
20 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Exact and heuristic algorithms for the interval min-max regret generalized assignment problem / Wu,
Wei*; Iori, Manuel; Martello, Silvano; Yagiura, Mutsunori. - In: COMPUTERS & INDUSTRIAL ENGINEERING. -
ISSN 0360-8352. - STAMPA. - 125:(2018), pp. 98-110. [10.1016/j.cie.2018.08.007]

Published Version:

Exact and heuristic algorithms for the interval min-max regret generalized assignment problem

Published:
DOI: http://doi.org/10.1016/j.cie.2018.08.007

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/683153 since: 2020-04-27

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cie.2018.08.007
https://hdl.handle.net/11585/683153

This is the final peer-reviewed accepted manuscript of:

Wei Wu, Manuel Iori, Silvano Martello, Mutsunori Yagiura,

Exact and heuristic algorithms for the interval min-max regret generalized assignment

problem, Computers & Industrial Engineering, Volume 125, 2018, Pages 98-110, ISSN

0360-8352.

The final published version is available online at

https://doi.org/10.1016/j.cie.2018.08.007

© 2018 This manuscript version is made available under the Creative Commons Attribution-
NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cie.2018.08.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

Heuristic and exact algorithms for the interval
min-max regret knapsack problem

Fabio Furini(1), Manuel Iori(2), Silvano Martello(3), Mutsunori Yagiura(4)

(1) LIPN, Paris 13 University, 93430 Villetaneuse, France
fabio.furini@lipn.univ-paris13.fr

(2) DISMI, University of Modena and Reggio Emilia,
Via Amendola 2, 42122 Reggio Emilia, Italy

manuel.iori@unimore.it

(3) DEI “Guglielmo Marconi”, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
silvano.martello@unibo.it

(4) Department of Computer Science and Mathematical Informatics,
Nagoya University, Nagoya 464-8603, Japan

yagiura@nagoya-u.jp

Abstract

We consider a generalization of the 0-1 knapsack problem in which the profit of each
item can take any value in a range characterized by a minimum and a maximum possible
profit. A set of specific profits is called a scenario. Each feasible solution associated with
a scenario has a regret, given by the difference between the optimal solution value for such
scenario and the value of the considered solution. The interval min-max regret knapsack
problem (MRKP) is then to find a feasible solution such that the maximum regret over
all scenarios is minimized. The problem is extremely challenging both from a theoretical
and a practical point of view. Its decision version is complete for the complexity class
Σp
2 hence it is most probably not in NP. In addition, even computing the regret of a

solution with respect to a scenario requires the solution of an NP-hard problem. We
examine the behavior of classical combinatorial optimization approaches when adapted
to the solution of the MRKP. We introduce an iterated local search approach and a
Lagrangian-based branch-and-cut algorithm, and evaluate their performance through
extensive computational experiments.

Keywords: robust optimization, knapsack problem, interval min-max regret, local search,
Lagrangian relaxation, branch-and-cut.

1 Introduction

Consider an investor who wants to select the best way to invest a certain capital c, among a
number of financial products, each requiring a given amount of money wj, and ensuring a fixed

1

return pj. This problem is easily formalized by the classical 0-1 knapsack problem. Given n
items, each having an associated profit pj and weight wj (j = 1, 2, . . . , n), and a capacity c, the
0-1 knapsack problem (01KP) is to select a subset of items which has maximum total profit,
and a total weight not exceeding c. Formally,

(01KP) max
n∑
j=1

pjxj (1)

s.t.
n∑
j=1

wjxj ≤ c (2)

xj ∈ {0, 1} (j = 1, 2, . . . , n), (3)

where xj is a binary variable taking the value one if and only if item j is selected. This
problem has been the subject of intensive research during the last decades, see, e.g., the books
by Martello and Toth [17], and Kellerer, Pisinger and Pferschy [14].

While the above model concerns, e.g., financial products such as repurchase agreements
(repos), in a more general situation the return of product j can be a priori unknown, and may
be expected to vary within a given range [p−j , p

+
j]. By assuming that we are dealing with a

prudent investor (which can quite frequently be the case in times of financial crisis) s/he could
aim at minimizing the a posteriori regret of the selected choice with respect to any possible
profit scenario. This problem can be formalized by the following “robust” generalization of
the 01KP. The profit of each item j can take any value in a range characterized by two values
p−j , p+j (j = 1, 2, . . . , n). A set s of n profits psj satisfying psj ∈ [p−j , p

+
j] for j = 1, 2, . . . , n is

called a scenario.
Let X be the set of all feasible solutions, i.e.,

X =

{
x = (x1, x2, . . . , xn) :

n∑
j=1

wjxj ≤ c, xj ∈ {0, 1}(j = 1, 2, . . . , n)

}
. (4)

We denote by zs(x) the solution value given, for scenario s, by a solution vector x ∈ X, i.e.,

zs(x) =
n∑
j=1

psjxj. (5)

Let zs? be the optimal solution value under scenario s, i.e., the solution value of the 01KP
(1)-(3) when pj = psj (j = 1, 2, . . . , n). The regret associated with a solution x, for a scenario
s, is then

rs(x) = zs? − zs(x). (6)

Let S0 denote the set of all possible scenarios s, i.e., S0 = {s : psj ∈ [p−j , p
+
j](j = 1, 2, . . . , n)}.

The maximum regret r(x) of a solution x is then the maximum rs(x) value over all scenarios,
i.e., r(x) = maxs∈S0 r

s(x). The interval min-max regret knapsack problem (MRKP) is to find

2

a feasible solution vector x such that the maximum regret is minimized. Formally,

(MRKP) min max
s∈S0

rs(x) (7)

s.t.
n∑
j=1

wjxj ≤ c (8)

xj ∈ {0, 1} (j = 1, 2, . . . , n). (9)

For the 01KP it is usual to assume that all profits are non-negative, as cases with negative
values can be easily handled through a preprocessing (see [17], Section 2.1). For the MRKP,
while items j (financial products) with both p−j and p+j less than 0 can obviously be removed
from the instance, items with p−j ≤ 0 and p+j ≥ 0 need a specific handling, which will be
discussed in Section 3. Also, from now on, we will assume that capacity and weights are
positive integers.

The reminder of the paper is organized as follows. In the next section we briefly review
prior works in this area. In Section 3 we discuss a basic result from the literature, and
derive a mixed-integer linear model for the problem. In Section 4 we present standard exact
approaches (a Benders-like decomposition and a branch-and-cut algorithm) for the MRKP,
and provide an effective method for their initialization. Heuristic and metaheuristic algorithms
are introduced in Section 5, while an effective Lagrangian-based branch-and-cut approach is
developed in Section 6. The outcome of extensive computational experiments on exact and
approximate algorithms is discussed in Section 7, and conclusions follow in Section 8.

2 Complexity issues and literature review

The 01KP is the special case of the MRKP that arises when p−j = p+j (j = 1, 2, . . . , n), which
implies that the MRKP is NP-hard in the ordinary sense. It is an open question whether it is
NP-hard in the strong sense. Deineko and Woeginger [10] recently proved that the decision
version of the problem is complete for the complexity class Σp

2 (see Garey and Johnson [11],
Chapter 7, or Papadimitriou [21], Chapter 17) and hence is most probably not in NP .

To our knowledge, the only paper devoted to the MRKP is the aforementioned study of
its complexity [10]. Other robust versions of the 01KP have however been considered in the
literature. The main variants concern: (i) the scenarios, and (ii) the objective function.

The profit scenarios can be given

• by the profit intervals, as in our case (interval scenario case or, alternatively, interval
data case), or

• as an explicit list L of scenarios, i.e., of profit vectors (psj) (s ∈ L) (discrete scenario
case), see, e.g., Yu [26] for an exact approach, or Aissi, Bazgan and Vanderpooten [2]
for approximation properties.

Cases with an unbounded number of scenarios, whose interest is mostly theoretical, have
also been considered (see, e.g., Kouvelis and Yu [15]).

