
materials

Article

Homogenization and Equivalent Beam Model for
Fiber-Reinforced Tubular Profiles

Daniel Gnoli 1, Sajjad Babamohammadi 2 and Nicholas Fantuzzi 1,*
1 DICAM Department, University of Bologna, 40136 Bologna, Italy; daniel.gnoli@studio.unibo.it
2 Gruppo COSMI, 48122 Ravenna, Italy; sajjad.babamohammadi@gruppocosmi.com
* Correspondence: nicholas.fantuzzi@unibo.it; Tel.: +39-0512093494

Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020
����������
�������

Abstract: The current work presents a study on hollow cylinder composite beams, since hollow
cylinder cross-sections are one of the principal geometry in many engineering fields. In particular,
the present study considers the use of these profiles for scaffold design in offshore engineering.
Composite beams cannot be treated as isotropic ones due to couplings mainly present among traction,
torsion, bending and shear coefficients. This research aims to present a simple approach to study
composite beams as they behave like isotropic ones by removing most complexities related to
composite material design (e.g., avoid the use of 2D and 3D finite element modeling). The work
aims to obtain the stiffness matrix of the equivalent beam through an analytical approach which
is valid for most of the laminated composite configurations present in engineering applications.
The 3D Euler–Bernoulli beam theory is considered for obtaining the correspondent isotropic elastic
coefficients. The outcomes show that negligible errors occur for some equivalent composite
configurations by allowing designers to continue using commercial finite element codes that
implement the classical isotropic beam model.

Keywords: pultruded beams; effective stiffness matrix; FRP; hollow circular beams; finite
element method

1. Introduction

Hollow cylinders are one of the most common elements in offshore engineering, e.g., risers, pipes
and generally used for scaffolding systems. Among vast materials to produce these kinds of elements,
all of them have one mutual defect which is an important factor in an offshore environment; that is
corrosion. The most common material used in offshore structures is steel, which although it is stiff
and light (compared to reinforced concrete) but it can be easily corroded, which makes maintenance
activities very expensive. On the other hand, plastics, a non-environmentally friendly material, can be
in this context environmental-friendly. This is due to the fact that fewer materials are involved due to
less frequent maintenance, thus, less resources. Steel structural elements should be changed frequently
in an offshore environment to maintain offshore structural integrity. Steel is used also in onshore civil
applications when being lightweight is an important prerequisite at the design phase. One of the
plastics’ problem is the low stiffness and strength compared to steel. To overcome this problem fibers
can be added in order to make the so-called Fiber Reinforced Plastics (FRPs). FRPs can be produced by
different methods which leads to different stiffness and strength. However, composite materials do
not behave like well-known isotropic ones. Therefore over the years, several methodologies have been
utilized to analyze composite materials and structures simply and accurately.

Regarding hollow circular cross-sections, the stress distribution of anisotropic configurations has
been led by Lekhnitskii [1] which was a starting point for further investigations by other scientists and
engineers. Based on this, Jolicoer and Cardou [2] studied hollow cylinders under bending, tensile and

Materials 2020, 13, 2069; doi:10.3390/ma13092069 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-4651-2656
https://orcid.org/0000-0002-8406-4882
http://www.mdpi.com/1996-1944/13/9/2069?type=check_update&version=1
http://dx.doi.org/10.3390/ma13092069
http://www.mdpi.com/journal/materials


Materials 2020, 13, 2069 2 of 30

torsions. The hollow cylinders behavior under hygrothermal and mechanical loads was investigated
by Kollar et al. [3,4]. They followed displacement-based approach in their works, as well as Bhaskar
and Varadan [5], Xia et al. [6,7], Calhoglu et al. [8] and Bakian et al. [9]. Verijenko et al. [10] studied
the behavior of laminated cylinder under internal and external pressures. Roque and Ferreira [11]
studied plates and shell deformation by means of Reddy’s theory. Salahifar and Mohareb [12] studied
shell cylinders under harmonic forces. Laminated tubes were also considered by Tarn et al. [13] to
present a state space approach to torsion, extension, bending, shearing and pressure. Bai et al. [14]
investigated the buckling behavior of thermoplastic pipes under combined bending and tension loads.
Derisi et al. [15] and Shadmehri et al. [16] studied the composite tubes under bending. Effect of
pressure, shear and torsion on anisotropic materials was analyzed by Ting [17,18]. Dynamic axial
compression on thin wall circular tubes was investigated by Uchikawa et al. [19]. Non-classical effect
on hollow cylinders was studied by Silvestre [20] which led us to present a formula on generalized
beam theory. Kardomateas [21] investigated orthotropic shells under internal and external pressure.
Wang et al. [22] presented a study on compressive behaviors of FRP tubular beams. In addition, other
works [23–27] have been presented on the investigation of different laminated composites subjected to
several loadings. Different investigations have been done on multi-layered hollow cylinders [28,29].
Khalili et al. [30] analyzed the dynamic behavior of multilayered composite plates. Experimental
data and laboratory tests were provided by Ascione et al. [31], Boscato and Russo [32], Philippidis
and Vassilopoulos [33] and Quadrino et al. [34] to analyze the behavior of composite laminates.
Ascione et al. [31] presented a bearing design formula, Boscato and Russo [32] presented dynamic
parameters, Philippidis and Vassilopoulos [33] presented the effect of off-axis loading o fatigue and
static behavior, whereas Quadrino et al. [34] investigated the local behavior of commercial I-shaped
tubes. Furthermore, Madenci et al. [35] used both experimental and theoretical data to investigate
the effect of flexure and Xin et al. [36] in-plane compression and shear on GFRPs. Experimental
studies also have been done by Mayookh et al. [37] on the flexural creep of unidirectional bars and by
Zhang et al. [38] on correlation between mechanical properties of FRPs. A homogeneous approach was
considered by Sun and Li [39] to investigate the load-deformation of thick laminate and Sun et al. [40]
to study the stress analysis of hollow cylinders. Other current applications of FRP tubular profiles
have been presented in for retaining walls [41], column jacketing [42] and reinforcement of concrete
slabs [43].

