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Abstract. We study the uniform computational content of the Vitali
Covering Theorem for intervals using the tool of Weihrauch reducibil-
ity. We show that a more detailed picture emerges than what a related
study by Giusto, Brown, and Simpson has revealed in the setting of
reverse mathematics. In particular, different formulations of the Vitali
Covering Theorem turn out to have different uniform computational con-
tent. These versions are either computable or closely related to uniform
variants of Weak Weak Kőnig’s Lemma.

1 Introduction

In order to analyze the uniform computational content of the Vitali Covering
Theorem in different versions it is useful to introduce some terminology that will
allow us to phrase these versions in succinct terms.

Let I = (In)n be a sequence of open intervals In ⊆ R, let x ∈ R and A ⊆ R.
We say that x ∈ R is captured by I, if for every ε > 0 there exists some n ∈ N with
diam(In) < ε and x ∈ In. We call I a Vitali cover of A, if every x ∈ A is captured
by I. We say that I is saturated, if I is a Vitali cover of

⋃ I :=
⋃∞

n=0 In. Finally,
we say that I eliminates A, if the In are pairwise disjoint and λ(A \ ⋃ I) = 0,
where λ denotes the Lebesgue measure on R.

Using this terminology we can now formulate the Vitali Covering Theorem
(see Richardson [18, Theorem 7.3.2]).

Theorem 1 (Vitali Covering Theorem). Let A ⊆ [0, 1] be Lebesgue mea-
surable and let I be a sequence of intervals. If I is a Vitali cover of A, then
there exists a subsequence J of I that eliminates A.
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The Vitali Covering Theorem has been studied in reverse mathematics by
Brown, Giusto, and Simpson [10] and was shown to coincide in proof strength with
the well-known principle WWKL0 that stands for Weak Weak Kőnig’s Lemma, see
Simpson [19]. The following result can be found inBrown,Giusto, and Simpson [10,
Theorems 3.3 and 5.5] and also in Simpson [19, Theorems X.1.9 and X.1.13]. For a
related study in constructive analysis, see Diener and Hedin [11].

Theorem 2 (Brown, Giusto, and Simpson [10]). Over RCA0, the following
statements are equivalent to each other:

1. Weak Weak Kőnig’s Lemma WWKL0,
2. The Vitali Covering Theorem (Theorem1) for A = [0, 1],
3. For any sequence of intervals I = (In)n with [0, 1] ⊆ ⋃ I it holds that∑∞

n=0 λ(In) ≥ 1.

In a series of articles [1–3,5,6,12,13,15,16] by different authors the
Weihrauch lattice was established as a uniform, resource-sensitive and hence
more fine-grained version of reverse mathematics. Starting with work of
Brattka and Pauly [8], Dorais, Dzhafarov, Hirst, Mileti and Shafer [12] and
Brattka, Gherardi and Hölzl [4,5], probabilistic problems were studied in the
Weihrauch lattice. In particular positive choice PCX was considered, which is
the problem of finding a point in a closed A ⊆ X of positive measure, and
the following relation to Weak Weak Kőnig’s Lemma was established in the
Weihrauch lattice [5, Proposition 8.2 and Theorem 9.3 and its proof].

Fact 3 (Weak Weak Kőnig’s Lemma)

1. WWKL≡sW PC2N ≡sW PC[0,1],
2. WWKL × CN ≡sW PCN×2N ≡sW PCR.

Here ≡sW stands for equivalence with respect to strong Weihrauch reducibil-
ity. We will provide exact definitions of the relevant terms in the following Sect. 2.
In this article we are going to extend the work by Brown, Giusto and Simpson [10]
using the tools of the Weihrauch lattice and we will demonstrate how the above
mentioned equivalence classes and others feature in this approach.