Let S denote the set of all possible scenarios, however defined. The three main objective
functions used in scenario-based robust optimization are:

3

• max min: maximize the worst-case solution over all scenarios, i.e., maxx∈X mins∈S z
s(x).

For the interval scenario case of the 01KP, this is immediately obtained by solving (1)-(3)
with pj = p−j for j = 1, 2, . . . , n;

• min max (absolute) regret: minimize the maximum regret (our case);

• min max relative regret: minimize maxs∈S rs(x)/zs? over all feasible solutions x ∈ X.

For practical cases in which the min max regret is a useful measure see, e.g., the applications
to the energy crop supply and to investment choices, discussed, respectively, by Kazakci,
Rozakis and Vanderpooten [13] and Michenaudc and Solnik [18]. A thorough analysis of the
huge literature on scenario-based robust optimization is beyond the scope of this article. The
interested reader is referred to the classical books by Kouvelis and Yu [15] and Kasperski
[12], as well as to the paper by Averbakh [3] and to the recent surveys by Aissi, Bazgan and
Vanderpooten [1] and Candia-Véjar, Álvarez-Miranda and Maculan [9]. We mention here that,
in recent years, the interval scenario min-max regret version of other relevant combinatorial
optimization problems has been studied, such as the shortest path problem (Montemanni
and Gambardella [20]), the traveling salesman problem (Montemanni, Barta, Mastrolilli and
Gambardella [19]), the assignment problem (Pereira and Averbakh [22]), and the set covering
problem (Pereira and Averbakh [23]).

We also mention that different (probabilistic) robustness paradigms have been widely
treated in the literature. Such approaches model optimization under uncertainty through
probability distributions over the space of all possible scenarios. For this research area, which
is closely related to the classical field of stochastic programming (see, e.g., the recent books by
Shapiro, Dentcheva, and Ruszczyńskiwe [24] and Birge and Louveaux [8]), we refer the reader
to the basic works by Ben-Tal and Nemirovski [4] and Bertsimas and Sim [6, 7].

As recently observed by Deineko and Woeginger [10], the solution of even moderately
sized instances of the interval min-max regret knapsack is challenging and seems to require
innovative approaches. Also note that even computing the regret of a single solution with
respect to a single scenario requires the solution of an NP-hard problem (a 01KP).

3 A mixed-integer linear model

The following basic result (whose roots are in Yaman, Karaşan and Pinar [25]) has been
explicitly proved for the MRKP (in the more general context of binary interval min-max
regret problems) by Aissi, Bazgan and Vanderpooten [1]:

Lemma 1 For any solution x ∈ X, its worst case scenario is σ(x), defined by

p
σ(x)
j =

{
p−j if xj = 1;
p+j otherwise.

(10)

(Intuitively, the scenario inducing the maximum regret has the worst profits for the selected
items, and the best profits for the non-selected items.) Hence, from now on, we will restrict
our attention, without loss of generality to the subset of scenarios S ⊆ S0 induced by Lemma
1, i.e., S = {σ(x) : x ∈ X}. In addition, by observing that there is a unique scenario σ(x) ∈ S
for each solution x ∈ X, when no confusion arises we will use σ instead of σ(x).

4

From Lemma 1 and equations (4), (6) and (7), by considering the worst-case scenario of
x, the MRKP can be re-written as

min
x∈X

(max
s∈S

(max
y∈X

n∑
j=1

psjyj −
n∑
j=1

psjxj)) = min
x∈X

(max
y∈X

n∑
j=1

p
σ(x)
j yj −

n∑
j=1

p
σ(x)
j xj). (11)

By further observing that the last summation of (11) can be developed without including
the p+j terms (which disappear when xj = 0), we get our simplest formulation of the MRKP:

min
x∈X

(zσ? −
n∑
j=1

p−j xj), (12)

where (recall that we use σ for σ(x))

zσ? = max
y∈X

n∑
j=1

pσj yj =
n∑
j=1

pσj ỹ
σ
j (13)

and ỹσj (j = 1, 2, . . . , n) denotes an optimal solution vector for the 01KP under scenario σ.
By observing that, from Lemma 1, for x ∈ X we can write pσj as

pσj = p+j + (p−j − p+j)xj, (14)

and introducing a new (non integer) variable ϑ, along with a constraint that forces ϑ to satisfy
ϑ ≥ zσ? ∀ σ ∈ S, the MRKP is expressed by the mixed integer linear model

M(S) min ϑ−
n∑
j=1

p−j xj (15)

s.t. ϑ ≥
n∑
j=1

p+j ỹ
σ
j +

n∑
j=1

(p−j − p+j)ỹσj xj ∀ σ ∈ S (16)

n∑
j=1

wjxj ≤ c (17)

xj ∈ {0, 1} (j = 1, 2, . . . , n), (18)

because an optimal solution (x?, ϑ?) satisfies ϑ? ≥ zs? for all s ∈ S.
We will denote by M̂(S) the continuous relaxation of M(S), obtained by relaxing (18) to

0 ≤ xj ≤ 1 (j = 1, 2, . . . , n), (19)

Note that the model has n + 1 variables, but an exponential number of constraints (16)
(one per scenario), each of which would require the solution of a 01KP. In the next section we
discuss how to deal with such inconvenience.

Lemma 1 can also be used to see how to handle cases where p−j ≤ 0 holds for some item j.

Property 1 Let j be an item for which p−j ≤ 0. If p+j ≤ |p−j | then item j can be removed
from the instance.

5

Proof If p−j = 0, then p+j = 0 and the claim follows. Hence assume p−j < 0. We show that
the regret of a solution x with xj = 1 is never smaller than that of a solution x′ with x′j = 0

and x′i = xi for all i 6= j. From Lemma 1, we have p
σ(x)
j = p−j , p

σ(x′)
j = p+j and p

σ(x)
i = p

σ(x′)
i

for all i 6= j. Hence
zσ(x)(x) = zσ(x

′)(x′)− |p−j |. (20)

The optimal solutions under scenarios σ(x) and σ(x′) satisfy

zσ(x)? ≥ zσ(x
′)

? −max{0, p+j }, (21)

because by removing item j from the latter optimal solution (if present) we obtain a solution
that is feasible for the former. From (20) and (21), the regrets for the two cases satisfy

rσ(x)(x) = zσ(x)? − zσ(x)(x) ≥ zσ(x
′)

? −max{0, p+j } − zσ(x
′)(x′) + |p−j | =

rσ(x
′)(x′)−max{0, p+j }+ |p−j | ≥ rσ(x

′)(x′). �

Additionally observe that an item with p−j ≤ 0 but p+j > |p−j | cannot be removed from
the instance, since it could be included in an optimal solution. Consider indeed the family
of instances with n = 2, w1 = w2 = c, p−1 < 0, p+1 > |p−1 |, and p−2 = p+2 = ε (where ε is a
small positive value). The regrets of the three feasible solutions x(1) = (0, 0), x(2) = (1, 0) and
x(3) = (0, 1) are, respectively, p+1 − 0, ε+ |p−1 | and p+1 − ε. For a sufficiently small ε, the regret
of x(2) is smaller than the other two, i.e., the unique optimal solution includes item 1.

3.1 Evaluating the maximum regret

As already observed, evaluating the regret r(x) of a solution x ∈ X through Lemma 1 requires
the solution to an NP-hard problem. The exact and approximation algorithms introduced in
the next sections will try to limit the number of such solutions through a standard approach
that assumes that a feasible solution providing an upper bound U r on the optimal regret is
known. Let 01KP(σ) denote the instance of 01KP in which pj = pσj for j = 1, 2, . . . , n. Recall
that zs(x) is the solution value given, for scenario s, by solution x (see (5)). The approach,
outlined in Algorithm 1, avoids the computation of the regret when a lower bound based
evaluation shows that r(x) ≥ U r.

input: a solution x and an upper bound value U r;
L := heuristic solution value for 01KP(σ);
if L− zσ(x) ≥ U r then return r(x) := +∞
else

U := upper bound for 01KP(σ);
if L = U then zσ? := L
else compute zσ? := optimal solution value for 01KP(σ)

end if;
return r(x) := zσ? − zσ(x).