Homogenization is a method to investigate the macroscopic behavior of a material by considering
a replacement of that material to an equivalent homogeneous one [44–46]. Thick hollow beams were
investigated by Kim and White [47]. In addition, Yildiz and Sarikanat [48] used finite element analysis
to investigate the material properties of multilayered hollow composites; whereas, Ferreira [49] used
global meshless approximation to analyze them. Yazdani Sarvestani et al. [50] investigated the thick
orthotropic cantilever under transverse loading and the effect of shear on stress distributions of thick
composites [51]. Theory on governing equations of anisotropic thin-walled members was presented by
Berdichevski et al. [52]. Kollar and Pluzsik [53] studied thin-walled composite beams and presented a
theory to calculate the stiffness matrix of closed sections. Jung and Lee [54] investigated thin-walled
I-beam composites. Lateral buckling of thin-walled composites was investigated by Lee [55]. Dynamic
response of FRPs have been investigated by Boscato [56]. Corotational method was used by de
Miranda et al. [57] and Ruggerini et al. [58] to investigate post-buckling and non-linear GBT buckling
analysis, respectively.

Lately, Babamohammadi et al. [59] presented research based on a homogenization method of
composite beams which lead to a simple design procedure of frame structures made of FRP beams. The
present research develops further and expands such previous work by including an in-depth analysis
of the mechanical behavior of hollow composite beams with several standards and not-standard
lamination schemes as well as critical discussion and remarks on possible applications of the present
methodology for practical engineering purposes.
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2. Motivation

The mechanical behavior of isotropic beams is well-known in engineering practices and it is
used for designing any kind of frame structure. However, if the beam is made up of fiber-reinforced
composites its behavior cannot be attributed to one of the isotropic materials.

Stiffness matrices of hollow cylindrical composite structures can be determined by employing a
finite element program. In this work, ABAQUS software [60] has been utilized for hollow profiles of
4 mm thickness which is the standard dimension of scaffolding beam components. Several stacking
sequences are analyzed with different arrangements of the reinforcing fibers to investigate different
coupling effects given by the composite configuration in comparison with the classical isotropic model.

The stiffness matrix of a two-node Euler–Bernoulli isotropic beam with compact cross-section,
in the 3D space, has six degrees of freedom per node as 12× 12 matrix [K] = ki,j for i, j = 1, 2, . . . , 12.
However, it is not necessary to define 144 parameters. If the cross-section is compact and with a
double-symmetry (as in the present case) it is sufficient to compute six indipendent parameters. Below
definitions of the stiffness matrix components are given.

[K] =



k1,1 0 0 0 k1,5 0 k1,7 0 0 0 k1,11 0
k2,2 0 k2,4 0 0 0 k2,8 0 k2,10 0 0

k3,3 0 0 0 0 0 k3,9 0 0 0
k4,4 0 0 0 k4,8 0 k4,10 0 0

k5,5 0 k5,7 0 0 0 k5,11 0
k6,6 0 0 0 0 0 k6,12

k7,7 0 0 0 k7,11 0
k8,8 0 k8,10 0 0

k9,9 0 0 0
k10,10 0 0

k11,11 0
sym k12,12



(1)

that can be written in compact matrix form as

[K] =


[k1] [k2] −[k1] [k2]

[k3] [k2] [k4]

[k1] −[k2]

sym [k3]

 (2)

where

[k1] =

 12EI
L3 0 0
0 12EI

L3 0
0 0 EA

L

 , [k2] =

 0 6EI
L2 0

− 6EI
L2 0 0

0 0 0


[k3] =

 4EI
L 0 0
0 4EI

L 0
0 0 GJ

L

 , [k4] =

 2EI
L 0 0
0 2EI

L 0
0 0 −GJ

L

 .

(3)

E, G are classical elastic properties and A, I, L are cross-section area, the moment of inertia and
length of the beam. Definitions for the sitffness components ki,j for i, j = 1, 2, . . . , 12 in Equation (1) are
straightforwardly given by comparison with definitions in Equation (3). It is clear that for isotropic
beams only six parameters are sufficient to define the whole stiffness matrix of the beam.

As far as structures made of composite materials are concerned, there are still no relations
available that define the stiffness matrix within a specific theoretical framework. However, it can
be demonstrated that orthotropic beams (with fibers parallel to the beam’s principal axis) have the
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same nonzero elements in the stiffness matrix as the equivalent isotropic one. Thus, if homogenized
mechanical properties can be carried out for composites hollow beams the approach for isotropic beams
can be transferred to composite configurations. In this regard, a study was carried out by Reddy [61]
wherein the bending, vibration and buckling plate problems of laminated composite plates were
compared by increasing the number of plies in cross- and angle-ply configurations. Reddy showed that
by increasing number of laminae in cross-ply orientation, the mechanical behavior of the plate tends to
be equivalent to the same plate in orthotropic configuration (e.g., single-ply with orientation 0). When
angle-ply plates are studied, the mechanical characteristic is asymptotic to behavior between (45–45)
and (45–45) s and does not change when the number of layers is large.

The latter has been generalized to hollow circular beams in order to see if such asymptotic
behavior could be used to simply model these beams as equivalent isotropic or orthotropic ones.

3. Theoretical Background

Taking the studies of Reddy [61] on laminated composite plates as a reference, in the following,
sections cross- and angle-ply laminated hollow circular beams are investigated. The geometric and
mechanical properties considered are listed in Table 1. Note that geometric properties selected are
the ones typical of beams used in scaffolding systems. Optimization of cross-section properties is
not analyzed because out of the scope of the present work. Mechanical properties taken here are
typical engineering constants of Carbon FRP (CFRP). This study is not limited to this geometry
and/or mechanical properties but aims to present a generalized framework that is able to work in
every context.

