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Abstract
Personal Agents (PAs) have longly been explored as assistants to support users in their daily activities. Surprisingly, few
works refer to the adoption of PAs in the healthcare domain, where they can assist physicians’ activities reducing medical
errors. Although literature proposes different approaches for modelling and engineering PAs, none of them discusses how
they can be integrated with cognitive services in order to empower their reasoning capabilities. In this paper we present an
integration model, specifically devised for healthcare applications, that enhances Belief-Desire-Intention agents reasoning
with advanced cognitive capabilities. As a case study, we adopt this integrated model in the critical care path of trauma
resuscitation, stepping forward to the vision of Smart Hospitals.
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Introduction

Several clinical problems require complex and quick deci-
sion making on diagnosis and care of patients. For instance,
during trauma resuscitation, physicians need to decide and
act in few instants. It is indeed demonstrated that trauma is
a time-dependent pathology, where actions taken during the
first hour, called “the golden hour”, heavily influence patient
outcome [30]. Decisions are made by integrating informa-
tion on patients’ biographical data, vital signs, lab tests, and
imaging. However, these data are usually not available in the
same location and at the same time, since interoperability
between acquisition systems is still far from reality in many
world countries—especially in primary care. Moreover, lit-
erature data and medical protocols must be taken into
account to take the most informed choice: consulting them
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in these fast-paced scenarios, as well as remembering all of
them, is simply impractical for a human being.

Pervasive computing can support physicians by acquiring
patients’ data and integrating it with information accessed
and analysed from literature, making them available any-
where, anytime. In particular, in this context, personal assis-
tant agents (PAs) have been recognised as crucial compo-
nents of a pervasive application [33]. Today, they commonly
support users in daily activities, from simple ones such as
make calls, read mails, send messages, open web pages, to
more complex tasks such as schedule appointments, inter-
act with physical objects in the environment, control smart
devices [23, 26, 28].

In the context of healthcare, while intelligent agents
have been applied for different purposes [15, 16, 22],
the use of PAs has been poorly explored, mainly in the
Ambient Assisted Living domain [32, 34] and in the remote
management of chronic conditions, such as diabetes [4, 8].
However, the potential benefits of PAs to support physicians
in their activities are unquestionable: the complexity given
by the high variability and factors – of both users (patients)
and environment – requires flexibility and situatedness, thus
making modelling and engineering PAs very challenging.
Identifying treatments that are personalised to each unique
patient is the goal.

In [6, 7], the concept of Personal Medical Digital Assis-
tant Agent (PMDA) has been introduced as a software agent
supporting physicians’ activities. There, a PMDA was part
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of a pervasive computing application – the TraumaTracker
system [27] – devoted at tracking medical activities during
trauma resuscitation processes for real-time and accurate
documentation. In [7], TraumaTracker has been extended
adding a further level of assistance: the PMDA embeds and
enacts knowledge (rules) for generating alerts on top of the
collected information. It is based on the BDI (Belief-Desire-
Intention) cognitive model and architecture [3, 11], that is:
it acts according to predefined plans, encapsulating local
rules and knowledge specified by the Trauma Team, with
the purpose of generating alerts.

However, enhancing this local knowledge with a further
level accounting for global knowledge – namely, for
instance, best practices, clinical guidelines, population
health, knowledge extracted from data on previous traumas
– would empower PMDAs with the flexibility, dynamism,
and awareness required to provide physicians with real-time
effective assistance.

Recent advances of cognitive computing [18] make the
notion of cognitive services or cognition as a service a rea-
lity [35]. They leverage complex algorithms from AI, enab-
ling advanced analytical processing, sophisticated data dis-
covery, and prediction generation. Some pilot studies in life
sciences demonstrate that cognitive computing has the po-
tential to extract information from the huge amount of data
and literature available today, as never done before, thus ex-
panding physicians knowledge base and expertise [2, 5].