Algorithm 1: Evaluation of the maximum regret of a solution x.

6

4 Standard exact algorithms

In this section we discuss two solution approaches (a Benders-like decomposition and a branch-
and-cut algorithm) that have been frequently used for the exact solution of problems of this
kind. The former approach is not the classical Benders’ decomposition [5], as the slave prob-
lem is not a linear program. However the term is widely used in the literature, and specifically
in the min-max regret literature. We thus decided to adopt it for better clarity with respect
to previous similar approaches like, e.g., those in Montemanni, Barta, Mastrolilli and Gam-
bardella [19] or Pereira and Averbakh [23]. Also note that the results presented so far in the
literature on robust versions of combinatorial optimization problems do not indicate a clear
winner among such approaches. For example, the computational results presented by Monte-
manni, Barta, Mastrolilli and Gambardella [19] for the traveling salesman problem show that
Benders’ decomposition is more effective, while those in Pereira and Averbakh [23] for the set
covering problem indicate a superiority of branch-and-cut.

We will use model M(S) by iteratively solving instances M(R) in which only a subset,
R ⊆ S, of scenarios (i.e., of constraints (16)) is considered, and progressively adding scenarios
to R until an optimal solution is found. A fundamental tool for such approaches is a method
to separate violated constraints from non-violated ones.

4.1 Separation

Given a solution (x̃, ϑ̃) satisfying (17)-(18), we want to check if it also satisfies constraints
(16). In order to determine if there exists a scenario σ ∈ S for which

n∑
j=1

(
p+j + (p−j − p+j)x̃j

)
ỹσj > ϑ̃ (22)

holds, we can define, for j = 1, 2, . . . , n, p′j = p+j + (p−j − p+j)x̃j, and solve the 01KP

max
n∑
j=1

p′jyj :
n∑
j=1

wjyj ≤ c, yj ∈ {0, 1} (j = 1, 2, . . . , n). (23)

If the optimal solution value is greater than ϑ̃, then a violated constraint has been found.
It is interesting to observe that the above procedure does not exploit the integrality of

x̃, and hence the separation also holds for fractional solutions (x̃, ϑ̃) satisfying (17) and (19).
However, for a fractional x̃, p′j can take any value in the continuous interval [p−j , p

+
j] so the set

of scenarios extends from S to S0.

4.2 Algorithms

The above separation method can be used for two classical algorithmic approaches which
iteratively solve problem instances by only considering a subset of scenarios.

7

Benders’ decomposition

We tested a first approach, based on Benders’ decomposition, which solves, at each iteration,
a master problem M(R) defined by a relaxation of (15)-(18) in which S is replaced a by a
subset R ⊂ S of constraints. Let (x̃, ϑ̃) be the optimal solution for the current master. The
slave problem (23) is then used to find a violated constraint, if any: if such a constraint is
found, the corresponding scenario is added to R. The process is iterated until a solution is
found that violates no constraint, and hence is feasible. Since each solution to the master
problem provides a valid lower bound on the optimal solution value, the first feasible solution
encountered is optimal.

Branch-and-cut

The second approach we tested was a branch-and-cut algorithm. At each node of the branch-
decision tree, we solve the continuous relaxation, M̂(R), of the master problem above, i.e.,
(15)-(17) and (19) with R ⊂ S0. If its value is not smaller than that of the incumbent so-
lution, then the node is fathomed. Otherwise, the (possibly fractional) current solution is
tested, as above, to find violated constraints (cuts) to be added to the current set R. When
no constraint is violated, if the current solution is integer, the incumbent is possibly updated.
If instead it is fractional, a branching follows. The general framework of branch-and-cut
algorithms is very flexible, and various implementations are possible. As will be seen in Sec-
tion 7.2, our approach was implemented using the default branch-and-cut framework of Cplex.

The former approach usually requires a smaller number of 01KP solutions, but has the
disadvantage of only providing a feasible solution upon completion. Although branch-and-cut
tends to solve a (much) larger number of 01KPs, it can be more efficient as the produced cuts
can fathom branch-decision nodes at an earlier stage hence accelerating the overall conver-
gence. For a case such as the considered one, in which the separation is provided by a problem
which (although NP-hard) is relatively easy to solve in practice, the latter approach tends
to be faster. This is confirmed by the computational experiments that will be discussed in
Section 7.

A relevant aspect for a practically efficient implementation of the above algorithms is the
determination of an effective initial set of constraints, which is discussed in the next section.

4.3 Initialization

For algorithms based on Benders’ decomposition and branch-and-cut, it is convenient to ini-
tialize the restricted scenario set R with some scenario, as an initial empty set R would
produce a negative unbounded solution value. The following property gives useful indication
on a possible effective initialization of the restricted scenario set.

Property 2 Let x− and x̂− be, respectively, the optimal solutions to the 01KP (1)-(3) with
pj = p−j for j = 1, 2, . . . , n and to its continuous relaxation, given by (1)-(2) and (19).
Similarly define x+ and x̂+ for the case pj = p+j .

8

1. If R contains a constraint (16), for a certain σ ∈ S, in which ỹσj = x−j (j = 1, 2, . . . , n),

then the solution value of M(R) is non-negative, and the solution value of M̂(R) is at
least

∑n
j=1 p

−
j (x−j − x̂−j).

2. If R contains a constraint (16), for a certain σ ∈ S, in which ỹσj = x+j (j = 1, 2, . . . , n),

then the solution value of M(R) is non-negative, and the solution value of M̂(R) is at
least

∑n
j=1 p

+
j (x+j − x̂+j).

Proof To prove point 1., preliminary observe that the constraint implies

ϑ ≥
n∑
j=1

p+j x
−
j +

n∑
j=1

(p−j − p+j)x−j xj ≥
n∑
j=1

p+j x
−
j +

n∑
j=1

(p−j − p+j)x−j =
n∑
j=1

p−j x
−
j . (24)

Since x− is an optimal 01KP solution for the case pj = p−j , we have

n∑
j=1

p−j xj ≤
n∑
j=1

p−j x
−
j (25)

for all feasible solutions x to M(R). It follows, from (24) and (25), that

ϑ−
n∑
j=1

p−j xj ≥
n∑
j=1

p−j x
−
j −

n∑
j=1

p−j x
−
j = 0, (26)

and hence the solution value of M(R) is non-negative. In addition, for any feasible solution x
to M̂(R), we have

n∑
j=1

p−j xj ≤
n∑
j=1

p−j x̂
−
j . (27)

Hence, from (24) and (27), the solution value to M̂(R) is bounded as

ϑ−
n∑
j=1

p−j xj ≥
n∑
j=1

p−j x
−
j −

n∑
j=1

p−j x̂
−
j . (28)

Coming to point 2., the constraint implies, for a feasible solution x,

ϑ ≥
n∑
j=1

p+j x
+
j +

n∑
j=1

(p−j − p+j)x+j xj. (29)

It follows that the objective function values of both M(R) and M̂(R) satisfy

ϑ−
n∑
j=1

p−j xj ≥
n∑
j=1

p+j x
+
j +

n∑
j=1

(p−j − p+j)x+j xj −
n∑
j=1

p−j xj

=
n∑
j=1

p+j x
+
j +

n∑
j=1

(
(p−j − p+j)x+j − p−j

)
xj ≥

n∑
j=1

p+j x
+
j −

n∑
j=1

p+j xj. (30)

9

For M(R), the last quantity in (30) is non-negative, because x+ is an optimal 01KP solution
for the case pj = p+j . For M̂(R), the last quantity in (30) is not less than

n∑
j=1

p+j x
+
j −

n∑
j=1

p+j x̂
+
j . � (31)

Following Property 2, in our computational experiments (see Section 7.2) the set R of
all algorithms was initialized with the two constraints corresponding to solutions x+ and x−,
very often obtaining a positive (possibly relatively high) initial lower bound value. On the
other hand, an initialization including just one scenario would never produce a positive lower
bound. Indeed, the following property holds.