Table 1. Geometric and mechanical properties.

Geometric Mechanical

Average radius 27 mm E1 145,849.69 MPa
Length 1000 mm E2 11,030 MPa
Laminate thickness 4 mm (Fixed) ν12 0.28
Layer thickness Variable G12 6209.89 MPa
Area 678.58 mm2 G13 6209.89 MPa
Polar inertia 497,400 mm4 G23 3860.5 MPa
Inertia 248,774.1516 mm4

The stiffness matrix of the composite beam has been computed using ABAQUS as described in [59]
using a 3D shell model and laminated shell elements of first-order (Mindlin theory). The cylindrical
geometry is restrained at the two ends through rigid links which simulate the two end nodes of the
equivalent beam. Stiffness matrix components (following the structure given by Equation (2)) are
determined by setting alternatively one unitary displacement and by retrieving the corresponding
boundary forces. For each unitary displacement, a stiffness matrix row is carried out. Since the
equivalent beam has two nodes with 6 degrees of freedom each, the stiffness matrix result to be
12× 12. In addition, equivalent elastic properties via an analytical cross-section homogenization by
Sun et al. [40] is also considered. The present methodology is based on the ensemble of the latter.
Interested readers are asked to refer to the cited works for further details on such procedures that are
not reported below for the sake of conciseness.

3.1. Cross-Ply Laminates

A typical circular hollow profile with cross-ply configuration is depicted in Figure 1. The stiffness
matrix of composite beams with a different number of plies is presented below with geometric and
mechanical properties listed in Table 1. Configurations are alternatively symmetric and antisymmetric
(with the only exception of the first two which are (0) and (90)). All the nonzero stiffness matrix
components are compared with the same given by an orthotropic configuration (0). Figure 2a–e
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display such comparison and a summary in terms of relative error is depicted in Figure 2f where the
error tends to be −40% by increasing the number of plies.

Clearly, the global trend of all stiffness constants deviates from the initial orthotropic behavior
and becomes stable when 3 or 4 layers are considered. Thus, it can be established that the study
of Reddy [61] for cross-ply plates does not apply to hollow circular cylinders but it is closer to the
behavior of the angle-ply plates. In detail, it can be noted that k1,1, k3,3, k1,5 and k4,4, decrease until
reaching an almost constant value. Specifically, symmetrical configurations reach this value from
above, whereas the others from the bottom. The variation in torsional stiffness k6,6 is negligible since it
does not deviate from the initial configuration, thus torsional stiffness does not improve by introducing
more cross-ply layers. In conclusion, it is possible to confirm that by increasing the number of layers in
a cross-ply lamination scheme, keeping a constant thickness, about 40% loss of stiffness is generated,
while the torsional stiffness remains almost constant.

Figure 1. Cross-ply laminates.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. Stiffness trends with respect to the number of plies (a–e) and relative error with respect to an
orthotropic configuration (f).

The validity of the finite element model is tested by comparing it with the results of the analytical
approach by Sun et al. [40] which provides homogenized modulus of elasticity Ez and tangential
modulus Gθz for a composite cross-section in planar strain. For instance, by purging the stiffnesses k3,3

(axial stiffness) and k6,6 (torsional stiffness) computed with ABAQUS by L/A and L/J an equivalent
elastic and shear moduli can be retrieved. It is recalled that k3,3 = EA/L and k6,6 = GJ/L for isotropic
Euler–Bernoulli beam with compact cross-section as shown in Equation (3). The values obtained by
both methods are shown in Figure 3 where they almost coincide. This demonstrates that ABAQUS
and Sun et al. [40] method give the same results for the axial and torsional stiffnesses k3,3 and k6,6.
Even though the two models have a different mathematical background they provide the same result
because axial and torsional stiffnesses do not depend on beam slenderness as shear and bending
behaviors do. ABAQUS model is introduced because Sun et al. [40] method does not carry out shear
stiffness and it is not able to predict accurately bending behavior of composite beams [59]. Therefore
one of the aims of the present work is to reply to this problem.

(a) (b)

Figure 3. Equivalent moduli using ABAQUS and Sun et al. [40] approach: (a) normal Ez; (b) shear Gθz.

For the sake of conciseness, variation with respect to different mechanical or geometric properties
is not reported. However, it has been observed by the authors that by varying the mechanical properties
or geometric ratios (e.g., E1, A and L) the results presented below are not affected (more details can be



Materials 2020, 13, 2069 7 of 30

found in [62]). Thus, the data given represent a general FRP hollow beam and this study can be easily
adapted to different materials or geometry.

3.2. Angle-Ply Laminates

Angle-ply lamination (±45/ . . . ) is used for structures that have to resist mainly against torsion
or internal pressure. A typical configuration is depicted in Figure 4. The same geometric properties of
the previous case are considered in the following and the number of plies is increased starting from
the single-ply (45). Trends of the stiffness values for each configuration are assessed. Considering a
constant thickness of 4 mm, Figure 5 shows the plots of the stiffness matrix coefficients and the relative
error with respect to the scheme of initial lamination (45).

By examining the graphs obtained (Figure 5) it is possible to remark that compared to the cross-ply
configuration, the stiffnesses k1,1, k1,5 and k4,4, tend to increase to a constant value regardless of the
lamination scheme, whether symmetrical or not. The axial stiffness k3,3 approximately keeps a constant
value. For the torsional stiffness k6,6, a substantial increase is noted. Since the angle of the reinforcing
fibers differs from the longitudinal (0) and transverse (90) directions, coupling stiffnesses appear
due to shear-bending (k1,4) and axial-torsional (k3,6). This agrees with Reddy’s studies on angle-ply
reinforced plates: the structural strength has an asymptotic behavior by increasing the number of
plies in the stacking sequence. In conclusion, with reference to Figure 5h it is possible to observe a
variation of about 40% of the stiffness values k1,1, k1,5 and k4,4 analogous to the previous cross-ply case,
whereas k3,3 has approximately a constant trend, practically is characterized by zero relative error. It is
remarked that coupling stiffnesses k1,4 and k3,6 tend to zero by increasing the number of plies (100% of
relative error with respect to (45) configuration). Thus, for these stacking sequences, the composite
tends to have an orthotropic behavior with very small couplings.