One of our main insights is related to the observation that different logical
formulations of the Vitali Covering Theorem turn out to have different uniform
computational content, a phenomenon that appeared in a similar way in the
study of the Baire Category Theorem by Brattka and Gherardi [2] and Brattka,
Hendtlass and Kreuzer [7]. The following three propositional formulas essentially
correspond to the different logical formulations of the Vital Covering Theorem
that we consider:

0. (S ∧ C) → E,
1. (S ∧ ¬E) → ¬C,
2. ¬E → (¬S ∨ ¬C).



Here S corresponds to the statement that the input sequence is saturated,
C to the statement that it is a cover and E to the statement that there is
an eliminating subsequence. The stated propositional formulas are equivalent
to each other when we have the full strength of classical logic at our disposal.
More precisely, we are going to use the following versions of the Vitali Covering
Theorem for the special case A = [0, 1]:

0. VCT0: For every Vitali cover I of [0, 1] there exists a subsequence J of I that
eliminates [0, 1].

1. VCT1: For every saturated I that does not admit a subsequence which elim-
inates [0, 1], there exists a point x ∈ [0, 1] that is not covered by I.

2. VCT2: For every sequence I that does not admit a subsequence which elimi-
nates [0, 1], there exists a point x ∈ [0, 1] that is not captured by I.

It is clear that 0. is equivalent to 2. since they are contrapositive forms of
each other. We also obtain “0.⇒1.” since every saturated cover of [0, 1] is a Vitali
cover of [0, 1]. Finally, we obtain “1.⇒0.” since every Vitali cover I of [0, 1] can
be extended to a saturated sequence I ′ by only adding intervals that do not
overlap with the closed set [0, 1]. Every subsequence J ′ of I ′ that eliminates
[0, 1] then leads to a subsequence J of I that eliminates [0, 1]. Our main results
on the Vitali Covering Theorem can now be phrased as follows. The proofs will
be presented in Sect. 3.

Theorem 4 (Vitali Covering Theorem). We obtain that

0. VCT0 is computable,
1. VCT1 ≡sW PC[0,1] ≡sW WWKL and
2. VCT2 ≡sW PCR ≡sW WWKL × CN.

It can be argued that CN is the analogue of Σ0
1–induction in the Weihrauch

lattice (see Brattka and Rakotoniaina [9]) and hence the classes WWKL and
WWKL×CN have no distinguishable non-uniform content in reverse mathematics,
where Σ0

1–induction is already included in RCA0.
In this context it is also interesting to note that the equivalence classes of

WWKL and WWKL × CN characterize certain natural classes of probabilistic
problems. In [5, Corollary 3.4] the following was proved.

Fact 5 (Las Vegas Computability). The following holds for any f .

1. f ≤W PC[0,1] ⇐⇒ f is Las Vegas computable,
2. f ≤W PCR ⇐⇒ f is Las Vegas computable with finitely many mind changes.

Since these classes of probabilistically computable maps will not play any
further role in this article, we will skip the precise definitions and refer the
interested reader to Brattka, Gherardi and Hölzl [4,5].

In Sect. 4 we further analyze item 3. of Theorem2, a statement which is
related to countable additivity in reverse mathematics. We show that there is a
formalization ACT of this statement that we call Additive Covering Theorem and
that turns out to be equivalent to ∗-WWKL, yet another variant of Weak Weak
Kőnig’s Lemma that is even weaker than WWKL from the uniform perspective.
In the diagram in Fig. 2 we present a survey of our results.



2 Preliminaries

We assume that the reader is familiar with the concepts defined in the intro-
ductory part of Brattka, Gherardi, and Hölzl [5, Sect. 2]. We recall some of the
most central concepts. Firstly, Weihrauch reducibility and its strong counterpart
are defined for multi-valued functions f :⊆ X ⇒ Y on represented spaces X,Y .
Representations are surjective partial mappings from Baire space N

N onto the
represented spaces and they provide the necessary structures to speak about
computability and other concepts. Since we are not using representations in any
formal way here, we refrain from presenting further details and we point the
reader to Weihrauch [20] and Pauly [17].