Property 3 If |R| = 1 then the optimal value of both M(R) and M̂(R) cannot be positive.

Proof Let R = {σ}. In an optimal solution (both to M(R) and M̂(R)) we have ϑ =∑n
j=1 p

+
j ỹ

σ
j +

∑n
j=1(p

−
j − p+j)ỹσj xj, hence the objective function can be written as

n∑
j=1

p+j ỹ
σ
j +

n∑
j=1

(
(p−j − p+j)ỹσj − p−j

)
xj =

∑
j:ỹσj =1

p+j (1− xj)−
∑
j:ỹσj =0

p−j xj,

which takes the value zero if xj = ỹσj for j = 1, 2, . . . , n. �

5 Heuristic algorithms

In this section we describe a heuristic approach obtained by constructing an initial solution
(using greedy or ILP-based heuristics), and refining it through metaheuristic search.

5.1 Greedy heuristics

The most classical tool for constructing an initial feasible solution to knapsack problems is
the well-known greedy algorithm, which consists of: (i) examining the items according to a
pre-specified order, and, at each iteration, (ii) adding the current item to the solution iff its
weight does not exceed the current residual capacity.

The greedy algorithm for the traditional 01KP sorts the items according to non-increasing
pj/wj values. For the MRKP, many different orderings are possible. On the basis of extensive
computational experiments with the different algorithmic approaches, four sorting criteria
turned out to be the best ones, namely

p+j /wj; (p+j + p−j)/wj; (p−j p
+
j)/wj; p−j /wj. (32)

Other sorting criteria (e.g., p+j , 1/wj, (p+j − p−j)/wj) turned out to be worse than the ones
above. A possible explanation is that, provided all profits are non-negative, criteria (32) tend
to avoid producing solutions violating the following dominance relation.

Property 4 If p−j ≥ p−k , p+j ≥ p+k and wj ≤ wk, then item j dominates item k in the following
sense: If an optimal solution has xk = 1 and xj = 0, then the solution obtained from it by
setting xk = 0 and xj = 1 is also optimal.

10

Proof. Let xA and xB be two solutions such that xAj = 0, xAk = 1, xBj = 1, xBk = 0, and
xAi = xBi ∀i 6= j, k. The maximum regret r(x) of a solution x can be expressed as

r(x) = max
y∈X

n∑
i=1

p
σ(x)
i yi −

n∑
i=1

p
σ(x)
i xi = max

y∈X
d(x, y), (33)

where

d(x, y) =
n∑
i=1

p
σ(x)
i (yi − xi). (34)

Let y∗ be an optimal solution to the 01KP under the worst-case scenario σ(xB) induced by
solution xB (i.e., y∗ = arg maxy′∈X d(xB, y′)). For every solution y ∈ X, we have, from (33)
and (34),

r(xB)− r(xA) = max
y′∈X

d(xB, y′)− max
y′′∈X

d(xA, y′′) ≤ d(xB, y∗)− d(xA, y). (35)

We will show that, for any optimal solution y∗, there is a solution ỹ ∈ X such that d(xB, y∗)−
d(xA, ỹ) ≤ 0, i.e., from (35), r(xB) ≤ r(xA). Consider indeed solutions ỹ such that ỹi = y∗i
for all i 6= j, k, and recall that p

σ(xA)
j = p+j , p

σ(xA)
k = p−k , p

σ(xB)
j = p−j , p

σ(xB)
k = p+k , and

p
σ(xA)
i = p

σ(xB)
i for all i 6= j, k. Then

∆ = d(xB, y∗)− d(xA, ỹ) = p−j (y∗j − xBj) + p+k (y∗k − xBk)− p+j (ỹj − xAj)− p−k (ỹk − xAk)

= p−j (y∗j − 1) + p+k y
∗
k − p+j ỹj − p−k (ỹk − 1).

There are the following four cases for the configuration of y∗.

1. y∗j = 0 and y∗k = 0: For ỹ = y∗ we have ∆ = −p−j + p−k ≤ 0.

2. y∗j = 1 and y∗k = 1: For ỹ = y∗ we have ∆ = p+k − p
+
j ≤ 0.

3. y∗j = 1 and y∗k = 0: For ỹ = y∗ we have ∆ = −p+j + p−k ≤ −p
+
j + p+k ≤ 0.

4. y∗j = 0 and y∗k = 1: For ỹj = 1 and ỹk = 0 (which is feasible because y∗ is feasible and
wj ≤ wk), we have ∆ = −p−j + p+k − p

+
j + p−k ≤ 0. �

A greedy algorithm, with any of the above orderings, finds a feasible solution in O(n log n)
time. Note however that, if one is also interested in the corresponding maximum regret, this
would require the solution of an NP-hard problem (the 01KP for the worst scenario).

5.2 ILP-based heuristics

As we will see in Section 7, the quality of the greedy solutions is not sufficiently good. Better
quality solutions were obtained, at the expenses of higher CPU times, by heuristically solving
problem M(S) through the branch-and-cut algorithm discussed in Section 4.2, halted after a
small time limit.

11

A more sophisticated approach is provided by the following ILP-based heuristic, coming
from a technique developed by Kasperski [12] for min-max regret versions of interval scenario
cases with a zero duality gap. From (12), we can write the MRKP as

min
x∈X

(
max
y∈X

n∑
j=1

pσj yj −
n∑
j=1

p−j xj

)
. (36)

Consider the continuous relaxation of maxy∈X
∑n

j=1 p
σ
j yj:

max
n∑
j=1

pσj yj :
n∑
j=1

wjyj ≤ c, 0 ≤ yj ≤ 1 (j = 1, 2, . . . , n). (37)

By introducing dual variables α for the capacity constraint and βj for constraints yj ≤ 1, we
obtain the dual of (37) as

minαc+
n∑
j=1

βj : αwj + βj ≥ pσj (j = 1, 2, . . . , n), α ≥ 0, βj ≥ 0 (j = 1, 2, . . . , n). (38)

By embedding (38) in (36), using (14) for pσj , and replacing x ∈ X with (2)-(3), we finally
obtain problem U-MRKP:

(U-MRKP) min αc+
n∑
j=1

βj −
n∑
j=1

p−j xj (39)

s.t.
n∑
j=1

wjxj ≤ c (40)

αwj + βj ≥ p+j + (p−j − p+j)xj (j = 1, 2, . . . , n) (41)

xj ∈ {0, 1} (j = 1, 2, . . . , n) (42)

α ≥ 0 (43)

βj ≥ 0 (j = 1, 2, . . . , n) (44)

The U-MRKP is considerably simpler than the M(S) formulation of the MRKP, as it
replaces the exponentially many constraints (16) with a polynomial number of constraints
and variables. However, the two problems are not equivalent: the solution, say x̃, provided by
the U-MRKP is indeed feasible for the MRKP, but (because of the integrality gap introduced
by (37)) it is not necessarily optimal with respect to (36). On the other hand, the problem
remains theoretically difficult:

Property 5 Problem U-MRKP is NP-hard.

Proof We show that the 01KP polynomially transforms to the U-MRKP. Given an instance
of 01KP, define an instance of U-MRKP with p−j = p+j = pj (j = 1, 2, . . . , n). Such an instance
decomposes into problems

(i) {minαc+
∑n

j=1 βj : αwj + βj ≥ pj (j = 1, 2, . . . , n), α ≥ 0, βj ≥ 0 (j = 1, 2, . . . , n)}, and

(ii) {max
∑n

j=1 pjxj :
∑n

j=1wjxj ≤ c, xj ∈ {0, 1} (j = 1, 2, . . . , n)}.
The former problem is the dual of the continuous relaxation of a 01KP, while the latter is a

12

regular 01KP. �

As we will see in Section 7, good approximate solutions to the MRKP are produced by
the following heuristic approach:

(i) find an optimal solution x̃ to the U-MRKP;

(ii) compute the actual regret produced by x̃ through Algorithm 1.