Figure 4. Angle-ply laminates.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 5. Stiffness trends with respect to number of plies (a–g) and relative error with respect to
orthotropic configuration (h).

Analogously to the previous section a comparison between ABAQUS and an analytical
formulation [40] is performed for angle-ply configurations. Stiffness terms k3,3 and k6,6 are carried out
via ABAQUS and purged by multiplication of L/A and L/J, respectively in order to derive Ez and
Gθz. Such comparison is represented in Figure 6. It can be observed that both methods give the same
results in terms of k3,3 and k6,6 as in the cross-ply case presented in the previous section.
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(a) (b)

Figure 6. Equivalent moduli using ABAQUS and Sun et al. [40] approach: (a) normal Ez; (b) shear Gθz.

In conclusion, the present ABAQUS model is able to approximate accurately the homogenized normal
Ez and shear Gθz moduli by considering axial k3,3 and torsional k6,6 stiffness components, respectively.

4. Beam Slenderness Effect

As aforementioned, shear and bending stiffness depend on beam slenderness and they are not
predicted accurately by Sun et al. [40] method. Therefore, the aim of the present section is to show such
behaviors for several laminates. The geometry of the cross-section is kept constant and beam length
is increased from 1 to 5 m. For cross-(0/90/ . . . ) and angle-ply (±45/ . . . ) laminations the number
of plies is increased as in the previous section. Moreover, quasi-isotropic configuration (0/±45/90)s

is taken into consideration as well as other particular stacking sequences taken from the literature.
Main stiffness components are represented in a dimensionless form with respect to the correspondent
stiffness component given by the Euler–Bernoulli theory. For instance shear stiffness k1,1 is multiplied
by L3/(12Ez I), bending stiffness k4,4 by L/(4Ez I), shear-bending stiffness k1,5 by L2/(6Ez I), axial
stiffness k3,3 by L/Ez A and torsional stiffness k6,6 by L/(Gθz J). In addition, the extra shear-bending
term k4,11 which is not classical is compared to its main stiffness contribution on the main diagonal
k4,4. The homogenized moduli Ez and Gθz are computed by inverting axial and torsional stiffnesses,
respectively, as shown in the previous section.

4.1. Cross-Ply Laminates

Results obtained are depicted in Figure 7 where, as expected, axial k3,3 and torsional k6,6 rigidity
do not depend on beam slenderness. In addition, as already expected no bending coupling is observed,
thus k4,11 = 0. Moreover, the Ez and Gθz values coincide with the ones given by Sun et al. [40]
formulation. On the contrary shear k1,1, bending k4,4 and shear-bending k1,5 moduli tend to follow
classical formulas (e.g., k1,1 = 12Ez I/L3, k4,4 = 4Ez I/L) only for large slenderness. In particular, there
is a more accelerated trend for symmetrical configurations.

It should be remarked that the calculation of the stiffness matrix by using classical formulas varies
with beam slenderness. This error leads to lower stiffness and consequently, it should be considered in
the design phase by the introduction of a correction factor. For symmetric lamination schemes and
with slenderness values L/h > 30–35 the error is less than 5%.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Stiffness coefficients (a) k1,1 L3

12Ez I , (b) k4,4 L
4Ez I , (c) k1,5 L2

6Ez I , (d) k3,3 L
Ez A , (e) k6,6 L

Gθz J and (f) k4,11/k4,4 as a
function of slenderness L/h for cross-ply laminates.

4.2. Angle-Ply Laminates

For the angle-ply configurations (±45/. . . ) the values compared between the stiffnesses generated
by ABAQUS and the Euler–Bernoulli theory for isotropic materials were depicted in Figure 8. For the
present configuration, as in the previous cross-ply one, the axial k3,3 and torsional k6,6 stiffness does
not depend on the slenderness and the equivalent stiffness carried out are close to the ones obtained
via Sun et al. [40] approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Stiffness coefficients (a) k1,1 L3

12Ez I , (b) k4,4 L
4Ez I , (c) k1,5 L2

6Ez I , (d) k3,3 L
Ez A , (e) k6,6 L

Gθz J and (f) k4,11/k4,4 as a
function of slenderness L/h for angle-ply laminates.

By considering shear and bending stiffnesses k1,1, k4,4 and k1,5 the difference between the (45)
laminate and the others can be easily noted. The single-ply configuration has approximately 30%
of error with respect to classical formulas. By increasing the number of plies, on the contrary, the
computed values are in agreement with the classical values if they were made of an equivalent isotropic
material where the average error is below 2%. Antisymmetric lamination schemes have better behavior
by excluding the scheme (±45) which shows a slightly higher stiffness (about 1%) than the reference
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ones. It is remarked that the angle-ply (±45/ . . . ) configuration has a very small variation with respect
to beam slenderness. On the contrary, a large variation was observed for the cross-ply cases.

Finally, the angle-ply configuration (±45/ . . . ) has an extra coupling between bending moments
(k4,11) that is not present in the cross-ply configurations. This coupling tends to decrease by increasing
the beam slenderness. Compared to the main bending stiffness k4,4, this is minimal and can be
considered negligible, except for the first lamination scheme (45) which has a difference of about 5%,
consequently, they can be neglected for design purposes. The scheme (45) is feasible but not used
in applications as it generates delamination and durability problems of the composite. Usually, the
laminations are composed of several crossed layers, it is therefore legitimate, given the proposed
results, to neglect the component k4,11 in practical applications.