In this paper we claim that integrating PAs and cognitive
services can bring notable benefits and improve PMDAs
reasoning capabilities in order to enrich the level of
support in the healthcare domain. Accordingly, we propose
an architecture where the PMDA interacts with a cognitive
service that implements a Long-Short Term Memory
network [12]: it receives as input time series data – with the
main trauma resuscitation events and patient’s vital signs
measures – and produces as output the prediction of risk
for patient to go into shock. Such risk is integrated with
the knowledge embedded in agent behaviour, and warnings
are generated accordingly. LSTM is trained and validated
with 573 reports acquired in 2018 with TraumaTracker in
real trauma resuscitations. Dataset cardinality is under-
sized with respect to the prediction problem the network
is expected to solve. However, this paper is not meant to
LSTM as shock predictors, rather to propose a new
architecture for a PMDA dealing with trauma alerting.

The remainder of the manuscript is hence structured as
follows: “Background” provides the necessary background
on PAs, cognitive computing, and healthcare domain,
“Principled integration” discusses integration opportunities
in general terms, whereas “Proposed architecture in
trauma resuscitation” describes the architecture adopted by
ourselves to develop the system tested in the case study
evaluated in “The case study of shock prediction”; finally,

“Conclusion” provides final remarks and an outlook to
further work.

Background

Personal assistant agents

Existing proposals and technologies have been developed
for different kinds of purposes and capabilities, from
scheduling joint activities (e.g., [40]), to monitoring and
reminding users of key time-points (e.g., [38]), sharing
information, assisting in negotiation and decision support
(e.g., [21]).

Agents as personal medical assistant have been recently
adopted also in the healthcare domain to support patients,
physicians, or caregivers. The applications we found in
literature are mainly devoted to support patients in their
daily activities. They are usually part of Ambient Assisted
Living applications [32, 34], where vital signs of patients
and contextual information are acquired by sensors to
provide PAs with all the data needed to devise out users
needs and behaviour. Accordingly, they adapt themselves
to improve given assistance, e.g. reminding users about
medication schedule, identifying anomalies in patients’
health status, notifying caregivers when abnormal values
are detected. For instance, [32] presents AMBRO, an IoT
platform equipped with an “intelligent cloud system layer”
where PAs learn on data and events acquired by the
system and act by sending notification alerts to caretakers.
Instead, [34] reports about the HERA (Home sERvices
for specialised elderly Assisted living) project where a PA
supports an elderly user – affected by chronic, Alzheimer, or
mild cognitive impairment disease – following his/her daily
routine and adapting its services to his/her habitual pattern.

Cognitive computing

Proliferation of data collected with new mobile/wearable
technologies opened a new era in computing where
machine learning, natural language processing, and big data
are integrated into the powerful framework of Cognitive
Computing. Nowadays, IBM Watson is the major collector
of cognitive computing technologies, which attracted
widespread attention when in 2011 won against champions
of US game show Jeopardy. In [17] author claims that
Cognitive Computing success will be measured in terms
of practical results, “like return on investment, new market
opportunities, diseases cured and lives saved”.

The need and interest in exploring health applications
is demonstrated by different cognitive healthcare solutions,
such as the ones provided by IBM Watson Health. First
studies discuss the potentiality of cognitive computing
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due to the enormous quantity of different data currently
available and under-exploited—such as genomic data,
exogenous data (acquired by Internet of Things technology)
and electronic medical records [2, 5, 29].

The healthcare scenario

The healthcare scenario is one of the most challenging
contexts in which agent technologies may be applied: physi-
cians have to deal with a multitude of situations, and
the number of diseases and adverse physical conditions is
so huge that is simply unfeasible for a human being to
exhaustively recall everything anytime. More than that, each
patient brings her/his complexity and singularities (demo-
graphic data, medical history, genetics and epigenetics,
past life events, environment, mental status) that strongly
impact their health. Physicians should consider all these
variables to provide patients with efficient and successful
diagnosis and care.

Given this enormous variability, medical errors are still
dangerously common. They are due to human errors, but
also to inefficiency of the care process and of hospitals’
organisation. According to [24], medical errors could be the
third leading cause of death in the United States.