Definition 6 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆ W ⇒ Z
be multi-valued functions on represented spaces.

1. f is said to be Weihrauch reducible to g, in symbols f ≤W g, if there are
computable K :⊆ X ⇒ W , H :⊆ X × Z ⇒ Y with ∅ �= H(x, gK(x)) ⊆ f(x)
for all x ∈ dom(f).

2. f is said to be strongly Weihrauch reducible to g, in symbols f ≤sW g, if there
are computable K :⊆ X ⇒ W , H :⊆ Z ⇒ Y with ∅ �= HgK(x) ⊆ f(x) for
all x ∈ dom(f).

The corresponding equivalences are denoted by ≡W and ≡sW, respectively.

In some results we are referring to products of multi-valued functions, which
we define next.

Definition 7 (Products). For f :⊆ X ⇒ Y and g :⊆ W ⇒ Z we define
f × g :⊆ X × W ⇒ Y × Z by (f × g)(x,w) := f(x) × g(w) and dom(f × g) :=
dom(f) × dom(g).

Since we are going to prove that certain versions of the Vitali Covering The-
orem can be characterized with the help of certain versions of positive choice,
we need to define positive choice next. For this purpose we use the negative
information representation of A−(X), which represents closed sets A ⊆ X by
enumerating rational open balls B(xi, ri) that exhaust the complement of A,
that is X \ A =

⋃∞
i=0 B(xi, ri). The xi are taken from some canonical dense

subset of X and the ri are rational numbers. For details we refer the reader to
Brattka, Gherardi and Hölzl [5].

Definition 8 (Choice and positive choice). Let X be a separable metric
space with a Borel measure μ and let A−(X) denote the set of closed subsets
A ⊆ X with respect to negative information.

1. By CX :⊆ A−(X) ⇒ X,A �→ A we denote the choice problem of X with
dom(CX) := {A : A �= ∅}.

2. By PCX :⊆ A−(X) ⇒ X,A �→ A we denote the positive choice problem of X
with dom(PCX) := {A : μ(A) > 0}.



We will mostly work with the real numbers R or the unit interval [0, 1], both
equipped with the Lebesgue measure λ. In Sect. 4 we will also use a quantitative
version P>εC[0,1] of PC[0,1] which is the restriction of PC[0,1] to closed sets
A ⊆ [0, 1] with λ(A) > ε for ε > 0.

3 Vitali Covering in the Weihrauch Degrees

We now translate the three logically equivalent versions of the Vitali Covering
Theorem that were presented in the introduction into their corresponding multi-
valued functions and hence into Weihrauch degrees.

By Int we denote the set of sequences (In)n of open Intervals In = (a, b)
with a, b ∈ Q where we let (a, b) = ∅ if b ≤ a. Formally we represent Int using
the canonical representation of the set (Q2)N.

Definition 9 (Vitali Covering Theorem). We define the following multi-
valued functions.

0. VCT0 :⊆ Int ⇒ Int, I �→ {J : J is a subsequence of I that eliminates [0, 1]}
and dom(VCT0) contains all I ∈ Int that are Vitali covers of [0, 1].

1. VCT1 :⊆ Int ⇒ [0, 1], I �→ [0, 1] \ ⋃ I and dom(VCT1) contains all I ∈ Int
that are saturated and that do not have a subsequence that eliminates [0, 1].

2. VCT2 :⊆ Int ⇒ [0, 1], I �→ {x ∈ [0, 1] : x is not captured by I} and
dom(VCT2) contains all I ∈ Int that do not have a subsequence that elimi-
nates [0, 1].

We note that dom(VCT1) ⊆ dom(VCT2) and that VCT1 is a restriction of
VCT2 (see Proposition 15). By the Vitali Covering Theorem (Theorem 1) the
sequences I ∈ dom(VCT2) cannot be Vitali covers of [0, 1].