Although this approach requires the solution to two NP-hard problems, the computational
results of Section 7 show that high quality solutions are achieved very quickly in practice.

5.3 Iterated local search

The initial heuristic solutions were improved through iterated local search. Recall that r(x)
is the maximum regret associated with a solution x. We will denote by x? the incumbent
MRKP solution. The iterated local search makes use of two procedures which, respectively,
perturb x?, and improve it through local search.

Perturbation

Procedure Perturbation(x, k) removes k randomly selected items from the given solution x,
and fills the resulting residual capacity by executing the greedy algorithm on the set of items
originally having xj = 0. The resulting overall solution is returned.

Local Search

Recall that, given a feasible solution x to an instance of MRKP, 01KP(σ(x)) denotes the

corresponding instance of 01KP in which pj = p
σ(x)
j for j = 1, 2, . . . , n (see Lemma 1).

Procedure Local Search(x) considers every item pair (i, j) with xi = 1 and xj = 0,
and produces a new solution by swapping them, provided that the new solution satisfies the
capacity constraint. The resulting residual capacity is then filled through the greedy algorithm
applied to those items k for which xk = 0, k 6= i and k > j (in order to avoid duplicated
solutions). Let x′ denote the resulting solution. For each feasible swap, the regret r(x′) is
computed through Algorithm 1.

The local search follows a best improvement policy: once all new solutions x′ have been
evaluated, the one producing the smallest regret is selected. If it improves on the regret of the
input solution x, then x is replaced by x′ and the procedure is iterated. When no improvement
occurs, the procedure terminates returning the current solution x.

Iterated Local Search

The overall iterated local search procedure is outlined in Algorithm 2. In principle, it can be
terminated through any termination condition. In our experiments it was halted by a time
limit.

13

input: a heuristic solution x
x? := x;
k := 1;
repeat

x := Perturbation(x?,k);
x̄ := Local Search(x);
if r(x̄) < r(x?) then
x? := x̄;
k := 1;

else
k := k + 1;
if k > kmax then k := 1

end if
until Termination Condition

return x?
Algorithm 2: Procedure Iterated Local Search.

6 A Lagrangian-based branch-and-cut algorithm

As we will see in Section 7, the computational experimentation of the standard exact ap-
proaches outlined in Section 4 did not produce satisfactory results. In this section we describe
the specifically tailored branch-and-cut algorithm we developed, which proved to be compu-
tationally more effective. In the following, we denote such algorithm as FIMY.

We will first introduce the general structure of FIMY, and the main steps that are per-
formed at each decision node, and then describe the enhancements adopted to speed up its
performance. Let x? denote the incumbent solution, and r(x?) its value. The first incumbent
solution is obtained by improving through Algorithm 2, the solution to U-MRKP (see Section
5).

The algorithm starts by only considering a very small subset of the exponentially many
constraints (16), i.e., problem (15)-(18) with S replaced by R ⊂ S. The initial R includes the
two scenarios discussed in Property 2 (pj = p−j and pj = p+j for all j), and the one induced

by the incumbent (pj = p
σ(x?)
j for all j). At each iteration the current set R is possibly

augmented.
The branch-decision tree follows the strategy commonly adopted for the 01KP: after having

sorted the items according to one of the criteria considered in (32), at each level two child
nodes are generated by setting the next variable xj to 1 (if the current residual capacity allows
insertion of item j) and to 0. The tree is searched in a depth-first fashion by first exploring
the node, if any, generated by condition xj = 1. On the basis of preliminary computational
experiments, the values (p+j p

−
j)/wj were used for sorting the items.

At each iteration, a first attempt to fathom the current node is performed by solving the
continuous relaxation, M̂(R), of the current problem M(R) (see Section 3). If the resulting
lower bound is lower than r(x?), a second attempt is performed through the Lagrangian
relaxation of those constraints (16) that have been generated so far. Namely, we relax the

14

current set R, obtaining:

L(R, λ) min

(
ϑ−

n∑
j=1

p−j xj −
∑
σ∈R

λσ

(
ϑ−

n∑
j=1

p+j ỹ
σ
j −

n∑
j=1

(p−j − p+j)ỹσj xj

))

=
∑
σ∈R

λσ

n∑
j=1

p+j ỹ
σ
j + min

(
ϑ

(
1−

∑
σ∈R

λσ

)
−

n∑
j=1

p̂jxj

)
(45)

s.t.
n∑
j=1

wjxj ≤ c (46)

xj ∈ {0, 1} (j = 1, 2, . . . , n), (47)

where p̂j = p−j −
∑

σ∈R λσ(p−j − p+j)ỹσj .
Solving the Lagrangian dual problem, i.e., finding the multipliers that provide the highest

possible value of L(R, λ), could be computationally intractable. Instead, as the solution
to M̂(R) also provides an optimal solution to its dual, we use the optimal values of the
dual variables associated with (16) (i.e., optimal multipliers for the continuous relaxation of
L(R, λ)) as Lagrangian multipliers λσ. Since ϑ is not restricted in sign, the dual of M̂(R)
forces ∑

σ∈R

λσ = 1. (48)

It follows that, for this specific choice of λ, the optimal solution to L(R, λ) is independent of
ϑ, and hence all Lagrangian bounds can be obtained by solving the 01KP max

∑n
j=1 p̂jxj :∑n

j=1wjxj ≤ c, xj ∈ {0, 1} (j = 1, 2, . . . , n).
When the node is not fathomed by the Lagrangian bound, we invoke the separation pro-

cedure of Section 4.1 on an optimal solution (x̂, ϑ̂) to M̂(R), in order to determine a violated
constraint (if any), which is then added to R. The two attempts are iterated until either
no violated constraint is found, or a pre-specified maximum number of attempts has been
performed. Whenever the Lagrangian bound is computed, the actual value of the integer so-
lution it provides (i.e., its regret with respect to all scenarios) is evaluated through Algorithm
1, and the incumbent solution is possibly updated. The overall node processing is outlined in
Algorithm 3.

Note that the algorithm does not increase the iteration counter h when the solution x̂ to
M̂(R) is integer. In such cases it is indeed convenient to keep separating: if (possibly after
some iterations) no violated cut is found, we know that the solution is optimal for the current
node, which can then be fathomed.

The cuts generated at each node are added to the model, which is passed to the descendant
nodes, without storing them in a general pool. Hence, although such cuts are globally valid,
they are removed from the model when backtracking, i.e., the same cut can be generated again
at another node. Indeed, the separation procedure heavily depends on the solution obtained
for the current node, and the computational experiments showed that cuts are rarely effective
for non-descendant nodes.

The performance of Algorithm FIMY was improved through other enhancements, namely:

• when a node is generated by condition xj = 0, we also set xk = 0 for all subsequent
items that are dominated by item j (see Property 4);

15

comment: x? is the incumbent solution, and has value r(x?);
h := 1;
repeat

solve M̂(R), getting a solution (x̂, ϑ̂) of value LBc, and a dual solution λ;
if LBc ≥ r(x?) then fathom the current node
else

solve the Lagrangian relaxation L(R, λ), getting a solution xλ of value LBλ;
if LBλ ≥ r(x?) then fathom the current node
else

compute the regret r(xλ) (see Section 3.1), and possibly update x? and r(x?);
look for a cut violated by (x̂, ϑ̂) through the separation method of Section 4.1;
if x̂ is not integer then h := h+ 1

end if
end if

until h > hmax or no violated cut has been found.
Algorithm 3: Processing at each decision node in FIMY.

