three sdotp4 instructions to implement a total of 9
multiply-accumulate operations. [50] and [52] report further
details with respect to this convolution kernel.

Figure 10 shows a comparison between the two libraries
when running on a single core of the GAP-8 cluster, in terms of
performance in MAC/cycle. For PULP-NN, the performance
is swept by changing the number of input and output channels
between 2 and 64 (only results from configurations fitting the
L1 are shown). We chose the biggest input spatial size (24x24)
for which configurations with 64 input or output channels fit
L1. Conversely, for GWT-NN, performance is substantially
independent of the number of in/out channels, but only on
the spatial size of the input image; therefore, we fix their

6https://github.com/greenwaves-technologies/autotiler.

input/output channels at 4 and have them sweep their input
size between 4, 16, and 64 pixels height/width.

As visible from Figure 10, PULP-NN outperforms GWT-
NN for all small images, and in most cases of spatially bigger
images by a significant margin. This is due to a combination
of two effects: the 3x3 sliding window requires three loads
and three sdotp4 per output pixel, yielding a lower sdotp4 per
load ratio (1) with respect to the 4×2 PULP-NN kernel (1.4);
moreover, only three MAC are used per each sdotp4, yielding
a further loss of 25% in terms of efficiency. Consequently, the
GWT-NN kernel is mostly competitive when the spatial size of
the feature maps is much higher than the number of channels,
e.g., in the first layer of a CNN. While, when the number of
input/output channels is high, which typically represents the
majority of the workload for state-of-the-art deep networks
topologies [53], PULP-NN can achieve as much as a +89%
speedup with respect to GWT-NN.

E. Comparison with State-of-the-Art Architectures

To assess the library performance on an inference task, we
run a full QNN, trained on CIFAR-10 dataset, on GAP-8,
using PULP-NN back-end library. For comparison purposes,
we run the same network also on State-of-the-Art edge of
IoT ARM Cortex-M based microcontrollers (STM32H7 and
STM32L4), using CMSIS-NN. STM32H7 and STM32L4 were
chosen as representative of popular high-end and low-end
MCU systems, showing a clear trade-off between performance
and energy efficiency. The comparison with these two popular
computing platforms allows to analyze where our results lay in
terms of trade-off between computing performance and energy
efficiency. The implemented network topology is composed
by three convolution layers and one fully-connected layer,
consisting of 26.7 k parameters and 6.56 MMACs in total7.
The weights and the activations are quantized to INT-8 format.
Such a topology is already used on IoT edge devices (MCUs)
and also used by ARM to validate Neural Networks on low-
power microcontrollers such as STM32L4 or STM32H7.

On GAP-8, the RGB image is initially stored in the L2
memory and brought in the L1 memory before the start of
the inference task, through a DMA transfer. The activation
values are then kept in the L1 memory to save on memory
transfer overhead. Before the execution of each convolution or
linear kernel the weights, initially residing on L2 memory, are
brought in L1 through DMA as well. Also the im2col buffers
are kept in L1 memory. On the STM32L4 microcontroller,
the entire network is stored in the first level of memory, which
consists of 128 kB SRAM. On STM32H7 the network is stored
in SRAM as well and we enable also the harware data cache
which is provided by the MCU architecture.

In the single core configuration, we are able to infer the
entire network in 28.6 ms, when GAP-8 runs at 170 MHz.
We achieve almost linear speedup when considering two and
four cores, 1.99× and 3.79× respectively. With eight cores

7The layer parameters can be found at: https://github.com/ARM-
software/ML-examples/tree/master/cmsisnn-cifar10

0

5

10

15

20

25

GAP8 GAP8 STM32L4 STM32H7

EN
ER

G
Y

 E
FF

IC
IE

N
C

Y
 [

G
M

A
C

/s
/W

]

0

0,2

0,4

0,6

0,8

1

1,2

GAP8 GAP8 STM32L4 STM32H7
P

ER
FO

R
M

A
N

C
E@

M
A

X
 F

R
E.

