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The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) 
test bodies on a given space-time in order to compute corrections to the classical orbits predicted 
in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence 
Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP 
modified Hawking temperature to a deformation of the background metric. Such a deformed background 
metric determines new geodesic motions without violating the Equivalence Principle. We point out here 
that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the 
former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed 
canonical commutators.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Equivalence Principle and diffeomorphism invariance

It is well known [1] that the (weak) Equivalence Principle (EP; 
namely the equality between gravitational and inertial mass) dic-
tates that the equation of motion of test particles in a gravitational 
field be of the form

d2xλ

dτ 2
+ �λ

μν

dxμ

dτ

dxν

dτ
= 0 . (1)

On the other hand, Eq. (1) turns also out to describe geodesics in a 
manifold with metric gμν and the Levi-Civita connection �λ

μν =
1
2 gλσ

(
gμσ,ν + gνσ ,μ − gμν,σ

)
.1 In his foundational paper [2] of 

General Relativity (GR), Albert Einstein proposed that the geodesic 
equation (1) played the role of the equation of motion for a point 
particle in the gravitational field gμν , which in turn should obey 
the celebrated field equations

* Corresponding author.
E-mail addresses: casadio@bo.infn.it (R. Casadio), fabio@phys.ntu.edu.tw

(F. Scardigli).
1 As usual, commas denote partial derivatives w.r.t. the coordinates xμ and semi-

colons the covariant derivatives in the metric gμν ; Rμν is the Ricci tensor and 
R the Ricci scalar; we shall also use units with c = 1 but display the Boltzmann 
constant kB, the Planck constant h̄, the Newton constant GN and the Planck mass 
mp = √

h̄/GN explicitly.
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Gμν ≡ Rμν − 1

2
R gμν = 8π GN Tμν , (2)

where Tμν is the energy-momentum tensor of the matter source. 
In that original formulation, the identification of the equation of 
motion with the geodesic equation was seen as an independent 
axiom of the theory, in particular independent from the field equa-
tions (2). From this point of view, one can say that the content of 
the EP is precisely that the equation of motion is the geodesic equation.

In successive studies [3,4], Einstein and collaborators obtained a 
result of considerable importance: the equation of motion of point 
particles, that is the geodesic equation (1), can in fact be derived 
from the gravitational field equations (2).2 In other words, the field 
equations determine uniquely the equation of motion for bodies in 
a gravitational field which are not subjected to other forces, and 
the ensuing trajectories are geodesics of the corresponding metric. 
This finding is in full agreement with the postulate of geodesic 
motion, which therefore appears as a consequence of the field 
equations, and not as an independent axiom of the theory.

An explicit derivation can be found for instance in Refs. [6,7]. It 
is important here to remark that the starting point is the conser-
vation of the energy-momentum tensor, to wit

2 Strictly speaking, the argument applies to dust (a smooth fluid with zero pres-
sure), since point-like sources are known to be mathematically incompatible with 
Eq. (2) [5].
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T μν
;ν = 0 . (3)

This continuity condition can be obtained directly from Eq. (2), 
using the Bianchi identity for the Einstein tensor, 0 = Gμν

;ν =
8 π GN T μν

;ν . In this way, it appears as a consistency condition for 
the field equations. More generally, Eq. (3) can be derived by re-
quiring the diffeomorphism invariance of the matter action [1,8]. 
In fact, under a generic (infinitesimal) change of coordinates, x′μ =
xμ + ξμ(x), the metric tensor changes by δgμν = −(ξμ;ν + ξν;μ), 
and the matter action varies as

δSM = 1

2

∫
d4x

√−g T μν δgμν

= −
∫

d4x
√−g T μν ξμ;ν

=
∫

d4x
√−g T μν

;ν ξμ . (4)

Since the variation ξμ is arbitrary, requiring that δSM = 0 is equiv-
alent to require Eq. (3). In conclusion, geodesic motion and the EP 
are deeply rooted into the field equations of GR and, even more 
fundamentally, they stem from the diffeomorphism invariance of 
the matter action (which is demanded by the Principle of GR). One 
therefore cannot modify or renounce to either of them easily.