Preventing – or at least reducing – them is worthy
and health IT (HIT) transformation has the potential to
improve patient safety. We recognise two aspects of modern
technologies that can strongly impact in this domain:
(i) the computing power of modern mobile devices and
wearable computing devices [25, 36, 37] (e.g., smart-
glasses), their sensors equipment, and the possibility to
interact with external services, are enabling factors to
conceive a new generation of mobile/wearable PAs; (ii) big
data computation and cognitive computing exploded in the
last years, and advanced cognitive services are nowadays
available [35]. Hence, caregivers can fruitfully collaborate
with technology and get decision support in their activities
without being obstructed.

Principled integration

A principled integration of cognitive services with an
agent (in our specific case of machine learning with a
BDI agent) requires first of all to enumerate the possible
architectures supporting such integration, in terms of roles,
responsibilities, and goals of collaboration ascribed to
each participating component. Figure 1 depicts such an
enumeration. We emphasise this is not about the software
architecture actually implementing technical integration
between the different software pieces involved; rather, it
is about the ways in which the agent abstraction and the
concept of cognitive service (as derived from other research

areas of AI, such as machine learning) can coherently co-
exist and co-operate to deliver decision support—a specific
case study in healthcare, relying on architecture (a), is
described in “The case study of shock prediction”.

The first possible architecture, depicted by case (a) in
Fig. 1, assumes the cognitive service (ML, as for Machine
Learning component) to act as a supervisor overseeing
agents’ operations, and influencing the latter activities by
manipulating its fundamental constructs, such as adding
goals, removing behaviours, or refining knowledge. Notice
that the agent may be unaware of the cognitive service
supervision. The goal of such a form of collaboration is
that of enabling adaptiveness of the agent, by letting a
cognitive service expand or shrink the range of possible
activities undertaken by an agent, for instance by adding
goals, plans, or beliefs synthesised from collected data about
either the domain of operation (e.g. temporal evolution
of a patient’s clinical conditions) or the monitoring of
agent action (e.g. failed plans, ineffective actions, etc.). A
fundamental characteristic of such an architecture is that the
cognitive service sees the agent’s fundamental constructs as
black-boxes, that is, it cannot modify their internals—for
instance, in the case of integration with a BDI agent, the
cognitive service can add plans but cannot modify plans’
pre-conditions.

The second possible architecture, depicted by case (b)
in Fig. 1, is similar: it differs solely for the fact that in
this case the cognitive service has full awareness of the
agent’s constructs internals, hence can operate on them,
too—in other words, they are white-boxes to the eyes of
the cognitive service. In the case of a ML component
overseeing a BDI agent, this means that the former can,
for instance, adapt the pre-conditions of a plan during time
to better reflect an ever-changing situation (e.g. worsening
of patient’s conditions). The roles (supervisor/supervised)
and collaboration goals (adaptiveness) remain unchanged
with respect to case (a). Even if such a difference may
appear negligible, it is not: it necessarily requires a tighter
integration between the agent and the cognitive service,
as awareness of the former internals by the latter must be
greater than in the previous case.

It is worth emphasising that the aforementioned alter-
natives both ascribe the responsibility of supervision and
intervention to the cognitive service, whereas the agent
is passively (possibly, unawarely) supervised, hence influ-
enced. In cases (c) and (d) depicted in Fig. 1 such roles are
inverted.

In fact, the third possible architecture depicted by case
(c) in Fig. 1 ascribes the supervisor role to the agent,
which is in charge of drawing the boundaries within which
cognitive service’s outputs are admissible. In other words,
the agent is given the responsibility to guarantee that the
outputs of the cognitive service are actually considered
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Fig. 1 Possible integration architectures: a the cognitive service (ML)
manipulates the agent (BDI) constructs by handling them as black-
boxes (e.g. does not know how a plan is structured), b the cognitive
service modifies the agent constructs internals (e.g. can change plans’
pre-conditions), c the agent sets the boundaries for the cognitive ser-
vice’s operations, by filtering its outputs (e.g. ignores predictions with

low confidence, filters out suggestions for unethical actions), d the
agent governs the cognitive service’s operations, by executing its inter-
nal workflow (e.g. decides which prediction model to apply), e the
agent and the cognitive service are peers engaging in an argument
about what output to give (e.g. each supports its claims and attacks the
other’s ones by providing suitable motivations)