[G
M

A
C

/s
]

0

4000

8000

12000

16000

20000

24000

GAP8 STM32L4 STM32H7

LA
TE

N
C

Y
 (

C
LO

C
K

 C
YC

LE
S

[k
])

36.8x 7.45x
14.1x 39.5x

19.6x

30x

(1.2V) (1V) (1.2V) (1V)

32.05x 4.06x

9.48x 16.6x

Fig. 11. This figure shows the execution cycles, the performance (at the maximum frequency) and energy efficiency (at the lowest consumption configuration)
to infer the entire QNN on GAP8, STM32L4 and STM32H7 microcontrollers.

the speedup is slightly less than 7×. Figure 11 shows the
comparison of PULP-NN implementation of the network on
GAP-8 with respect to the CMSIS-NN implementation on
STM32H743 and STM32L467 in terms of execution cycles,
performance (i.e. also considering the maximum operating
frequency of the devices), and energy efficiency.

Our PULP-NN CIFAR-10 achieves a peak performance of
1.07 GMAC/s at the frequency of 170 MHz and the supply
voltage of 1.2 V on GAP-8, inferring 241 frame per second
(fps) with an energy per inference of 0.27 mJ/frame. The
performance is 7.45× better than the STM32H7 and 36.8×
better than the STM32L4. The energy efficiency achieved at
this operating point is 16.1 GMAC/s/W, 16.6× higher than
the STM32H7 and 9.48× higher than STM32L4. At the same
time, at the best energy point, at the supply voltage of 1V,
PULP-NN achieves a performance of 577 MMAC/s on GAP-
8, with energy efficiency of 24 GMAC/s/W, inferring 127 fps
with 0.19 mJ/frame, and outperforming STM32H7 by 4.06×
and STM32L4 by 32.05× in terms of performance and by
39.5× and 14.1× the same devices respectively, in terms of
energy efficiency.

F. Discussion

In this work we demonstrate that coupling optimized soft-
ware libraries with a parallel ultra low power computing
platform we achieve energy proportionality where, as opposed
to commercial ARM-based solutions, we do not have to
trade performance with energy efficiency, paving the way to
fully software programmable CNN inference at the edge of
the IoT. However, sub-byte kernels still suffer from drop-off
in performance when compared to the INT-8 ones, despite
their execution on GAP-8 performs more than one order of
magnitude better with respect to MCU-based SoA solutions.
The overhead, as highlighted in section V.V-A, is due to
the hardware support of the target architecture only for 8-
bit SIMD instructions, which makes necessary to introduce
additional packing and unpacking functions. The sub-byte

precision QNNs though, provide several advantages when
deployed at the edge, since their memory footprint results
much lower than the one of full precision NNs [7], making
them more suitable to fit the limited memory capacity of
MCU-like devices. Moreover, it has the potential to increase
the energy efficiency, crucial for battery-powered devices [11].
Such enormous advantages might be counterbalanced by a
drop-off in accuracy of the Network. Recent research though
demonstrated that, by exploiting specific retraining techniques,
the accuracy drop can be kept close to the floating point
counterpart, leading to a cumulative loss which is acceptable
for many IoT applications [13]. Based on that result, the
research community is focusing more and more on the study
and implementation of strongly quantized NNs. It is therefore
important going further in the work presented in this paper
to disclose fully the potential of heavily quantized networks
on fully programmable edge devices. From the hardware
perspective, providing the target ISA with sub-byte hardware
SIMD operations will be a step forward to eliminate the
software overhead and to double, at least, the performance
and the energy efficiency with respect to the current optimal
8-bit solution.