3.1 The Computable Version

Brattka and Pauly [8] noticed that VCT0 is computable; we will give a formal
proof in this subsection. As a preparation we need the following lemma, where for
A ⊆ R we denote by A◦ and ∂A the interior and the boundary of A, respectively.

Lemma 10. Let A ⊆ [0, 1] be a closed set with λ(A) > 0 and λ(∂A) = 0. If
I = (In)n∈N is a Vitali cover of A, then the subsequence IA of I that consists
only of those In with In ⊆ A is a Vitali cover of A◦.

Proof. We note that λ(A) > 0 and λ(∂A) = 0 implies λ(A◦) = λ(A \ ∂A) > 0.
In particular, A◦ �= ∅ and the sequence IA is well-defined. We claim that IA is
saturated. Let x ∈ ⋃ IA and ε > 0. Then there is an n such that x ∈ In ⊆ A.
Since I is a Vitali cover of A, there is some k such that x ∈ Ik ⊆ In and
diam(Ik) < ε. In particular, Ik ⊆ A and hence Ik is a component of IA. Thus IA

is saturated. Similarly, it follows that
⋃ IA = A◦. Here the inclusion “⊆” follows

from the definition of IA and we only need to prove “⊇”. For every x ∈ A◦ there
is some ε > 0 with (x − ε, x + ε) ⊆ A and since I is saturated there is some k
with x ∈ Ik ⊆ (x − ε, x + ε). Hence Ik is part of IA and x ∈ ⋃ IA. This shows
that

⋃ IA = A◦, and hence IA is a Vitali cover of A◦. ��
Now we are prepared to prove that VCT0 is computable.



Theorem 11. VCT0 is computable.

Proof. Given a Vitali cover I of [0, 1], we need to find a subsequence J of I
that eliminates [0, 1]. We will compute such a subsequence inductively. Initially,
J is an empty sequence. We start with A0 := [0, 1] and I0 := I. We assume
that in step n of the computation the set An is a non-empty finite union of
closed rational intervals with λ(An) > 0 and that In is a Vitali cover of the
interior A◦

n. The fact that An is a non-empty finite union of rational intervals
implies λ(∂An) = 0. Given a Vitali cover In of A◦

n there exists a subsequence
Jn of In that eliminates A◦

n by the Vitali Covering Theorem (Theorem 1). Since
the Lebesgue measure λ is upper semi-computable on closed sets A ⊆ [0, 1], by
a systematic search we can find a kn ∈ N and a finite subsequence (I0, ..., Ikn

)
of In of pairwise disjoint intervals such that

0 < λ

(

A◦
n \

kn⋃

i=0

Ii

)

< 2−n.

We compute An+1 := An\⋃kn

i=0 Ii as a finite union of closed rational intervals and
we add the intervals I0, ..., Ikn

to the set J . Since λ(∂An) = 0, we obtain that 0 <
λ(An+1) < 2−n. We now compute In+1 := (In)An+1 (as defined in Lemma 10).
Then In+1 is a Vitali cover of A◦

n+1 by Lemma 10 and we can continue the
inductive construction in step n + 1. Altogether, this construction leads to a
subsequence J of I of pairwise disjoint intervals J such that [0, 1] \ ⋃ J =⋂∞

n=0 An. Since λ(An) < 2−n, it follows that λ([0, 1] \ ⋃ J ) = 0. Hence J
eliminates [0, 1]. ��

3.2 The First Non-computable Version

In the previous subsection we observed that the most straight-forward way of for-
malizing the Vitali Covering Theorem in the Weihrauch degrees is computable.
To obtain non-computability results, we need to look at contrapositive versions
of the theorem. The idea here is that given a collection of intervals I that violates
some of the requirements for being a Vitali cover, we want to find an x ∈ [0, 1]
witnessing this violation. Again, there is more than one formalization for this
idea, as there are different ways and degrees of violating the requirements.