2. Generalized Uncertainty Principle

Much effort has been put into trying to incorporate the effects 
of gravity in quantum physics by means of a GUP of the form [9–
17]


x
p ≥ h̄

2

(
1 + β0 
p2

)
, (5)

where x and p are the position and conjugate momentum of a 
particle, with the corresponding quantum observables denoted by 
x̂ and p̂, 
O 2 ≡ 〈 Ô 2 〉 − 〈 Ô 〉2 for any operator Ô , and β0 = β/m2

p
is a deforming parameter expected to emerge from candidate the-
ories of quantum gravity. Uncertainty relations can be associated 
with (fundamental) commutators by means of the general inequal-
ity


A 
B ≥ 1

2

∣∣∣〈 [ Â, B̂] 〉
∣∣∣ . (6)

For instance, one can derive Eq. (5) from the commutator[
x̂, p̂

] = i h̄
(

1 + β0 p̂2
)

, (7)

for which Eq. (6) yields


x
p ≥ h̄

2

(
1 + β0 〈 p̂2 〉

)
= h̄

2

[
1 + β0

(

p2 + 〈 p̂ 〉2

)]
. (8)

This immediately implies that the GUP (5) holds for any quantum 
state, since 〈 p̂ 〉2 ≥ 0 always. In particular for mirror-symmetric 
states ψms satisfying

〈ψms | p̂ | ψms 〉 = 0 , (9)

one has 
p2 = 〈 ψms | p̂2 | ψms 〉 and the inequality (8) coincides 
with the GUP (5). We also recall that Eq. (5) implies the existence 
of a minimum length 
 = h̄

√
β0 which one expects of the order of 

the Planck length.
Theoretical consequences of the GUP on quantum (microscopic) 

systems have been extensively investigated by various authors (see 
e.g. [18–20]). In addition, several experiments have been proposed 
to test different GUP’s in the laboratory [21–23], as well as some 
ground and space based experiments could also be able to reveal 
GUP effects (see e.g. [24]). It is very important that the size of such 
modifications can be constrained also with macroscopic test bod-
ies by existing astronomical data employed for the standard tests 
of GR. Constraining the deforming parameter β using astronomical 
data requires to estimate the effect of the GUP (5) in the classi-
cal limit. In the existing literature, this has been done in different 
ways. In the following, we critically review and compare two com-
plementary approaches of particular relevance.

3. GUP and classical mechanics

Works devoted to evaluate the impact of the GUP on the motion 
of classical (macroscopic) bodies usually employ a modification of 
the classical Poisson brackets which resembles the deformed quan-
tum commutator (7) (see, e.g. [25–31]). They essentially implement 
the classical limit as the formal mapping into Poisson brackets

1

ih̄

[
x̂, p̂

] =
(

1 + β0 p̂2
)

→ {x, p} =
(

1 + β0 p2
)

. (10)

Such deformed Poisson brackets are then used to determine or-
bits in the Solar system and derive perturbative corrections to the 
Newtonian trajectories.

The typical form for the correction coming from Eq. (10) can be 
found in Appendix A of Ref. [32]. To keep the calculation transpar-
ent and focus on the concepts, we just consider a point-like mass 
m falling radially towards a mass M 
 m. From the Newtonian 
Hamiltonian

H = p2

2 m
− GN M m

r
≡ p2

2 m
+ m V N (11)

and the Poisson brackets (10) with x = r, the canonical equations 
read

ṙ = {r, H} =
(

1 + β0 p2
) p

m
(12)

ṗ = {p, H} = −
(

1 + β0 p2
) GN M m

r2
, (13)

where a dot stands for the time derivative. To first order in β , one 
then obtains the equation of motion

r̈ � − GN M

r2

(
1 + 4β

m2

m2
p

ṙ2

)
. (14)

Equivalently, one can proceed like in Ref. [25], starting from 
Eq. (12). The conservation of the total energy E = m E then im-
plies p2 = 2 m2 (E − V N), using which one can finally write (for a 
particle with zero angular momentum)

ṙ2 � 2 (E− V N)

[
1 + 4β

m2

m2
p

(E− V N)

]
, (15)

again to first order in β .
The terms of order β in both Eqs. (14) and (15) depend on the 

mass m of the test body and on its velocity ṙ ∼ (E − V N)1/2. It is 
therefore clear that the GUP correction obtained in this approach 
will correspond to a deviation from the geodesic motion (in a ref-
erence Schwarzschild space-time), thus leading to a violation of 
the EP in general. Moreover, and even worse, the size of this cor-
rection grows quadratically with the mass m of the test body in 
units of the Planck mass. This would inevitably lead to huge de-
partures from GR (and violations of the EP) for any astronomical 
object, unless β is vanishingly small, like it was indeed argued in 
Ref. [25].
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Difficulties as the above are fully confirmed also when the mod-
ified classical Poisson brackets are formulated in a covariant way, 
on a fixed background metric [29,30]. A slightly different path 
is followed in Ref. [28], where the EP is recovered even for the 
GUP modified classical mechanics, by considering composite bod-
ies and postulating that the kinetic energy is additive. The price 
to pay in this case is a different deformation parameter β0i for 
each specie i of (elementary) particles of mass mi composing the 
macroscopic body. Correspondingly, there would exist a different 
minimal length 
i = h̄

√
β0i for each elementary particle. For in-

stance, the minimal length that can be probed by a proton should 
be smaller than that probed by an electron. This feature is clearly 
at odd with the universality of gravitation, and with the fact that 
the Planck length can be computed in a way that does not depend 
at all on the particle considered (see e.g. [33]).