by the application at hand only and only if they conform
to a series of “safety checks” (e.g. drug administration
does not violate safety thresholds established by known
guidelines)—actually operating as a filter. Again, it is worth
noting that the cognitive service may be unaware of being
supervised. The goal of such a form of collaboration is
that of ensuring safety of the overall decision support
system (i.e. the cognitive service and the agent considered
altogether), by letting the agent enforce rules embedded in
its knowledge base (e.g. in the form of beliefs in case of a
BDI agent) expressing the “do and don’t” to guarantee for
the application domain—e.g. never ever administer drug D1

together with drug D2, or always schedule intervention I2 if
intervention I1 has been performed. Finally, as for case (a), a
peculiar trait of this integration architecture is that the agent
has no knowledge of the internals of the cognitive service,
which appears to it as a black-box.

Case (d) may appear similar to case (c), but is in fact
quite different: not only here the agent handles the cognitive
service as a white-box, by being able to operate on its inner
workflow (the ML “pipeline” as it is commonly called),
but also the goal of collaboration may now encompass
adaptiveness, too—in addition to safety. What remains
identical, instead, is the supervision role played by the agent
with respect to the cognitive service: the former oversees

the latter operations and intervenes by changing working
parameters or by directing workflow steps. For instance,
in the case of a ML pipeline including hyper-parameters
search and models selection, the agent may apply different
scoring metrics and search coefficient to then select the best
performing one. Once again, this integration architecture
requires tighter coupling between the cognitive service and
the agent, as the latter needs greater awareness of the former
internals with respect to previous case.

It is worth emphasising that in each of the four proposed
architectures the participants to the interaction are not peers
on an equal level, but a subordinate relation is always
present: for cases (a) and (b) of the agent with respect to the
cognitive service, the contrary for cases (c) and (d). The last
integration architecture si different in this aspect.

In case (e) of Fig. 1, in fact, the agent and the cognitive
service are peers of a collaborative architecture where
they both provide their outputs to an arbiter responsible
for making an ultimate decision about the insight to give
outside the system. The goal of this architecture is to enable
adaptiveness, safety, and any other property desirable for the
application at hand through the use of argumentation: when
both the agent and the cognitive service have an insight to
give, they engage in an argumentation dialogue governed by
the arbiter, who may request additional explanations about
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the given insight to both parties. For doing so, any known
argumentation framework for negotiation could be used
[31]. It is also worth emphasising that this solution is loosely
inspired to the “arguing machines” model described in [9].

We want to stress that each of the alternative architectures
pose several technical challenges to software designers,
which we do not discuss here for the lack of space,
except for our choice regarding the case study presented
in the following sections. For instance, whenever agency
is involved, considering the impact of integration with
other paradigms / technologies on agents’ autonomy should
always be a primary concern. Also, we do not claim that the
enumerated architectures are new; on the contrary, some of
them may actually embed the principles followed by some
existing research works: for instance, literature on belief
revision [14, 20] or on automated planning [19, 41] may
be framed in our cases (a) and (b) depending on how tight
coupling is. Other research themes such as reinforcement
learning and the emerging XAI (eXplainable AI) paradigm
may find a fit in Fig. 1 as well.

Finally, we think it is worth to emphasise that choosing
the best architecture depends on many heterogeneous
factors, there including the degree of explainability desired,
which is typically high in the healthcare domain. Although
providing guidelines for choosing the best architecture
obviously depend on how “best” is defined, which is
out of the scope of this paper, and would likely require
its own manuscript, we feel to assess what follows:
it is likely that integration architecture (e) will provide
the greatest explainability. In fact, the argumentation-based
setting itself guarantees that only insights with sufficient
arguments are delivered outside the system. As far as the
other architectures are concerned, cases (c) and (d) also
guarantee some level of transparency, as the goal-oriented
and beliefs-driven nature agency is well-suited to lend itself
to human interpretation, whereas cases (a) and (b) inevitably
depend on the specific ML models adopted, as some are
explainable (e.g. decision trees) and some others are not
(e.g. neural networks).

Proposed architecture in trauma
resuscitation

In the following, we present a model for the integration
between BDI agents and ML algorithms relying on a
specific case study devised to manage issues related to
the trauma resuscitation activities within an Emergency
Department.