It will turn out that these different formalizations produce mathemati-
cal tasks of different computational strengths, that is, falling into different
Weihrauch degrees. The first result in this direction that we will prove is that
VCT1 is strongly equivalent to Weak Weak Kőnig’s Lemma. This corresponds to
Theorem 2 by Brown, Giusto, and Simpson.

To show WWKL≤sW VCT1 we will use the following lemma that shows that
we can computably refine any sequence of open intervals to a saturated one.

Lemma 12 (Vitalization). There exists a computable map V : Int → Int such
that

⋃ I =
⋃

V (I) for all I ∈ Int and range(V ) only consists of saturated
sequences of intervals.



Proof. Given I = (In)n we systematically add to I all rational intervals
I = (a, b) for which there is an n ∈ N with I ⊆ In. This leads in a computable
way to a saturated sequence J with

⋃ I =
⋃ J . ��

Now we are prepared to prove that VCT1 is strongly equivalent to PC[0,1].

Theorem 13. VCT1 ≡sW PC[0,1].

Proof. Given a sequence I of open intervals with A = [0, 1] \ ⋃ I and
λ(A) > 0, by Lemma 12 we can compute a saturated sequence V (I) with
A = [0, 1] \ ⋃

V (I). Since λ(A) > 0, it is clear that V (I) does not have a subse-
quence that eliminates [0, 1]. Hence V (I) ∈ dom(VCT1) and VCT1(V (I)) = A,
which implies PC[0,1] ≤sW VCT1.

Now let I be a saturated sequence of intervals that does not have a subse-
quence that eliminates [0, 1]. Clearly we can compute A := [0, 1] \ ⋃ I. Since
I is a Vitali cover of

⋃ I, there is a subsequence J of I that eliminates
⋃ I by

the Vitali Covering Theorem (Theorem 1). If λ(A) = 0, then this subsequence
J also eliminates [0, 1]. This is not possible by assumption and hence λ(A) > 0.
Consequently, VCT1(I) = PC[0,1](A), which proves VCT1 ≤sW PC[0,1]. ��

Since it is known that PC[0,1] has computable inputs that do not admit com-
putable outputs (see for example Brattka, Gherardi and Hölzl [4, Theorem 12]),
we obtain the following corollary as an immediate consequence (which also follows
by Lemma 12 from a classical result of Kreisel and Lacombe [14, Théorème VI] on
singular coverings, see also [20, Theorem 4.28]).

Corollary 14 (Diener and Hedin [11, Theorem 9]). There exists a com-
putable Vitali cover J of the computable points in [0, 1] so that every subsequence
I = (In)n consisting of pairwise disjoint intervals satisfies

∑∞
n=0 λ(In) < 1.

3.3 The Second Non-computable Version

The previous result identifies the computational strength of VCT1 with that of
the well-studied Weihrauch degree WWKL. The natural next question to ask is
whether VCT2 is of different strength and, if yes, to determine that strength
precisely. Both questions will be answered in this section. We begin with the
following observation.

Proposition 15. VCT1 ≤sW VCT2.

Proof. If I is a saturated sequence of rational open intervals that contains no
subsequence that eliminates [0, 1], then I does not cover [0, 1] by the Vitali
Covering Theorem (Theorem 1) and every point x ∈ [0, 1] which is not captured
by I is a point that is not covered by I, that is, x ∈ [0, 1] \ ⋃ I. Hence VCT1 is
a restriction of VCT2 and, in particular, VCT1 ≤sW VCT2. ��



On the other hand, VCT2 can be reduced to PCR, as the next result shows.
Within the proof we will use the following definition from Brown, Giusto, and
Simpson [10]. A sequence I = (In)n of intervals is an almost Vitali cover of a
Lebesgue measurable set A ⊆ [0, 1] if for all ε > 0 and

Uε :=
⋃

{In : n ∈ N and diam(In) < ε}

it holds that λ(A\Uε) = 0. In fact, Brown, Giusto, and Simpson [10, Theorem 5.6]
(see Simpson [19, Theorem X.1.13]) proved the following strengthening of the
Vitali Covering Theorem (Theorem 1): every almost Vitali cover I of [0, 1] admits
a subsequence J that eliminates [0, 1]. We use this result to obtain the following
reduction.