4.3. Quasi-Isotropic Configuration

Quasi-isotropic laminates are made of three or more orthotropic plies of identical thickness and
material. The stack considers for each ply +θ a corresponding one with −θ over the middle surface
arranged with the same sequence order as depicted in Figure 9. In order to obtain an element with
good shear, bending, traction and torsion properties a quasi-isotropic configuration with a combination
of cross-(0/90/ . . . ) and angle-ply (±45/ . . . ) has been considered as (0/±45/90)s. The main feature
of this typology is that the coupling stiffnesses k1,4 and k3,6 are zero. These laminates are widely used
in practical applications, because they offer homogeneous stiffness and strength in all directions, and
also have a good performance against crack propagation.

Figure 9. Quasi-isotropic laminate.

Stiffness components are carried out for various beam lengths considering the same geometric
section and mechanical properties of the previous stacking sequences. The variations of the stiffness
values with respect to the classical stiffnesses calculated as if an equivalent isotropic material with
E = Ez is considered. Ez is calculated with Sun’s approach or by inverting the main component of
axial stiffness k3,3 given by the stiffness matrix by the ABAQUS model.

It is also observed that this configuration has values close to the calculated stiffness as if it was
a homogenized isotropic material. As a matter of fact, stiffnesses k1,1, k4,4 and k1,5 are all below 3%
compared to the reference values. Furthermore, as the slenderness increases, this error decreases until
it reaches a constant value of less than 1%.

The homogenized elastic Ez and shear Gθz moduli are obtained from axial k3,3 and torsional k6,6

stiffnesses by multiplying them by A/L and J/L, respectively. Thus, the ratios between k3,3 and k6,6

and the same calculated via Sun et al. [40] procedure are the same.
It has been shown also for the quasi-isotropic configuration (0/±45/90)s, that stiffness ratios are

almost constant with respect to the beam slenderness. In the current configuration, the stiffness due
to the coupling between the moments (k4,11) tends to increase until it reaches a constant value as the
element’s slenderness increases; the values generated with respect to the bending stiffness (k4,4) are,
however, minimal and negligible (see Figure 10).
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Figure 10. Stiffness coefficients k1,1 L3

12Ez I , k4,4 L
4Ez I , k1,5 L2

6Ez I , k3,3 L
Ez A , k6,6 L

Gθz J and k4,11/k4,4 as a function of slenderness
L/h for quasi-isotropic laminate.

4.4. Bouligand Laminates

In this section, analyses are carried out by using bio-inspired Bouligand lay-ups of 5◦ at each
subsequent layer as presented by Mencattelli and Pinho [63] on laminated plates with ultra-thin
thickness. It has been shown that by reducing the variation of the angles between the layers (e.g., the
pitch ∆θ) to the values that imitate the natural microstructure, it is possible to obtain at the same time
a strong increase in the energy dissipated and in the maximum load-bearing capacity.

Bouligand unit considers rotation of 180◦ inside each unit, however, 1/4 of a Bouligand unit has
been considered here as the main unit. Thus, the following configurations and nomenclature will
be used.

• L.1 ≡ (0/5/ . . . /40/45)s

• L.2 ≡ (0/5/ . . . /85/90)s

• L.3 ≡ (0/5/ . . . /85/90/− 85/ . . . /− 5/0)4

• L.4 ≡ (0/5/ . . . /85/90/− 85/ . . . /− 5/0)2s

A graphical representation of the four sequences considered are given in Figure 11. L.1 and L.2
are 1/4 and 1/2 of a Bouligand unit, respectively. L.3 and L.4 are an antisymmetric and a symmetry
scheme inspired by Mencattelli and Pinho [63], respectively.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. (a) L.1 laminate, (b) L.2 laminate, (c) L.3 laminate and (d) L.4 laminate.

By keeping the same geometric section and mechanical properties of the previous cases, the
following analyses are carried out on element lengths from 1 to 5 m. In order to correctly isolate the
effect of the pitch angle of the reinforcement fibers ∆θ, Mencattelli and Pinho [63] have decided to
eliminate the couplings in the stiffness matrix by creating symmetric laminates. Therefore, L.4 adopts
a symmetrical lamination scheme consisting of 2 symmetric modules (each module is defined by a
complete set of the fiber angles, or 360◦) with 146 layers in total:

(0/5/ . . . /85/90/− 85/ . . . /− 5/0/5/ . . . /85/90/− 85/ . . . /− 5/0)s =

= (0/5/ . . . /85/90/− 85/ . . . /− 5/0)2s
(4)

Stiffness variation as a function of the slenderness with respect to the classical stiffness relations
are depicted in Figure 12. By using a symmetrical lamination scheme, in addition to the cancellation
of the coupling stiffnesses, the variation between the stiffnesses k1,1, k4,4, k1,5, k3,3 and k6,6 is further
reduced with respect to the classical definitions. Likewise in this case, the relationship between the
coupling stiffness k4,11 and the bending stiffness k4,4 is negligible.

By comparing the obtained results, it is shown that the substantial differences between the selected
lamination schemes are caused by the coupling stiffnesses k1,4, k3,6 and k4,11. These coupling terms have
higher values for laminates with few layers, even if symmetrical, and will tend to fade out by increasing
the number of layers, thus tend to a balanced configuration. Although the first two configurations
(L.1, L.2) are symmetrical, fairly pronounced coupling stiffnesses are generated. The validation of this
behavior has been done through the Sun [40] model according to which coupling values are generated
which are also different from zero and high between tension and torsion. Regarding Figure 13, it
is possible to note that the laminate L.4 studied by Mencattelli and Pinho [63] has average axial,
shear and bending stiffness values, high torsional and zero coupling stiffness values with respect to
the others. For this reason, L.4 has been selected for the following comparisons with respect to the
others presented.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Stiffness coefficients as a function of slenderness for L.1, L.2, L.3 and L.4 (a) k1,1 L3

12Ez I , (b) k4,4 L
4Ez I ,

(c) k1,5 L2

6Ez I , (d) k3,3 L
Ez A , (e) k6,6 L

Gθz J and stiffness ratio (f) k4,11/k4,4 for Bouligand laminates.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Cont.