Existing system

In [6] and [7], a Personal Medical Digital Assistant called
Trauma Assistant Agent has been presented, as an agent with
the goal of autonomous documentation and reporting, and
automatic alerts generation. Using BDI model of agency,
rules were naturally and effectively formalised in terms of
agent plans, exploiting agent’s beliefs to generate alerts.
Table 1 shows, as an example, two of the rules authors
presented in [7], specifying when the alert is generated,
what alert message is displayed, and the rationale for the
rule (described in the caption).

As a simple example, rule #6 is implemented by means
of the following plan (in pseudo-code):

+ev(room out(shock room),T) : fracture(true) ∧ �
ev(drug(abt), )

→ +alert(checkABT,T).
That is: when the agent has a new belief about the patient

exiting the shock room with a fracture diagnosis, and no
belief about administration of Antibiotic Prophylaxis, then
a new belief about an alert to be generated is produced, as a
reminder to activate Antibiotic Prophylaxis.

However, the agent does not plan from first principles.
Instead, it is equipped with a library of pre-compiled plans.
These plans are manually constructed, in advance, by the
agent programmer: alert generation is driven by a set of
rules defined a-priori by the Trauma Team. Rules have been
designed after a retrospective analysis of reports, in order to
improve the performance/quality of their actions, preventing
dangerous situations for the patient.

Table 1 An extract of rules used by the TraumaTracker system in [7] for generating alerts to be notified to the Trauma Leader and its team. Rule
#1: The Early Coagulation Support prescribes the administration of both fibrinogen and tranexamic acid in the case of blood transfusion during a
trauma; Rule #6: In the case of fracture exposition Antibiotic Prophylaxis should be performed as soon as possible

Rule Condition Alert message

1 Zero Negative Blood administered at time t but at time t + 5min

not administered fibrinogen and tranexamic acid.
“Administer Fibrinogen and Tranexamic Acid” for 10 secs

6 If there is a fracture, when exiting from the Shock Room without
having started the antibiotic prophylaxis

Message: “Activate Antibiotic Prophylaxis?”
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Fig. 2 Integration model

New system

The goal is to design a flexible PMDA that, interacting
with a cognitive service, adapts alerts to the specific patient
history and context. Accordingly, the set of agent’s beliefs,
and possibly plans, is updated real-time during the process
of trauma resuscitation.

The integrated model is an example of the first possible
architecture, depicted by case (a) in Fig. 1. It is based on
the continuous interaction between the Trauma Assistant
Agent and a service – referenced in the following as
Trauma Cognitive Service – installed and running in the
Hospital intranet, among existing services available to
support Trauma tracking and assistance (see Fig. 2). We
chose architecture (a) as we wanted to complement the
set of rigid and pre-determined alerting rules embedded
in the agent plans library according to expert knowledge,
with a more dynamic set of rules depending on the
possible unpredictable situations which could arise during
an ongoing trauma, whose detection is duty of the Trauma
Cognitive Service. We didn’t chose architecture (b) as we
wanted to keep clearly separated the rules stemming from
expert knowledge from those automatically crafted by the
Trauma Cognitive Service, so as to guarantee to the medical
staff maximum transparency, hence accountability, of what
is due to black-box AI, and what instead stems from human
knowledge. We didn’t chose architecture (e) as in our target
use case there is no automatic intervention, only suggestions
(in the form of alerts), hence there is always a human
being (the medical staff) acting as arbiter to choose the
most appropriate solution (for instance, whether to actually
consider the alert, or not)

During the management of a trauma, Trauma Assistant
Agent collects and tracks data related to all relevant events,
including the Trauma Leader inputs (by means of the tablet)
and information retrieved from services on the Intranet

that are part of the TraumaTracker ecosystem. Information
automatically retrieved are:

– the Location Service provides information about the
current location (room) of the patient—by exploiting a
beacon-based infrastructure;

– the Vital Signs Monitoring Service provides information
about the current vital signs of patient—fetched from the
existing Hospital Vital Sign infrastructure technology.1

All these data – those entered by the Trauma Leader and
those retrieved automatically – are collected in the belief
base of the agent, with a twofold purpose: (i) they are used to
support local reasoning of our PMDA, the Trauma Assistant
Agent, and the generation of alerts by means of the specific
plans, and (ii) they are sent to a service keeping track of the
information about an ongoing trauma, referred as Ongoing
Trauma service.