Proposition 16. VCT2 ≤sW PCR.

Proof. Let I = (In)n∈N be a sequence of rational open intervals that does not
contain a subsequence that eliminates [0, 1]. By Brown, Giusto, and Simpson [10,
Theorem 5.6] we obtain that I is not even an almost Vitali cover of [0, 1], that is,
there exists some n ∈ N such that λ([0, 1] \U2−n) > 0, with Uε as defined above.
We let An := [0, 1] \ U2−n for all n. Clearly An ⊆ VCT2(I) for all n. Now we
compute A :=

⋃∞
n=0(2n + An), where n + X := {n + x : x ∈ X} for all X ⊆ N.

Then λ(A) > 0 and PCR(A) yields a point x with (x mod 2) ∈ VCT2(I). This
proves VCT2 ≤sW PCR. ��

Now we prove by a direct construction that VCT2 can compute itself concur-
rently with CN.

Proposition 17. CN × VCT2 ≤sW VCT2.

Proof. For the purposes of this proof we treat sequences of intervals I = (In)n

as sets I = {In : n ∈ N} of intervals. All sets of intervals that we are going to
use can be enumerated in a natural way.

Let A be an instance of CN and I an instance of VCT2, that is I does not have
a subsequence that eliminates [0, 1]. By I[a,b] we denote the image of I under
rescaling [0, 1] to [a, b].1 By S(a,b) we denote some saturated and computably
enumerable set of intervals with

⋃ S(a,b) = (a, b), which exists by Lemma 12.
We use points of the form xn := 1 − 1

n for n > 1 to subdivide the unit
interval [0, 1] into countably many regions. In each of these regions with n > 1
we will place countably many scaled copies of I into certain intervals of the form

1 There is a slight ambiguity here, as we need to deal with open sets ranging
beyond [0, 1]. We shall understand these to be small enough in the sense that we
cut away everything from a certain distance εn on. The exact constraints that these
values εn need to satisfy are given in the proof.



0 1x2 x3 x4 x5 ... xn ...

xn xn + 2jxn − 2j

an bnan,j+1 bn,j+1an,j bn,j ...

Fig. 1. Illustration of the intervals [an,j , bn,j ] and [an, bn] in correct order, but oversized.

[an, bn] := [xn + 2−n−1, xn + 2−n] and [an,j , bn,j ] := [xn − 2−2j , xn − 2−2j−1] for
j > n. We construct an instance J := JP ∪JI ∪JR ∪JA of VCT2 in four parts:

JP := {(xn − 2−j , xn + 2−j) : n > 1, j > n} ∪ {(xn, 1 + 2−n) : n > 1}

JI :=
⋃

n>1
j>n

I[an,j , bn,j ] ∪
⋃

n>1

I[an,bn]

JR := S(−2−1,a2,3) ∪
⋃

n>1
j>n

S(bn,j , an,j+1) ∪
⋃

n>1

(S(xn,an) ∪ S(bn, an+1,n+2))

JA :=
⋃

n>1
n−2/∈A

S(an−εn, bn+εn) ∪
⋃

n>1
j>n

j−n−1/∈A

S(an,j−εj , bn,j+εj)

Here (εn)n is a computable sequence of positive rational numbers that are subject
to the following constraints for all n > 1 and j > n:

xn < an − εn, bn + εn < an+1,n+2 − εn+2 and bn,j + εj < an,j+1 − εj+1.

In Fig. 1 the construction is visualized. Intuitively, we capture the point 1 and
all points xn = 1 − 1

n using JP. Using JI we place scaled copies of I into the
intervals [an, bn] and [an,j , bn,j ] for n > 1 and j > n. The remainder of the unit
interval is captured using JR. Finally, those regions not corresponding to an
index from A are rendered invalid responses by capturing them using JA, where
the constraints on εn above guarantee that no neighbor regions are touched.