• when starting the processing of a new node, say generated by condition xj = a (a ∈
{0, 1}), let x̂p be the solution to M̂(R) found by the parent node. If x̂pj = a, then we

avoid computing the solution of the new M̂(R), and just “inherit” x̂p in the first iteration
of Algorithm 3;

• if the current residual capacity is not smaller than the total weight of the residual items
plus the smallest weight of an item, say k, such that p−k ≥ 0 and an ancestor node set
xk = 0, then the node can be fathomed, because the current solution is dominated by
the twin node with xk = 1. (Note indeed that two solutions x and x′, only differing in
xk = 1 and x′k = 0, satisfy, for any scenario s ∈ S0, z

s(x) − zs(x′) = psk ≥ p−k ≥ 0, and
hence rs(x)− rs(x′) = (zs? − zs(x))− (zs? − zs(x′)) ≤ 0, i.e., r(x) ≤ r(x′).)

Recall that λσ is not an optimal solution to the Lagrangian dual problem. Attempts to
improve the Lagrangian bound LBλ through subgradient optimization did not improve the
computational performance of the algorithm. It indeed decreased the overall number of ex-
plored decision nodes, but at the expenses of an increased CPU time.

7 Computational experiments

We performed an extensive computational evaluation of the heuristic algorithms of Section 5,
and of the exact algorithms of Sections 4 and 6. All algorithms were coded in C++, and run
on a PC with a Pentium 4 at 3.2 GHz and 1 GB RAM memory, under Linux Ubuntu 11.

All the approaches require the solution to 01KP sub-instances, which were produced using
algorithm combo by Martello, Pisinger and Toth [16] (a C code available at http://www.

diku.dk/hjemmesider/ansatte/pisinger/codes.html). The values L and U needed by
Algorithm 1 of Section 3.1, were obtained through the classical greedy algorithm for the
01KP (with items sorted by non-increasing pσj /wj values, see Section 5.1) and through the
upper bound U2 by Martello and Toth [17], respectively.

16

The ILP solutions needed by the Benders’ decomposition (Section 4) and by the U-MRKP
heuristic (Section 5.2) were obtained through Cplex 12.3 single thread. The branch-and-cut
approach of Section 4 was implemented using the Cplex callback framework. In algorithm
FIMY, Cplex was only used to solve the LP relaxations.

We randomly generated nine classes of MRKP instances by defining profit intervals for
nine standard classes of 01KP instances from the literature, obtained through the generator
used in [16] (available at the same URL as combo). For each class, two values were considered
for a parameter R: R = 1000 and R = 10000. The 01KP instance classes are (u.r. stands for
“uniformly random integer”):

1. Uncorrelated: wj u.r. in [1, R], pj u.r. in [1, R].

2. Weakly correlated: wj u.r. in [1, R], pj u.r. in [max{1, wj −R/10}, wj +R/10].

3. Strongly correlated: wj u.r. in [1, R], pj = wj +R/10.

4. Inverse strongly correlated: pj u.r. in [1, R], wj = pj +R/10.

5. Almost strongly correlated: wju.r. in[1, R], pj u.r. in[wj+R/10−R/500, wj+R/10+R/500].

6. Subset-sum: wj u.r. in [1, R], pj = wj.

7. Even-odd subset-sum: wj even value u.r. in [1, R], pj = wj, c odd.

8. Even-odd strongly correlated: wj even value u.r. in [1, R], pj = wj +R/10, c odd.

9. Uncorrelated with similar weights: wj u.r. in [100R, 100R +R/10], pj u.r. in [1, R].

For each class and value of R, we generated 27 MRKP instances through all combinations of

• number of items n ∈ {50, 60, 70};

• capacity c ∈ {b0.45W c, b0.50W c, b0.55W c}, with W =
∑n

j=1wj (and c increased by 1,
if even, for classes 7 and 8);

• profit interval [p−j , p
+
j], with p−j u.r. in [(1 − δ)pj, pj], p

+
j u.r. in [pj, (1 + δ)pj], and

δ ∈ {0.1, 0.2, 0.3},
thus obtaining 486 MRKP instances. The whole set of instances is available on the Internet at
http://www.or.deis.unibo.it/research_pages/ORinstances/MRKP_instances.zip . In
the next section we present the computational outcome of the experiments.

7.1 Heuristic algorithms

In Table 1 we compare the different approaches described in Section 5. The first group
of lines refers to the classical greedy algorithm, with the four sorting criteria discussed in
Section 4.3. The second group of lines refers to the two ILP-based approaches of Section
5.2: branch-and-cut algorithm of Section 4.2 (B&Cut in the following) halted after 10 and 60
CPU seconds, respectively; ILP solution of model U-MRKP (equations (39)-(44)) halted after
10 CPU seconds. The final group of lines refers to the improvement of the initial solutions

17

through Algorithm 2 (iterated local search, ILS) of Section 5.3, with iteration limit kmax

experimentally fixed to n/10.
For each class, the entries give the average percentage gap with respect to the best known

solution (usually obtained through the exact algorithms discussed in the next section), com-
puted over the 54 instances of the class. The final column provides the overall average per-
centage gap with respect to the whole set of instances.

The greedy algorithms performed in general very poorly (with some exceptions occurring
for greedy[(p+j +p−j)/wj], especially on Classes 6, 7 and 9). Much better results were provided
by the ILP-based approaches: the truncated B&Cut had a decent performance, but U-MRKP
outperformed it in all cases but two. An interesting fact is that such two cases occurred for the
instances of Classes 1 and 9, which are relatively “easy”. As we will see in the next section,
all instances of these two classes are quickly solved to optimality by all exact algorithms. The
U-MRKP too was solved to optimality within the given time limit, but the solution found
was not optimal for the MRKP: this experimentally confirms the integrality gap introduced
by (37).

The last two lines in Table 1 give the results obtained by improving the initial solutions
through the ILS of Section 5.3. We selected the “winners” of the two initialization algorithms
for the starting solution, namely greedy algorithm with the fourth sorting criterion and U-
MRKP. The results are very satisfactory, especially for the latter, which provides, within one
minute (including 10 seconds for U-MRKP), solutions with an overall average error below
0.04% with respect to the best known solution. In the following, we will denote this winning
configuration as ILS∗.

The solution values produced by ILS∗ are very close to the optimal solution values produced
by the exact algorithms. However, apart from the easy instances of Classes 1 and 9, the number
of solutions that are provably optimal by comparison with the lower bound given by B&Cut
halted after 60 seconds was very low (only 73 over 378 instances). In the next section we will
see that FIMY is the only algorithm capable of obtaining a high number of provably optimal
solutions.

Table 1: Average percentage gaps from best known solutions by different heuristic algorithms.
Class

Algorithm 1 2 3 4 5 6 7 8 9 avg

Greedy heuristics

greedy[(p+j p
−
j)/wj] 39.581 59.346 67.129 15.062 69.974 28.383 27.964 67.534 0.029 41.667

greedy[p−j /wj] 21.271 15.966 18.609 17.146 23.369 10.983 10.348 20.018 10.160 16.430

greedy[p+j /wj] 22.857 9.527 18.309 13.944 22.733 12.910 13.092 18.072 5.368 15.202

greedy[(p+j + p−j)/wj] 20.209 4.015 13.405 4.589 14.144 1.042 1.105 12.786 0.029 7.925

ILP-based heuristics
B&Cut, 10ṡ 0.000 1.348 1.317 2.819 1.729 1.520 1.105 1.837 0.000 1.297
B&Cut, 60ṡ 0.000 1.167 1.148 2.086 1.266 1.196 0.885 1.266 0.000 1.002
U-MRKP, 10ṡ 0.262 0.300 0.044 0.073 0.281 0.046 0.041 0.147 0.005 0.133

Iterated Local Search

greedy[(p+j + p−j)/wj]+ILS, 60ṡ 0.000 1.106 0.004 0.312 0.065 0.241 0.213 0.090 0.000 0.226

ILS∗ = U-MRKP+ ILS, 60ṡ 0.000 0.167 0.000 0.000 0.065 0.035 0.012 0.066 0.000 0.038

18

7.2 Exact algorithms

In this section we report the computational experiments performed on the exact algorithms for
the MRKP. We compared the two standard approaches of Section 4.2 (Benders’ and B&Cut)
and the proposed Lagrangian-based algorithm of Section 6 (FIMY) on the nine classes of
instances previously described. Tables 2, 3 and 4 provide the results for Classes 1-3, 4-6, and
7-9, respectively. The iteration limit hmax of Algorithm 3 was experimentally fixed to 2.