What is the origin of such blatantly unphysical predictions and 
potential violation of the EP? The error can be traced back to the 
implementation of the classical limit in Eq. (10) for objects with 
strictly non-vanishing momentum. In fact, for a generic (normal-
ized) state ψ with 〈 p̂ 〉 
= 0, the classical limit of the commuta-
tor (7) is formally given by

{x, p} = lim
h̄→0

〈ψ | [x̂, p̂] | ψ 〉
i h̄

= lim
h̄→0

[
1 + β

GN

h̄

(
〈 p̂ 〉2 + 
p2

)]
. (16)

However, classical (macroscopic) bodies with non-vanishing mo-
mentum should be more precisely represented by semiclassical 
states ψcl, for which we expect the classical limit can be gener-
ically defined by the two properties3

lim
h̄→0

〈ψcl | p̂ | ψcl 〉 = p , (17)

where p is the classical momentum, and

lim
h̄→0


p2 ≡ lim
h̄→0

(
〈ψcl | p̂2 | ψcl 〉 − 〈ψcl | p̂ | ψcl 〉2

)
= 0 . (18)

Therefore, even under the stronger condition 
p2/h̄ → 0, the 
limit (16) becomes

{x, p} = lim
h̄→0

(
1 + β

GN p2

h̄

)
, (19)

which diverges badly like h̄−1.4 Of course, this divergence does not 
occur for mirror symmetric states, for which Eq. (9) implies that 
the classical momentum p = 0. In fact Eq. (19) yields the standard 
Poisson brackets without corrections if we set p = 0 before taking 
the limit. In other words, since mirror symmetric states can only 
represent objects with zero momentum, the commutator (7) and 
the corresponding Poisson brackets (10) should be applied only to 
classical bodies strictly at rest. It is then obvious why Eq. (10) can-
not describe the dynamics of planets orbiting the Sun!

A possible way out of this conundrum is to derive the GUP (5)
from the (explicitly state dependent) deformed commutator

3 Of course, the whole topic of how the classical behavior emerges in quan-
tum physics is far richer than what we need to discuss here (for a recent review, 
see Ref. [34]). For instance, the condition (18) for the states ψcl could be im-
plemented by requiring 
p ∼ h̄α , with α > 0. Since for such semiclassical states 
we can also assume 
x ∼ h̄γ , with γ > 0, then Heisenberg uncertainty relation 

x 
p ∼ h̄α+γ ≥ h̄/2 would continue to hold throughout the limiting process for 
h̄ → 0 if α + γ ≤ 1. However, this is only a naive way to enforce Eqs. (17) and (18)
and not necessarily a useful one.

4 The divergence obviously disappears when gravity is switched off (GN = 0) be-
fore taking the limit.
[
x̂, p̂

]



= i h̄
[

1 + β0

(
p̂2 − 〈 p̂ 〉2

)]
, (20)

which indeed leads to the GUP (5) for any quantum state via the 
inequality (6), and it further reduces to the commutator (7) for 
mirror symmetric states. The commutator (20), for semiclassical 
states satisfying the conditions (17) and (18), implies

{x, p} = lim
h̄→0

〈ψcl | [x̂, p̂]
 | ψcl 〉
i h̄

= 1 + β GN 
0 , (21)

where 
0 ≡ lim
h̄→0

(
p2/h̄) depends on the state ψcl and can take 

the following values:

i) 
0 = 0 and the classical limit (21) yields the standard Poisson 
brackets with {x, p} = 1;

ii) 
0 > 0 and finite. The limit in Eq. (21) then yields the con-
stant C2

0 = 1 + β GN 
0, which can be simply used to rescale x
and p so that the standard Poisson brackets are again recov-
ered;

iii) 
0 = ∞ and the commutator (20) does not yield a consistent 
classical limit. Hence, the corresponding states ψcl should be 
avoided.