Any point not captured by J must lie in one of the regions designated in the
definition of JI , and, as these are separated, we can compute the parameters of
the region (thus producing the answer for the instance A of CN), and then scale
the point back up to produce the answer to the instance I of VCT2.

It remains to prove that J actually is a valid input to VCT2, that is, that no
collection S ⊆ J of disjoint intervals eliminates [0, 1]. Let S ⊆ J be a disjoint
collection of intervals. We distinguish two cases:

Case 1: (∃n) (xn, 1 + 2−n) ∈ S. Then no set of the form (xn − 2−j , xn + 2−j)
can be in S. Choose j such that j −n−1 ∈ A. We claim that S cannot eliminate
[an,j , bn,j ]: We have already seen that under the given conditions, we have for
every U ∈ S∩JP that U∩[an,j , bn,j ] = ∅. The same is true for U ∈ S ∩ (JR ∪ JA)



by construction and because j −n−1 ∈ A. Thus, the only sets which could con-
tribute to eliminating the interval [an,j , bn,j ] come from JI , and more specifically,
I[an,j ,bn,j ]; but if these sets would eliminate [an,j , bn,j ], then I would eliminate
[0, 1], which is impossible.

Case 2: (∀n) (xn, 1 + 2−n) /∈ S. Let n be such that n − 2 ∈ A. We claim that
S cannot eliminate [an, bn]. For U ∈ S ∩JP we have that U ∩ [an, bn] = ∅ because
(xn−2−j , xn+2−j)∩[an, bn] = ∅ for all j > n. For U ∈ S∩JR the same statement
holds by construction; and for U ∈ S ∩ JA it holds since n − 2 ∈ A. If JI would
eliminate [an, bn], then I would eliminate [0, 1], which is impossible. ��

Using Fact 3, Theorem 13 and Propositions 15, 16 and 17 we obtain the fol-
lowing characterization of VCT2.

Corollary 18. VCT2 ≡sW PCR.

We note that the proof of Proposition 16 shows that we can extend the
domain of VCT2 to sequences I of intervals that are not almost Vitali covers
of [0, 1] and Corollary 18 remains correct for this generalized version of VCT2.

4 Countable Additivity

In reverse mathematics Brown, Giusto, and Simpson [10, Theorem 3.3] (see also
Simpson [19, Theorem X.1.9]) have discussed countable additivity of measures
and condition 3. of Theorem2 turned out to characterize this property. In this
section we would like to analyze this condition in the Weihrauch lattice and we
formulate the condition and a contrapositive version of it in a slightly different
way.

1. Any I = (In)n that covers [0, 1] satisfies
∑∞

n=0 λ(In) ≥ 1.
2. For any non-disjoint I = (In)n that satisfies

∑∞
n=0 λ(In) < 1, there exists a

point x ∈ [0, 1] \ ⋃ I.

By a non-disjoint I = (In)n we mean one that satisfies Ii ∩ Ij �= ∅ for some
i �= j. For the correctness of the second statement non-disjointness is not rele-
vant. However, it matters for the computational content. While the first state-
ment has no immediate computational content (more precisely, any reasonable
straightforward formalization is computable), the second one turns out to be
equivalent to ∗-WWKL, which we define below. First we formalize the second
statement above as a multi-valued function, which we call the Additive Covering
Theorem.

Definition 19 (Additive Covering Theorem). The Additive Covering The-
orem is the multi-valued function ACT :⊆ Int ⇒ [0, 1], I �→ [0, 1] \ ⋃ I, where
dom(ACT) is the set of all non-disjoint I = (In)n with

∑∞
n=0 λ(In) < 1.