Materials 2020, 13, 2069 17 of 30

(g) (h)

Figure 13. Stiffness components (a–h) of the considered Bouligand laminates for L = 1 m.

5. Comparison

Following the analyses carried out, an overall view is given on the behavior of the various
lamination schemes, evaluating the variation of the stiffnesses of the laminates with respect to the
orthotropic scheme (0) and the coupling stiffnesses based on their relevance with respect to the
correspondent main stiffness on the main diagonal of the stiffness matrix.

Figure 14 shows the comparison for the main stiffnesses involved in the present study with respect
to the reference (0) configuration. Note that angle-ply configurations have the highest stiffnesses
compared to the others, but they also have shear-bending coupling k1,4, k4,11 6= 0 and traction-torsion
coupling k3,6 6= 0. Whereas, quasi-isotropic and L.4 configurations show negligible couplings and
lower stiffness values analogous to angle-ply configurations. From the obtained results the following
comments arise:

• All the stiffnesses tends to have a constant value by increasing beam slenderness.
• The orthotropic scheme (0) is very efficient if subjected to shear, axial and bending actions, but

not for torsional ones. However, it has a significant variation while increasing slenderness.
Furthermore, it suffers from delamination, because the fibers being all parallel, tend to form a
preferential fracture plane.

• The angle-ply scheme (±45)5 works conversely with respect to the orthotropic configuration (0).
It has high torsional stiffness, but low axial, shear and bending ones. For the present configuration,
the shear-bending coupling is negligible. It is possible to use Sun et al. [40] formulae to
homogenize equivalent properties because its properties do not depend on the beam slenderness.

• The angle-ply scheme (±30)5 represents an intermediate solution between the orthotropic (0)
and the angle-ply (±45)5 configurations. It has a lower axial, shear and bending stiffness of
50–60% approximately and torsional stiffness of 80% with respect to (0). The present stack, as
well as (±45)5, has very low shear-bending coupling stiffness values which can be neglected and
invariability of stiffness constants with respect to slenderness.

• The quasi-isotropic laminate (0/±45/90)s has stiffness values similar to the laminate (±30)5,
except for the torsional stiffness which decreases by approximately 30%. Being a quasi-isotropic
laminate, it has a negligible shear-bending coupling stiffness. In this case, the constants of the
stiffness matrix vary slightly with increasing slenderness.

• The L.4 laminate, studied by Mencattelli and Pinho [63], with the only exception of the orthotropic
configuration (0), presents slightly higher values for axial, shear and bending stiffnesses, but
lower values for torsional stiffness with respect to the others. Coupling effects are minimal, and a
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very small dependency on the beam slenderness for the main stiffness components k1,1, k4,4, k1,5,
k3,3 and k6,6 is observed.

In conclusion, the best axial, shear and bending properties are achieved by the configuration (0)
however such selection has very small torsional stiffness and low durability and reliability. Therefore,
quasi-isotropic and L.4 configurations are suggested for having good mechanical performances
in almost all conditions. These configurations do not present coupling terms so they can be
easily characterized.

(a) (b)

(c) (d)

(e) (f)

Figure 14. Cont.
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(g) (h)

Figure 14. Comparison among stiffness components (a–h) for angle-ply, quasi-isotropic and L.4
laminates with L = 1 m respect to the orthotropic scheme (0).

6. Laminates with Highly Positive and Negative Poisson Values

In the previous section, the most common composite materials such as fiberglass/epoxy or
graphite/epoxy have been considered. Such composites have a stiffness ratio E1/E2 = 8–16.
In particular, the material considered in the previous analyses is characterized by E1/E2 ≈ 13
(see Table 1). However, there is another class of highly orthotropic composite materials which are
defined by E1/E2 = 5000–50, 000 while using RP6410 or RP6442 as a polyurethane matrix, depending
on the volume fraction of the fibers. Mechanical properties of these two constituents are listed in
Table 2. The equivalent orthotropic coefficients for the present laminates are given in Table 3 which
shows a stiffness ratio of approximately 42,800 and 10,530 respectively. Peculiarities and features of
these laminates applied to flat plates have been described by Peel [64].

Table 2. Mechanical properties of laminates with high stiffness ratio [64].

Materials E [MPa] ε [%]

RP6410 1.65 3.30
RP6442 7.00 5.25
Graphite 276,000 -

Table 3. Mechanical properties of: Graphite/RP6410 and Graphite/RP6442 [64].

E1 [MPa] E2 [MPa] ν12 = ν13 ν23 G12 = G13 = G23 [MPa]

Graphite/RP6410 120,000 2.85 0.41 0.502 0.949
Graphite/RP6442 126,600 12.02 0.41 0.504 4

This high stiffness ratio allows having a laminate with a high positive or negative engineering
Poisson ratio of νxy. A high Poisson is given by a balanced lamination and a negative Poisson is given
by a symmetrical scheme. According to the studies by Peel [64], unbalanced lamination schemes [θ/α]s
have very small (highly negative) Poisson ratios. In particular, the laminate (15/5)s (represented in
Figure 15) has a Poisson ratio of about−34 for the Graphite/RP6410 material. Its engineering constants
are listed in Table 4 alongside with those defined by the CFRP material.
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Table 4. Engineering constants for (15/5)s using material from Table 2 and CFRP using material from
Table 1.

Graphite/RP6410 CFRP

Ex 4498.23 MPa Ex 94,509.78 MPa
Ey 3.02 MPa Ey 11,234.40 MPa
νxy −34.04 νxy 0.342
νyx −0.023 νyx 0.041
Gxy 23.33 MPa Gxy 7395.17 MPa

Figure 15. The (15/5)s laminate.