VI. CONCLUSION

We have presented PULP-NN: an optimized library to
run QNNs at the edge, targeting INT-8, INT-4, INT-2, and
INT-1 data operands. We showed that, by optimizing the
library with the SIMD extensions and bit manipulation in-
structions of the targeted architecture, we heavily increase
the performance of each kernel by up to 63x with respect
to a corresponding RISC-V IMC implementation, in an eight
core cluster configuration. Running an entire INT-8 QNN on
GAP8 showed us that we can achieve a speedup (in terms of
cycles) of 19.49× with respect to the inference of the network
on an STM32H7 microcontroller, using CMSIS-NN library.
Furthermore, the energy efficiency achieved on GAP8 results
to be 24 GMAC/s/W , 14.1× higher with respect to the one

obtained with STM32L4 board. We conclude the same also
for the performance: GAP8 achieves 1.066 GMAC/s, which
is 7.45× higher than the performance of STM32H7 board.

ACKNOWLEDGEMENTS

This work was supported in part the OPRECOMP (Open
trans-PREcision COMPuting) project founded from the Euro-
pean Union’s Horizon 2020 research and innovation program
under Grant Agreement No. 732631.

REFERENCES

[1] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia,
“An overview of internet of things (iot) and data analytics in agriculture:
Benefits and challenges,” IEEE Internet of Things Journal, vol. 5, no. 5,
pp. 3758–3773, 2018.

[2] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos,
B. Kantarci, and S. Andreescu, “Health monitoring and management
using internet-of-things (iot) sensing with cloud-based processing: Op-
portunities and challenges,” in 2015 IEEE International Conference on
Services Computing. IEEE, 2015, pp. 285–292.

[3] N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A
crowd surveillance use case,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 128–134, 2017.

[4] C. A. Tokognon, B. Gao, G. Y. Tian, and Y. Yan, “Structural health
monitoring framework based on internet of things: A survey,” IEEE
Internet of Things Journal, vol. 4, no. 3, pp. 619–635, 2017.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[6] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K.
Gürkaynak, M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou et al.,
“An iot endpoint system-on-chip for secure and energy-efficient near-
sensor analytics,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2481–2494, 2017.

[7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[8] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning, 2016, pp. 2849–2858.

[9] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization,” arXiv preprint arXiv:1811.08886, 2018.

[10] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[11] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
“Minimum energy quantized neural networks,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2017, pp.
1921–1925.

[12] F. Conti, P. D. Schiavone, and L. Benini, “Xnor neural engine: A
hardware accelerator ip for 21.6-fj/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2940–2951, 2018.

[13] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on micro-
controllers,” arXiv preprint arXiv:1905.13082, 2019.

[14] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[15] M. Rusci, A. Capotondi, F. Conti, and L. Benini, “Work-in-progress:
Quantized nns as the definitive solution for inference on low-power
arm mcus?” in 2018 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS). IEEE, 2018, pp. 1–2.

[16] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2018, pp. 1–4.

[17] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Teman,
J. Constantin, A. Burg, I. Miro-Panades, E. Beignè et al., “Energy-
efficient near-threshold parallel computing: The pulpv2 cluster,” Ieee
Micro, vol. 37, no. 5, pp. 20–31, 2017.

[18] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snowflake:
An efficient hardware accelerator for convolutional neural networks,” in
2017 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2017, pp. 1–4.

[19] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “An automatic rtl compiler
for high-throughput fpga implementation of diverse deep convolutional
neural networks,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2017, pp. 1–8.

[20] S. I. Venieris and C.-S. Bouganis, “Latency-driven design for fpga-based
convolutional neural networks,” in 2017 27th International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2017,
pp. 1–8.

[21] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi,
L. Raffo, and L. Benini, “Neura ghe: Exploiting cpu-fpga synergies
for efficient and flexible cnn inference acceleration on zynq socs,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, p. 18, 2018.

[22] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26–35.

[23] A. Prost-Boucle, A. Bourge, F. Pétrot, H. Alemdar, N. Caldwell, and
V. Leroy, “Scalable high-performance architecture for convolutional
ternary neural networks on fpga,” in 2017 27th International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2017,
pp. 1–7.

[24] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65–74.