In order to define ∗-WWKL, we recall that for a sequence fi :⊆ Xi ⇒ Yi we
can define the coproduct

⊔∞
i=0 fi :⊆ ⊔∞

i=0 Xi ⇒
⊔∞

i=0 Yi, where
⊔∞

i=0 Zi denotes
the disjoint union of the sets Zi. Now we define ∗-WWKL :=

⊔∞
n=0 P>2−nC[0,1],

where P>εC[0,1] is the choice principle for closed subsets A ⊆ [0, 1] with λ(A) > ε,
as defined in Sect. 2. Hence, intuitively, ∗-WWKL takes as input a number n ∈ N

together with a closed set A of measure λ(A) > 2−n and has to produce a point
x ∈ A. This could equivalently be defined using quantitative versions of WWKL,
hence the name ∗-WWKL (see Brattka, Gherardi and Hölzl [5, Proposition 7.2]).
Now we can formulate and prove our main result on ACT.

Theorem 20. ACT≡sW ∗-WWKL.

Proof. We first prove ACT≤sW ∗-WWKL. Let I = (In)n be a given non-disjoint
sequence of intervals such that

∑∞
n=0 λ(In) < 1. Then we can search for some

numbers i, j, k ∈ N such that ε := λ(Ii ∩ Ij) > 2−k. In this situation we obtain
by countable additivity λ (

⋃∞
n=0 In) + ε ≤ ∑∞

n=0 λ(In) < 1. Hence we obtain for
the closed set A := [0, 1] \ ⋃ I that

λ(A) ≥ 1 −
∞∑

n=0

λ(In) + ε > ε > 2−k.

Therefore, we can find a point in A using P>2−kC[0,1](A). This proves the desired
reduction ACT≤sW ∗-WWKL.

We now prove ∗-WWKL≤sW ACT. Given k ∈ N and a closed set A ⊆ [0, 1]
such that λ(A) > 2−k we need to find a point x ∈ A. The set A is given by a
sequence J of open intervals with A = [0, 1] \ ⋃ J . We can now computably
convert the sequence J into a non-disjoint sequence I = (In)n of open intervals
such that A = [0, 1] \ ⋃ I and

∞∑

n=0

λ(In) ≤ λ

( ∞⋃

n=0

([0, 1] ∩ In)

)

+ 2−k−1.

This can be achieved if for every J in J we select finitely many intervals In ⊆ J
such that all intervals selected so far cover J and such that the overlapping
measure of In with the union of the previous intervals (and the exterior of [0, 1])
is at most 2−k−1−n−1 for each n ∈ N (and non-zero for at least one n). Since
λ(A) > 2−k we obtain λ (

⋃∞
n=0([0, 1] ∩ In)) < 1 − 2−k and the above condition

implies
∑∞

n=0 λ(In) < 1 − 2−k + 2−k−1 < 1 and hence ACT(I) = A. This yields
the desired reduction. ��

Like WWKL×CN the problem ∗-WWKL can be seen as a uniform modification
of WWKL that is indistinguishable from WWKL when seen from the non-uniform
perspective of reverse mathematics.

5 Conclusions

We have demonstrated that the Vitali Covering Theorem and related results
split into several uniform equivalence classes when analyzed in the Weihrauch



CR ≡sW WKL × CN

CNC[0,1] ≡sW WKL

VCT2 ≡sW PCR ≡sW WWKL × CN

VCT1 ≡sW PC[0,1] ≡sW WWKL

ACT≡sW ∗-WWKL

VCT0

Fig. 2. The Vitali Covering Theorem in the Weihrauch lattice. Strong Weihrauch
reductions f ≤sW g are indicated by a solid arrow f ← g and similarly ordinary
Weihrauch reductions are indicated by a dashed arrow f ��� g.

lattice. We have summarized the results in the diagram in Fig. 2. The diagram
also indicates some equivalence classes in the neighborhood that are related to
Weak Kőnig’s Lemma WKL. These classes have not been discussed in this article
and some related results can be found in Brattka, de Brecht and Pauly [1] and
Brattka, Gherardi and Hölzl [5].
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