The stiffness coefficients are carried out below for the materials listed in Table 4. The comparison
between the two types of material is addressed on the same tubular profile of the previous cases. The
coefficients of the stiffness matrix are evaluated and their variations with respect to beam slenderness
are show in Figure 16. Both configurations have a small variation with respect to beam slenderness.
The main difference is observed in the values of the stiffness coefficients k1,1, k4,4 and k1,5 that compared
to the same stiffnesses calculated by Euler–Bernoulli theory using homogenization a difference of
approximately 90% in the case of Graphite/RP6410 and approximately 30% in the case of CFRP occurs.
Regarding the coupling coefficients, both materials have significant values due to the unbalanced
lamination scheme. In particular, Graphite/RP6410 will have lower coupling values due to the poor
resistance in the transverse direction of the material, but by observing Figure 16f, a higher effect than
the k4,11 given by CFRP.

In the following, four configurations investigated numerically and experimentally by Peel [64]
are used for studying the stiffness of tubular profiles. Stiffness ratios and equivalent Poisson ratios
are listed in Table 5. The sequences are (152/302)s with negative Poisson ratio (NP1 and NP2) and
(±15/±30)s with a high Poisson ratio (HP1 and HP2). The enumeration 1 and 2 identifies the material
used Graphite/RP6410 and Graphite/RP6442, respectively. The same nomenclature is used in Figure 17.
The analysis was carried out by dividing the combinations according to the lamination schemes and
comparing the two materials.

The laminate (152/302)s (NP1 and NP2) and (±15/±30)s (HP1 and HP2) are presented in
Figure 18. The results for (152/302)s obtained were expected also considering the same given in
Figure 16 where a smaller Poisson ratio was considered. The error given for the shear and bending
behavior is approximately 98% on the contrary traction and torsion work well as in all the previous
cases. Regarding the influence of the coupling coefficient k4,11 with respect to the bending stiffness k4,4,
both materials behave in the same way, that is, tends to decrease by increasing beam slenderness. Such
ratio goes from a value of about 40% (L/h = 12.24) to 10% (L/h = 86.21) so it cannot be neglected.

A further comparison can be made with the previous lamination scheme (15/5)s presented in
the Figure 16, which, observing the Graphite/RP6410, is characterized by a minor error towards the
calculation of the stiffness coefficients with the Euler–Bernoulli formulation, but by a much greater
influence of the coupling stiffness k4,11, by about double.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Stiffness coefficients as a function of slenderness for (15/5)s (a–e) and stiffness ratio
k4,11/k4,4 (f).

Table 5. Stacking sequencies presented by Peel [64] stiffness and equivalent Poisson ratios.

Laminates Material E1/E2 νxy

NP1 (152/302)s Graphite/RP6410 42,800 −6.38
HP1 (±15/± 30)s Graphite/RP6410 42,800 3.73
NP2 (152/302)s Graphite/RP6442 10,530 −6.15
HP2 (±15/± 30)s Graphite/RP6442 10,530 3.72



Materials 2020, 13, 2069 22 of 30

(a) (b)

Figure 17. (a) The (152/302)s laminate, (b) (±15/±30)s laminate.

The laminate (±15/± 30)s (HP1 and HP2) is made up of highly orthotropic composite materials
and a balanced lamination scheme. Assessment is depicted in the Figure 18. Compared to the previous
laminate with a negative Poisson ratio, the balanced laminates generate stiffness values that are close
to those obtained with the Euler–Bernoulli formulation for an isotropic material. This is expected by
any balanced laminate, even in the case of highly orthotropic composite materials. The values of the
coupling stiffnesses are negligible as a matter of fact k4,11/k4,4 is almost zero.

(a) (b)

(c) (d)

Figure 18. Cont.



Materials 2020, 13, 2069 23 of 30

(e) (f)

Figure 18. Stiffness coefficients as a function of slenderness for (152/302)s and (±15/± 30)s (a–e) and
stiffness ratio k4,11/k4,4 (f).

7. Validity and Limitations

After investigating several lamination schemes with standard and high stiffness ratios (E1/E2)
according to beam slenderness and by comparing it to an equivalent homogenized isotropic
Euler–Bernoulli beam model, the following remarks can be reported:

• cross-ply laminates, except laminate (90) have lower values, approximately 10% for L = 1 m and
highly variable as a function of slenderness with respect to the equivalent orthotropic model;

• (45) scheme has lower values than the reference of about 30% and invariant with respect to beam
slenderness;

• (30) and (±30/30) scheme have lower values than the reference of about 55% and 5%, respectively,
and they are invariant with respect to beam slenderness;

• unbalanced laminates with a fiber pitch angle of ∆θ = 5◦, L.1 and L.2 have values lower than the
reference of approximately 30% and 25%, respectively;

• (15/5)s scheme has lower values than the reference of approximately 30% for the CFRP
configuration and 90% for the Graphite/RP6410;

• (152/302)s scheme has values very large errors of about 100% and it is invariant with respect to
beam slenderness.

If cross-ply laminates are not considered, it is possible to observe that the calculation of the
coefficients of the stiffness matrix is possible by using isotropic definitions of the Euler–Bernoulli
theory (Equation (3) for balanced laminates and for angle-ply (±α/ . . . ) ones. It is remarked that
angle-ply must have more than one ply in the stack, because as they increase the number of plies they
tend to behave approximately as balanced with negligible coupling stiffness values.

The problem arises when cross-ply are also considered, because for low slenderness values,
although balanced, they have stiffness values that deviate of about 10% from those defined from
Euler–Bernoulli’s theory.