Then, the information about an ongoing trauma are asyn-
chronously accessed and monitored by the Trauma Cognitive
Service. Such a service implements a set of algorithms from
Machine Learning and Deep learning to analyse and reason
on the incoming data, that represent the current situation of
the patient, but also the temporal evolution of patient’s vital
signs and the track record of the actions taken by physi-
cians since the beginning of the trauma resuscitation. These
temporal data characterise well the clinical condition of the
patient and, if properly elaborated, may be used to make
predictions on the forthcoming clinical state, to identify the
most common actions taken in similar previous traumas, as
well as correspondent outcomes, and to identify guidelines
inspecting literature knowledge and clinical protocols.

The Trauma Cognitive Service has been trained with data
archived in the Trauma Store service, which is the

1Based on Draeger Infinite Gateway.
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Knowledge Base representing the shared data base of
all trauma. Reasoning eventually provides a set of new
feedbacks, e.g. further alerts or clinical indications, that are
sent to the Trauma Assistant Agent. The Trauma Assistant
Agent then integrates the alerts locally generated, according
to its own plans, with those generated by the Trauma
Cognitive Service. Accordingly, the proposed integration
follows architecture (a) in Fig. 1, as the cognitive service
adds beliefs and plans to the agent, even though no
supervision is enacted.

The case study of shock prediction

We evaluated the model presented in “Proposed architecture
in trauma resuscitation” for alerting physicians on the risk
of shock. Shock is a critical condition potentially life-
threatening. According to [10], it is defined as:

. . . state of cellular and tissue hypoxia due to reduced
oxygen delivery and/or increased oxygen consump-
tion or inadequate oxygen utilization. This most com-
monly occurs when there is circulatory failure mani-
fested as hypotension (ie, reduced tissue perfusion).

Knowing in advance the risk of shock is crucial to decide
the next actions to take such as, for instance, if patient
can be taken to imaging for Computed Tomography (CT).
Accordingly, we present a specific kind of Trauma Cognitive
Service, the TShockService (see Fig. 3).

PMDA receives as input a report with patient’s informa-
tion, trauma dynamic, and previous events occurring during
trauma resuscitation which has the form—extracted from a
simulated report:
2018-11-12

Patient Data

Gender M

Type Adult

Age 51

Trauma Information

Injurity Severity Score (ISS) Total ISS: 18

Report

Shock-Room

06:05 Patient enters in Shock-Room

06:15 Drug: Crystalloid 500ml

06:18 Drug: Fentanil 100mcg

06:18 Diagnistic Exams: Echofast

06:18 Diagnistic Exams: Chest x-Ray

06:18 Diagnistic Exams: ABG

CT

06:45 Diagnistic Exams: cerebral-cervical CT

Reports abound in useful information and fill a rich
database of traumas. Generally speaking, such a data
source can be useful for predicting complications, and for
suggesting physicians on the next action to do according to
what has been done in similar conditions.

The goal is to find which sequences of events are
informative for predicting shock. Since we are interested
in analysing time series data, we adopt Long short-term
memory (LSTM) [12] that are known to be the most
effective sequence models among the family of Recurrent
Neural Networks (RNNs) [13]. A key feature of this family
of neural networks is that they include feedback loops to
integrate information from previous steps with most recent
data. In [1] a RNN has been designed to process the course
of patients in a Pediatric Intensive Care Unit with the goal
of predicting patient mortality. In [39] LSTM are used to
early detect bloodstream infections in Intensive Care Unit
(ICU) from time series of 9 clinical parameters selected as
features.

LSTM settings

Wemake our PMDA interacting with a service where LSTM
algorithm has already been implemented.

We used a 3 layers LSTM: an input layer with 60
neurons, a hidden layer with 40 neurons – representing 2/3

Fig. 3 Shock Service interacting
with Trauma Assistant Agent
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of input neurons as for standard configurations – and an
output layer with 2 neurons.