In each table we consider all values of n and, for each n, all values of δ. The pairs of entries
in each line refer to the six MRKP instances generated, for the corresponding n and δ values,
by varying the data range R (2 values) and the capacity c (3 values). Each pair of entries
provides the average CPU time (sec) expressed in seconds, and the total number of failures
(#f), i.e., the total number of instances not solved to proven optimality. For each group of 3
lines (with an identical value of n), an additional row provides the average and total values
over the 18 instances, while the final line of each table reports the overall average and total
values over the 54 instances.

All algorithms received on input, as incumbent solution, the one produced by ILS∗ (last
line in Table 1). Each algorithm had a time limit of 1 CPU hour per single instance. An entry
‘t.l.’ in the tables indicates that the algorithm reached the time limit for all six instances. For
the other cases, the time limits (if any) were included in the average CPU time computation.

The Benders’ decomposition approach was always dominated by B&Cut, both for what
concerns CPU time and number of failures. In turn, FIMY dominated B&Cut, with few
irrelevant exception mostly concerning the very easy instances of Classes 1 and 9, which were
solved by all algorithms within very short CPU times. The hardest instances were clearly
those in Classes 6 and 7: Benders’ and B&Cut could not solve a single instance over 108,
while FIMY solved 42 of them to proven optimality. The remaining five classes (2, 3, 4, 5,
and 8) were also very hard for Benders’ and B&Cut, which solved only a small portion of the
instances (65 and 128, respectively, out of 270), whereas FIMY solved the majority of them
(241 out of 270), frequently within short CPU times. Overall, FIMY turns out to be, by far,
the most effective algorithm for the exact solution of the MRKP.

In Table 5 we show how CPU times and numbers of failures vary when increasing one
of the four parameters: number of items n (first group of lines), capacity c (second group),
profit interval width δ (third group), and range R (fourth group). Each pair of entries refers
in this case to all instances generated for the considered parameter value (162 instances for
the first three groups, 243 instances for the last group). The overall average and total values
(obviously the same for each group) are provided in the final line.

As expected, the difficulty sharply increases when n grows. The most difficult capacity
value is 0.5W , which confirms a known property of the 01KP: instances in which about half
the items are in the optimal solution tend to be more difficult than instances with solutions
containing many or few items. An increase in the value of δ produces instances that are
much more difficult for Benders’ and B&Cut, while its effect is less remarkable for FIMY. The
results in the final group show that instances with weights in a larger range are considerably
easier to solve, while the 01KP usually exhibits an opposite behavior: indeed, the maximum
regret value turned out to be, on average, relatively smaller for R = 10000 (11181 ' 1.12R)
than for R = 1000 (1550 = 1.55R), i.e., the worst scenario has, in the former case, a smaller
relative deviation between the two involved 01KP solutions.

19

Table 2: Exact algorithms, classes 1–3.
class 1 class 2 class 3

Benders’ B&Cut FIMY Benders’ B&Cut FIMY Benders’ B&Cut FIMY

n δ sec #f sec #f sec #f sec #f sec #f sec #f sec #f sec #f sec #f

50 0.1 0.02 0 0.00 0 0.02 0 2.77 0 0.15 0 0.08 0 1813.68 3 43.34 0 3.22 0
0 0.2 0.05 0 0.02 0 0.02 0 1781.57 2 11.13 0 1.23 0 t.l. 6 1925.64 3 235.65 0
0 0.3 0.22 0 0.04 0 0.04 0 1959.39 3 572.02 0 2.88 0 t.l. 6 3133.34 5 195.17 0

avg/tot 0.10 0 0.02 0 0.03 0 1247.91 5 194.43 0 1.40 0 3004.56 15 1700.77 8 144.68 0

60 0.1 0.03 0 0.02 0 0.02 0 4.18 0 0.23 0 0.16 0 2097.59 3 1458.59 2 31.78 0
0 0.2 0.06 0 0.04 0 0.03 0 2325.62 3 94.65 0 4.63 0 t.l. 6 3298.05 5 1835.69 3
0 0.3 0.48 0 0.06 0 0.04 0 2598.95 3 1812.97 3 11.64 0 t.l. 6 t.l. 6 1906.21 2

avg/tot 0.19 0 0.04 0 0.03 0 1642.92 6 635.95 3 5.47 0 3099.19 15 2785.36 13 1257.89 5

70 0.1 0.04 0 0.01 0 0.03 0 44.65 0 0.66 0 0.21 0 3522.97 5 1832.37 3 108.50 0
0 0.2 0.09 0 0.03 0 0.03 0 t.l. 6 1495.90 0 10.88 0 t.l. 6 t.l. 6 2029.31 3
0 0.3 1.26 0 0.10 0 0.06 0 t.l. 6 2628.37 3 53.70 0 t.l. 6 t.l. 6 3504.50 4

avg/tot 0.46 0 0.04 0 0.04 0 2414.88 12 1374.98 3 21.60 0 3574.32 17 3010.52 15 1880.77 7

overall 0.25 0 0.03 0 0.03 0 1768.57 23 735.12 6 9.49 0 3226.02 47 2498.88 36 1094.45 12

Table 3: Exact algorithms, classes 4–6.
class 4 class 5 class 6

Benders’ B&Cut FIMY Benders’ B&Cut FIMY Benders’ B&Cut FIMY

n δ sec #f sec #f sec #f sec #f sec #f sec #f sec #f sec #f sec #f

50 0.1 1827.99 3 224.54 0 2.92 0 1873.67 3 505.06 0 7.54 0 t.l. 6 t.l. 6 252.69 0
0 0.2 3520.07 5 1816.14 3 81.96 0 2510.63 4 1587.63 2 55.54 0 t.l. 6 t.l. 6 1161.07 0
0 0.3 t.l. 6 3145.86 5 30.36 0 t.l. 6 2205.25 3 72.12 0 t.l. 6 t.l. 6 315.12 0

avg/tot 2982.69 14 1728.85 8 38.41 0 2661.43 13 1432.65 5 45.07 0 t.l. 18 t.l. 18 576.29 0

60 0.1 1979.22 3 1470.83 2 21.45 0 2140.18 3 1803.50 3 46.62 0 t.l. 6 t.l. 6 3409.07 5
0 0.2 t.l. 6 3054.10 5 1383.02 0 2499.71 4 1805.44 3 348.63 0 t.l. 6 t.l. 6 3235.28 4
0 0.3 t.l. 6 t.l. 6 411.16 0 t.l. 6 t.l. 6 703.82 0 t.l. 6 t.l. 6 t.l. 6

avg/tot 3059.74 15 2708.18 13 605.21 0 2746.63 13 2402.73 12 366.36 0 t.l. 18 t.l. 18 3414.75 15

70 0.1 2906.09 4 1824.26 3 60.38 0 t.l. 6 1859.17 3 112.26 0 t.l. 6 t.l. 6 t.l. 6
0 0.2 t.l. 6 t.l. 6 1849.82 3 t.l. 6 2565.37 4 1723.33 2 t.l. 6 t.l. 6 t.l. 6
0 0.3 t.l. 6 t.l. 6 1662.88 0 t.l. 6 t.l. 6 2662.27 3 t.l. 6 t.l. 6 t.l. 6

avg/tot 3368.70 16 3007.66 15 1191.03 3 t.l. 18 2674.73 13 1499.29 5 t.l. 18 t.l. 18 t.l. 18

overall 3137.04 45 2481.56 36 611.55 3 3002.69 44 2170.03 30 636.90 5 t.l. 54 t.l. 54 2530.32 33