[25] “Lattice. 2019. lattice sensai delivers 10x performance boost for low
power, smart iot devices at the edge.” https://www.latticesemi.com/
About/Newsroom/PressReleases/2019/201911sensAI.

[26] “Lattice. 2018. accelerating implementation of low power artificial
intelligence at the edge.” http://www.latticesemi.com/view_document?
document_id=52384.

[27] G. Desoli, N. Chawla, T. Boesch, S.-p. Singh, E. Guidetti, F. De Am-
broggi, T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh et al., “14.1
a 2.9 tops/w deep convolutional neural network soc in fd-soi 28nm for
intelligent embedded systems,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC). IEEE, 2017, pp. 238–239.

[28] L. Cavigelli and L. Benini, “Origami: A 803-gop/s/w convolutional
network accelerator,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 27, no. 11, pp. 2461–2475, 2017.

[29] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[30] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[31] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[32] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[33] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu: A 50.6
tops/w unified deep neural network accelerator with 1b-to-16b fully-
variable weight bit-precision,” in 2018 IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 2018, pp. 218–220.

[34] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture
for ultralow power binary-weight cnn acceleration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 1, pp. 48–60, 2018.

[35] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda et al., “Brein
memory: A single-chip binary/ternary reconfigurable in-memory deep
neural network accelerator achieving 1.4 tops at 0.6 w,” IEEE Journal
of Solid-State Circuits, vol. 53, no. 4, pp. 983–994, 2018.

[36] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-efficient
sram with embedded convolution computation for low-power cnn-based
machine learning applications,” in 2018 IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 2018, pp. 488–490.

[37] “Stmicroelectronics. 2018. stm32l476 datasheet,” https://www.st.com/
resource/en/datasheet/stm32l476je.pdf.

[38] “Stmicroelectronics. 2018. stm32h743 datasheet,” https://www.st.com/
resource/en/datasheet/stm32h743bi.pdf.

[39] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr. wolf:
An energy-precision scalable parallel ultra low power soc for iot edge
processing,” IEEE Journal of Solid-State Circuits, 2019.

[40] “Nvidia. 2015. nvidia tegra x1,” https://international.download.nvidia.
com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf.

[41] “Nvidia. 2015. gpu-based deep learning inference: A perfor-
mance and power analysis,” https://www.nvidia.com/content/tegra/
embedded-systems/pdf/jetson_tx1_whitepaper.pdf.

[42] “Nvidia. 2018, september. nvidia turing architecture in-depth,” https:
//devblogs.nvidia.com/nvidia-turing-architecture-in-depth/.

[43] “Raspberry pi compute module 3+. 2019,” https://www.raspberrypi.
org/documentation/hardware/computemodule/datasheets/rpi_DATA\
_CM3plus_1p0.pdf.

[44] “Arm. 2019. armv8.1-m architecture,” https://pages.arm.com/
introduction-armv8.1m.html?_ga=2.237285124.508798244.
1553788782-2017191492.1542023072.

[45] “Arm.project trillium machine learning platform,” https://www.arm.com/
products/silicon-ip-cpu/machine-learning/project-trillium.

[46] F. Conti and L. Benini, “A ultra-low-energy convolution engine for fast
brain-inspired vision in multicore clusters,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium, 2015, pp. 683–688.

[47] “2018. kendryte: K210 datasheet,” https://s3.cn-north-1.
amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet\
_20181011163248_en.pdf.

[48] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[49] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The risc-
v instruction set manual, volume i: User-level isa, version 2.0, eecs
department,” University of California, Berkeley, 2014.

[50] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

[51] I. Loi, A. Capotondi, D. Rossi, A. Marongiu, and L. Benini, “The quest
for energy-efficient i $ design in ultra-low-power clustered many-cores,”
IEEE Transactions on Multi-Scale Computing Systems, vol. 4, no. 2, pp.
99–112, 2018.

[52] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, “A 64mw dnn-based visual navigation engine for autonomous
nano-drones,” IEEE Internet of Things Journal, 2019.

[53] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