Summarizing: the classical limit is either badly defined [be-
cause Eqs. (19) or (21) diverge], or is just given by the classical 
Poisson brackets with {x, p} = 1 without corrections. Therefore, 
along this way, it is clearly impossible to estimate any effect of 
the GUP on macroscopic bodies. To this aim, we should follow a 
completely different path.

4. GUP and General Relativity

In order to compute GUP effects on macroscopic bodies, we 
may rely on the indirect argument illustrated in Ref. [32]. Let us 
consider a Schwarzschild black hole of mass M , whose metric is 
given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 d�2 , (22)

with f (r) = 1 − 2 GN M/r. From the inequality (5), one can de-
rive a modified Hawking temperature which, to first order in β , 
reads [33,35–37]

T � h̄

8π GN kB M

(
1 + β m2

p

4π2 M2

)
. (23)

We then introduce a modified metric function

f (r) + δ f (r) = 1 − 2 GN M

r
+ ε

G2
N M2

r2
, (24)

and compute the correction δ f (r) which can reproduce the re-
sult (23) by means of a standard Quantum Field Theory calculation. 
We thus find a relation between the deformation parameter ε of 
the metric and the deformation parameter β of the GUP as

β � − M2

m2
p

ε2 . (25)

A negative β should not surprise, as it was also found in differ-
ent contexts, e.g. when uncertainty relations are formulated on 
a lattice of finite size [38], when the Chandrasekhar limit for 
white dwarfs is computed with the GUP [39], or when GUP re-
sults are compared with corpuscular gravity models [40]. If we 
now study the geodesic motion of test bodies on this deformed 
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background metric,5 we expect no violation of the EP by construc-
tion, and obtain a typical correction to the Newtonian potential of 
the form [32]6


V GUP = ε
G2

N M2

2 r2
� √|β| mp

M
V 2

N . (28)

Unlike Eqs. (14) and (15), this correction does not depend on the 
mass or speed of the orbiting object at all, in full agreement with 
the EP. Moreover, it becomes vanishingly small for macroscopic 
sources of mass M 
 mp (as one should reasonably expect). For 
the sake of completeness, we remark that there are other ap-
proaches which avoid any EP violation by construction, like that 
of Ref. [43], where gravitational waves are used for constrain-
ing a GUP-modified dispersion relation for gravitons, and that of 
Ref. [44], where a GUP-deformed background metric is used to 
compute corrections to the black hole shadow. Furthermore, ex-
tensive discussions of precision tests of the EP, and its possible 
violations, in different contexts (e.g. in scalar-tensor gravity and at 
finite temperature) can be found in Refs. [45,46].

5. Experimental bounds and conclusions

Aside from the previous considerations on the EP and the clas-
sical limit, the correction term proportional to β in Eq. (15) can 
also be quantitatively confronted with the correction (28), assum-
ing of course that the deforming parameter β is universal and 
applies to both test bodies and gravitational sources of any scale. 
For macroscopic objects and, in particular, for consistence with 
Solar System tests, the correction in Eq. (15) requires an incred-
ibly small GUP parameter β � 10−66 [25,29]. Consequently, using 
this bound in the correction (28) for the extreme case of a Planck 
size source of mass M � mp, one finds 
V GUP � 10−33 V 2

N, which 
is essentially zero. This appears rather odd, since one introduces 
the GUP (5) precisely for describing quantum gravity effects at 
the Planck scale. For instance, one expects a minimum measur-
able length 
 ∼ 
p

√
β comparable to the Planck length, rather 

than many orders of magnitude shorter. On the other hand, if 
one accepts the Solar System bounds on β coming from 
V GUP
in Eq. (28), that is β � 1069 [32,42], the correction for a hypothet-
ical Planck size source can still be very relevant (as expected).

Since the corrections of the form in Eq. (15) are irrelevant at 
the Planck scale, violate the EP, grow larger and larger for planets 
in the Solar System, moreover they stem from a commutator which 
is incompatible with the proper classical limit for any state with 
non-vanishing classical momentum, we conclude that the dynami-
cal equations (14) and (15), and the modified Poisson brackets (10)
should be viewed as both conceptually wrong and phenomenolog-
ically unviable.
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5 For details about orbits in GR, see e.g. Ref. [41].
6 A deformation of the metric function of the form

δ f (r) = ε f (r)

(
2 GN M

r

)2

(26)

was used in Ref. [42], where the authors obtain a GUP parameter

α0 � − M

mp
ε , (27)

which is related to β by β � α2
0 . The experimental bounds on α0 obtained in 

Ref. [42] are therefore equivalent to those on β derived in Ref. [32].
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