Table 4: Exact algorithms, classes 7–9.
class 7 class 8 class 9

Benders’ B&Cut FIMY Benders’ B&Cut FIMY Benders’ B&Cut FIMY

n δ sec #f sec #f sec #f sec #f sec #f sec #f sec #f sec #f sec #f

50 0.1 t.l. 6 t.l. 6 234.40 0 1157.34 0 9.59 0 2.13 0 0.02 0 0.01 0 0.02 0
0 0.2 t.l. 6 t.l. 6 794.61 0 t.l. 6 1935.18 3 120.84 0 0.19 0 0.03 0 0.02 0
0 0.3 t.l. 6 t.l. 6 594.62 0 t.l. 6 2386.95 3 103.80 0 0.67 0 0.07 0 0.03 0

avg/tot t.l. 18 t.l. 18 541.21 0 2785.78 12 1443.90 6 75.59 0 0.29 0 0.04 0 0.03 0

60 0.1 t.l. 6 t.l. 6 3088.63 3 2648.91 4 854.84 1 25.08 0 0.05 0 0.01 0 0.03 0
0 0.2 t.l. 6 t.l. 6 t.l. 6 t.l. 6 t.l. 6 1834.65 3 0.40 0 0.07 0 0.04 0
0 0.3 t.l. 6 t.l. 6 t.l. 6 t.l. 6 t.l. 6 900.30 0 3.69 0 0.15 0 0.07 0

avg/tot t.l. 18 t.l. 18 3429.48 15 3282.97 16 2684.47 13 920.01 3 1.38 0 0.08 0 0.05 0

70 0.1 t.l. 6 t.l. 6 t.l. 6 t.l. 6 1887.72 3 63.11 0 0.05 0 0.02 0 0.03 0
0 0.2 t.l. 6 t.l. 6 t.l. 6 t.l. 6 t.l. 6 1997.70 3 0.39 0 0.06 0 0.03 0
0 0.3 t.l. 6 t.l. 6 t.l. 6 t.l. 6 t.l. 6 2620.39 3 3.46 0 0.15 0 0.06 0

avg/tot t.l. 18 t.l. 18 t.l. 18 t.l. 18 3028.96 15 1560.40 6 1.30 0 0.08 0 0.04 0

overall t.l. 54 t.l. 54 2523.53 33 3222.91 46 2385.78 34 852.00 9 0.99 0 0.06 0 0.04 0

20

Table 5: Exact algorithms, summary.
Benders’ B&Cut FIMY
sec #f sec #f sec #f

n
50 2209.19 95 1522.18 63 158.08 0
60 2337.00 101 2046.22 90 1111.03 38
70 2639.96 117 2255.13 97 1483.66 57

c
0.45W 2407.00 105 1898.24 81 884.78 30
0.50W 2366.93 102 1967.44 85 957.56 34
0.55W 2412.23 106 1957.85 84 910.43 31

δ
0.1 1882.20 79 1310.08 56 543.34 20
0.2 2601.43 114 2058.68 88 1092.73 39
0.3 2702.52 120 2454.77 106 1116.70 36

R
1000 2633.05 175 2307.74 150 1149.38 64

10000 2157.73 138 1574.61 100 685.80 31

avg/tot 2395.39 313 1941.18 250 917.59 95

8 Conclusions

If an investor wants to determine the best way to invest her/his capital by selecting among a
number of financial products, each requiring a given capital and ensuring a fixed return, then
she/he faces the well-known 0-1 knapsack problem. Despite the theoretical difficulty of this
problem, modern combinatorial algorithms solve knapsack instances with thousands of items
within seconds. In this paper we studied a robust version of the knapsack problem, in which
the return of a product does not take a fixed value but varies in a given interval, and the
aim of the investor is to minimize the maximum regret of her/his investment. The resulting
problem is known as the interval min-max regret knapsack problem. This problem is not only
difficult from a theoretical point of view (to an extent which is still topic of research), but also
very challenging in practice.

If a heuristic solution is to be found in a short time, then the investor should not use
standard greedy techniques, because this could easily lead to gaps, from the best possible
regret, ranging between 10 and 40%. We showed that the use of more elaborate ILP-based
heuristics improves such gap, but still there are instances in which these algorithms behave
poorly. In order to obtain good results, it is necessary to improve on the heuristic solutions
through metaheuristic refinements, such as the iterated local search we introduced. We also
studied the case in which a longer computation time is allowed, and the aim is to find a proven
optimal regret. In such a case, the exact techniques normally used for this kind of robust
problems, such as Benders’ decomposition and branch-and-cut, show a poor performance.
Through theoretical findings and algorithmic developments, we were able to solve to proven
optimality all instances with up to 50 investments, and to outperform the standard approaches
for larger instances.

References

[1] H. Aissi, C. Bazgan, and D. Vanderpooten. Minmax and minmax regret versions of com-
binatorial optimization problems: A survey. European Journal of Operational Research,
197:427–438, 2009.

21

[2] H. Aissi, C. Bazgan, and D. Vanderpooten. General approximation schemes for minmax
(regret) versions of some (pseudo-)polynomial problems. Discrete Optimization, 7:136–
148, 2010.

[3] I. Averbakh. On the complexity of a class of combinatorial optimization problems with
uncertainty. Mathematical Programming A, 90:263–272, 2001.

[4] A. Ben-Tal and A. Nemirovski. Robust solution of linear programming problems con-
taminated with uncertain data. Mathematical Programming, 88:411–4124, 2000.

[5] J.F. Benders. Partitioning procedures for solving mixed integer variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

[6] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming B, 98:49–71, 2003.

[7] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52:35–53, 2004.

[8] J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in
Operations Research and Financial Engineering. Springer, Berlin, 2nd edition, 2011.

[9] A. Candia-Véjar, E. Álvarez-Miranda, and N. Maculan. Min-max regret combinato-
rial optimization problems: An algorithmic perspective. RAIRO - Operations Research,
45:101–129, 2011.

[10] V.G. Deineko and G.J. Woeginger. Pinpointing the complexity of the interval min-max
regret knapsack problem. Discrete Optimization, 7:191–196, 2010.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

[12] A. Kasperski. Discrete optimization with interval data. Springer, Berlin, 2008.

[13] A.O. Kazakci, S. Rozakis, and D. Vanderpooten. Energy crop supply in France: A
minmax regret approach. Journal of the Operational Research Society, 58:1470–1479,
2007.

[14] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, 2004.

[15] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer AP,
Dordrecht, 1997.

[16] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for the
0-1 knapsack problem. Management Science, 45:414–424, 1999.

[17] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Chichester, 1990.

[18] S. Michenaudc and B. Solnik. Applying regret theory to investment choices: Currency
hedging decisions. Journal of International Money and Finance, 27:677–694, 2008.

22

[19] R. Montemanni, J. Barta, M. Mastrolilli, and L.M. Gambardella. The robust traveling
salesman problem with interval data. Transportation Science, 41:366–381, 2011.

[20] R. Montemanni and L.M. Gambardella. The robust shortest path problem with interval
data via Benders decomposition. 4OR: A Quarterly Journal of Operations Research,
3:315–328, 2005.

[21] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[22] J. Pereira and I. Averbakh. Exact and heuristic algorithms for the interval data robust
assignment problem. Computers & Operations Research, 38:1153–1163, 2011.

[23] J. Pereira and I. Averbakh. The robust set covering problem with interval data. Annals
of Operations Research, 207:217–235, 2013.

[24] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming:
Modeling and Theory. MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA,
2009.

[25] H. Yaman, O.E. Karaşan, and M.C. Pinar. The robust spanning tree problem with
interval data. Operations Research Letters, 29:31–40, 2001.

[26] G. Yu. On the max-min 0-1 knpasack problem with robust optimization applications.
Operations Research, 44:407–415, 1996.

23