Network’s input is a matrix X containing diverse
data related to clinical measures on patient and to the
trauma resuscitation process (rows) at different timestamp
(column). As depicted in Fig. 4, each column xi contains
the following features, that can be semantically grouped in
4 different categories:

Vital Signs —A set of 38 features measuring vital param-
eters (e.g., blood pressure, SpO2, EtCO2, hearth rate,
temperature), neurological examinations (e.g., GCS, eyes
deviation, pupils), airways. They are repeated at every
timestamp ti and refer to the most recent measurement.
They change once new values are available.

Diagnostic exams — A set of laboratory results: 7
features from Arterial-Blood Gas (ABG) test (e.g.,
pH, Lactates, Base Excess, glycemia) and 3 from
rotational thromboelastometry (ROTEM) (fibtem, extem
and hyperfibrinolysis). We did not include imaging since,
according to clinicians, it does not provide information
useful for shock prediction. As for vital signs, they have
the last value measured at each timestamp.

Procedures — 1 feature is dedicated to possibly indicate
the id of the specific medical intervention patient
received at time stamp ti , such as intubation, fibroscopy,
drainage.

Drugs — 11 features in the vector are drugs. We have
“one-shot” or “continuous-infusion” drugs. If one-shot, 2
components are filled, one for the drug id, the other for

Fig. 4 LSTM input matrix: each column represents network inputs at
each time step, while the x-axis displays the time steps

the dose. For continuous infusion we have the dose per
time unit. If none, the field has default value 0.

Network output represents the two classes shocked/not-
shocked. Since LSTM allows the user to specify how long
into the future predictions are for, our LSTM predicts the
probability that a patient will go into shock in the next 15
minutes. We choose this time-frame since it is the average
duration of imaging examinations, such as CT, where it
would be difficult for physicians to promptly operate.

LSTM training

We leveraged 573 reports acquired with TraumaTracker
system. Data have been automatically labeled in the two
classes: patients with a systolic blood pressure under 90
or treated with crystalloid, adrenaline-continuous-infusion,
noradrenaline-continuous-infusion, dopamine-continuous-
infusion, blood cells, colloids are labeled as shocked
patients. Among the 573 patients, 329 went into shock
during trauma resuscitation. The input matrix has the form
[x0, . . . , , xi, xt→shock] for shocked patients, and the form
[x0, . . . , xi, xT ], where xi is the feature vector at timestamp
i and 0-T are meant as the starting and ending time of the
resuscitation process. 90% of these reports has been used
during the training phase, where T ∈ [1, 37] and a mean
number of events equal to 4.18.

LSTM validation

Remaining 57 reports have been used in the validation
phase. They account for 578 events. Network prediction
accuracy has been computed as 0.8391. In particular, for
the Shocked class, we have precision 0.6787, recall 0.6141,
and F1 0.3586. In Table 2, we reported the confusion matrix
obtained during the validation phase. It reports TP, TN, FP
and FN once trying to predict next event of each of the 578
ones. Although the overall accuracy is not bad, from these
preliminary results we can observe that LSTM mainly fails
in predicting shock events. Recall and F1 can be improved
once more data will be collected.

Moreover, even if we expect to improve these results
with a bigger dataset, our goal here is not to show a case
study where LSTMs prove to be the best choice – among
all the deep learning algorithms –, rather to demonstrate
the feasibility of the integrated architecture and the

Table 2 Confusion matrix

No-shocked Shocked

No-shocked 459 28

Shocked 65 26
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different and complementary roles that the two components,
relying respectively on knowledge-based plans and on data
elaboration, have.

Conclusion

In this paper we presented a first example of integration
of PMDA and cognitive services, specifically devised for
healthcare applications. To discuss the proposed architec-
ture we made use of a real scenario in trauma resuscitation:
a PMDA interacts with a cognitive service that predicts the
risk of shock in the next 15 minutes, providing alerts to
physicians in case of high risk.

This is a first step that paves the way for a promising
research direction towards devising a novel BDI architec-
tures where agent’s reasoning is empowered with cognitive
computing. Such a model is crucial for designing effective
PMDA since supporting caregivers with a real time, com-
prehensive and flexible assistance can contribute in reducing
those medical errors that are still dangerously common.
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