In order to analyze the couplings which might occur in the present laminates, the ABAQUS shell
model is considered as a reference. Composite plate/shell Mindlin theory considers at the constitutive
level the matrices [A], [B] and [D] which represent the membrane, the bending-membrane coupling,
and the bending stiffness matrices, respectively.
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It is well-known that the membrane-bending stiffness matrix ([B]) is zero for symmetric laminates
and it is not zero for antisymmetric cross-ply (in particular B11 = −B22 applies) and angle-ply (in
particular B16 6= B26 6= 0 applies) configurations. Since both symmetric and antisymmetric schemes
present errors with respect to the reference configuration, it is clear that such behavior is not due to only
the membrane-bending coupling matrix [B]. In other words, balanced laminates have A1,6 = A2,6 = 0
as well as cross-ply, however the latter presents larger errors in the definitions of k1,1, k4,4 and k1,5 with
respect to the same computed with balanced laminates.

A condition that allows using the analytical model of Sun et al. [40] and subsequently calculate
the stiffness of the various beams via the Euler–Bernoulli theory for isotropic materials is sought.
The authors investigated the following stiffness ratios A1,6/A6,6 A2,6/A6,6, A1,6/A1,1, A1,6/A2,2,
D1,6/D6,6,D2,6/D6,6, D1,6/D1,1, D1,6/D2,2. Differences among laminates and their configurations
are mainly given by the presence of normal-shear couplings Aij and Dij when ij = 16 or 26. In
particular, it is relevant to analyze the ratio between the latter with the main stiffness terms when
ij = 11, 22 or 66. For the sake of conciseness, not all various combinations are reported, because only a
few results are important to the present problem. Among the aforementioned list of ratios the only
ones that result to be relevant were A1,6/A6,6 and A2,6/A6,6 (depicted in Figure 19). Such ratios are
considered when the trend was similar to the correspondent error in the stiffness matrix components.
To this aim, the variation of the error for k1,1 has been taken as a reference for a beam of L = 1 m and
reported in Figure 20. Extensive details and plots regarding such ratios can be found in [62].

Among the ratios considered, leaving aside the cross-ply laminates, the one that has a trend
similar to the error of k1,1 is A1,6/A6,6. This is why a deeper investigation is provided to determine the
validity of the stiffness calculation k1,1 with the Euler–Bernoulli theory. Therefore, angle-ply laminates
with lamination scheme of the type (α/− α/α) with the orientation of the laminae α defined with
a difference of 2.5◦ between plies are considered. In this way, it would be possible to determine
the minimum orientation angle of the laminates for which the calculation of the stiffness with the
Euler–Bernoulli formulas for an isotropic material is correct. The analysis was carried out by analyzing
the stiffness coefficients Qij which represent the variables of Aij since the thickness of each ply is
assumed constant.

A1,6

A6,6
=

∑3
k=1

∫ ζk+1
ζk

Q(k)
1,6 dζ

∑3
k=1

∫ ζk+1
ζk

Q(k)
6,6 dζ

=
2Q(α)

1,6
1
3 −Q(−α)

1,6
1
3

3Q(±α)
6,6

1
3

=
Q1,6

3Q6,6
(5)

The lamination schemes analyzed and the values obtained are represented in Figure 21a. It is
expected to find a trend for k1,1 according to the value depicted in Figure 21a. In other words, the
laminate (±5/5) should present an error in the calculation of the stiffness with the Euler–Bernoulli
theory similar or slightly greater than the laminate (±30/30). On the contrary, Figure 21b shows that
error on k1,1 decreases by increasing α. It can be concluded that the error committed while stiffness is
calculated using the Euler–Bernoulli theory is not a function of the ratio Q1,6/(3Q6,6). Moreover, such
a problem might be due to not uniform torsional and cross-section distortion effects which cannot
be evaluated with the present model and must be verified via 3D modeling or higher-order beam
formulation. However, the present methodology can be accurately utilized for angle-ply configurations
when α > 30◦.
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(a) (b)

Figure 19. Ratios (a) A1,6/A6,6 and (b) A2,6/A6,6 for different laminates.
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(a) (b)

Figure 20. Percentage of error computing k1,1 with the present methodology: (a) overall error; (b) the
plot limited up to 5% of error.
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(a)

(b)

Figure 21. Trend by increasing α for laminates (α/− α/α) of: (a) Q1,6/(3Q6,6); (b) error on k1,1.

8. Conclusions

In conclusion, it has been verified by increasing the number of plies in cross- and angle-ply
configurations that hollow circular beam behavior does not tend to be like the one of an orthotropic
model (0).

Subsequently, an analytical method is proposed for the calculation of the stiffness matrix
components ki,j for i, j = 1, 2, . . . , 12 of an equivalent 3D Euler–Bernoulli beam model. The present
method resulted to be a valid alternative for investigating composite hollow beams in a simplified
manner without the need for complex 3D shell modeling. The methodology demonstrated to work
well for balanced laminates with A1,6/A6,6 < 50% which corresponds to an error < 5% on the shear
and bending stiffness components. By accurately analyzing angle-ply (±α/α) configurations it has
been demonstrated that a condition on the ply angle is α > 12.5◦ in order to have acceptable results.

On the contrary, the condition A1,6/A6,6 < 50% is not valid for cross-ply, that have A1,6 = 0
and they present an error around 15% for small slenderness. These errors might be due to some
non-uniform cross-section torsional effects that cannot be predicted with the present modeling.

A balanced bio-inspired Bouligand-type laminate has been observed to be a good candidate for
the present approach because other than being completely defined by the present analytical procedure
such scheme demonstrated to have high ductility, dissipated energy, and high load-carrying capability.



Materials 2020, 13, 2069 28 of 30

The present method is valid also for investigating hollow beams with orthotropic materials with
high stiffness ratio E1/E2 that have a high Poisson ratio, which corresponds to a balanced laminate. On
the contrary, symmetric laminates with the same materials that have a negative Poisson ratio cannot
be modeled accurately (because their lamination scheme is not balanced).
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