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ABSTRACT 

A principal reason of damage in historic masonry vaults consists in relative displacements of the vaults’ abutments. 

Excluding the case of seismic-induced damage, cracks are often produced by differential settlements generated by the 

lateral wall instability or soil degradation (e.g. due to stress concentrations, non-uniform soil stratigraphy, flooding 

phenomena etc.). When dealing with historic vaults, the effects of long-term deformation processes cannot often be linked 

directly to causes, which may also be unknown. In this paper, the effects of differential settlements on historic masonry 

barrel vaults are investigated. An efficient 3D contact-based model was developed to reproduce experiments on a scaled 

pointed barrel vault (representative of a typology of late-medieval barrel vaults in Scotland) under non-uniform 

differential settlement. Firstly, the numerical model is used to simulate the experimental campaign, achieving good 

agreement in terms of crack pattern (longitudinal shear) and transverse-longitudinal deformation profiles. Then, further 

analyses are carried out to gain insight on the effects of several plausible uniform and non-uniform settlement patterns on 

representative historic barrel vaults. Various settlement configurations were analysed and complex failure patterns 

observed. This study could help analysts in understanding the nature of on-going deformation process in historic masonry 

vaults and engineers in the design of strengthening strategies. 
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1 Introduction 

Masonry vaults have been an efficient and fire-proof roofing method in pre-modern structures, reaching a wide 

variety of configurations that may not always be easy to understand in terms of performance and safety. The 

study of simple barrel vaults can provide a base for the understanding of load paths under various support 

conditions, letting insight to be built for more complex forms (cross vaults, net vaults etc). Gothic barrel vaults 

in particular are formed by the extrusion of an arch (generatrix) along a linear distance (directrix). As with any 

arch based construction, the vault produces an outward thrust along its edge and there are several mechanisms 

for absorbing this thrust. One is to make the wall exceedingly thick or add buttresses. Alternatively, a more 

elegant method is to build two or more vaults parallel to each other, cancelling mutually the forces of their 

outward thrust. However, the amount of thrust also depends on the shape of the arch. For example, in [1], 

Romano and Ochsendorf showed that pointed vaults generate significantly smaller lateral thrust to their support 

than semi-circular ones and thus this shape can be used to build higher and more slender walls. Furthermore, 

pointed arches can span larger distance with the same structural thickness. By decreasing the lateral thrust at 

the wall, larger windows can be built to allow for more light in the building.  

Although a lot of thought and wisdom has been put into the design of arches and vaults, unfortunately, today, 

most of the existing historic masonry vaults stand in a damaged (cracked) condition. The main reasons of such 

damage arise from aging of material, soil subsidence, support failure due to poor foundations. Earthquakes can 

also induce significant damage to masonry vaults [2], as the oscillations can produce relative displacements 

between the vaults’ abutments [3]. In general, although masonry vaults have great strength to vertical uniform 

loads, their capability to withstand differential settlements of the abutments is extremely low. Differential 

settlements can derive from masonry material or soil degradation (e.g. due to stress concentrations, non-

uniform soil stratigraphy, etc.). However, the challenge faced during structural inspection is that although the 

effects of an on-going process of deformation are clear (visible cracks) on the vault, the nature and origin of 

the on-going settlement may remain unknown to the surveyor.  

Today, several tools are available for the structural analysis of vaults and can be categorised in three main 

groups: (i) limit analysis-based approaches; (ii) continuum-based approaches; and (iii) block-based 

approaches. Limit analysis-based approaches can follow the lower bound (static approach [4, 5, 6, 7, 8, 9]) or 

the upper bound (kinematic approach [10, 11]) theorems of limit analysis. To apply limit analysis to masonry, 

three main assumptions are generally made: a) masonry has no tensile strength; b) masonry has infinite strength 

in compression; and c) no sliding can occur between the blocks. These approaches are considerably effective 

to evaluate the stability of vaults and domes. However, their capability to analyse vaults undergoing differential 

settlements is still under investigation. Continuum-based approaches consider masonry as a homogeneous 

material in which the constitutive law is described in a phenomenological way [3, 12, 13, 14]. These 

approaches can support any kind of boundary conditions at the vault’s abutments. However, the reliability of 

continuum constitutive laws for historic masonry vaults is still under study. Finally, block-based approaches 

consider the structure as an assembly of separate blocks which can interact through specific laws. This 

approach represents the most accurate analysis tool [15, 16, 17, 18, 19, 20, 21, 22], even if the description of 

a historic vault block-by-block is still challenging and computationally demanding. In this framework, 

software tools based on limit analysis of rigid blocks have been lately developed for the 2D analysis of masonry 

bridges (LimitState: RING software originally developed in [23]), and for the limit analysis of masonry 

structures modelled as assemblages of 3D rigid blocks subjected to live loads and settlements (LiABlock_3D 

[24]). Very recently, part of the authors developed an effective damaging block-based model for the monotonic 

[25] and cyclic [26] analysis of masonry panels and full-scale terraced houses. 

In this paper, the effects of differential settlements on historic masonry barrel vaults are investigated. An 

efficient 3D non-standard contact-based distinct blocks model, based on the advances presented in [25, 26], is 

implemented to reproduce experiments on a scaled pointed barrel vault specimen (representative of late 

medieval barrel vaults from Scotland), under non-uniform differential settlement. The choice of Scottish vaults 

is because they follow a specific typology during 15th century and they are plain yet very well built. Firstly, 

the numerical model is used to simulate the experimental campaign. The numerical results validate the 
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experiments in terms of crack pattern and transverse-longitudinal deformation profiles. This makes possible 

further analyses to gain an insight on the effects of several plausible uniform and non-uniform settlement 

patterns on a representative historic barrel vault. Various settlement patterns were simulated and the complex 

failure mode of the vault investigated. This study could help analysts in understanding the nature of on-going 

deformation processes in historic masonry vaults and consequently in assisting engineers in the design of 

strengthening strategies. 

As final note, it has to be pointed out that full-scale tests on actual historic masonry vaults are very rare due to 

heritage protection and specialist equipment and happen mainly during repairs, i.e. monitoring only specific 

aspects of the project. Scale models are usually utilized for the qualitative understanding of the structural 

response of masonry vaults, as the experimental set-up considered in this paper had aimed to do for Gothic 

barrel vaults undergoing non-uniform settlements, without precise quantitative conclusions. This experimental 

test has been found to be appealing as it dealt with the simple geometry of barrel vaults, avoiding the complex 

conditions along intersections at groin vaults or the oversimplification of an arch. Moreover, the test interpreted 

reasonably well the real deformation of an existing vault (Bothwell) under differential settlement [27]. This 

made easier the evaluation of the potential of a block-based modelling approach in vaults. Indeed, as typically 

expected from computational tools, if the numerical results are found to be consistent with the experimental 

outcomes of the test on a scale model, it is reasonable to assume that the numerical approach can be used for 

quantitative predictions on full-scale actual masonry vaults as well. 

 

2 Scottish gothic vaults 

Barrel vaults in collegiate (private) churches in late-medieval Scotland (15th century) are a quite well-defined 

group in terms of their character, design and structural scheme (Fig. 1), so they are a comprehensive typology 

and case study. They may have origins in secular architecture, especially castles and tower-houses [28], where 

usually their spatial articulation and decoration (ribs) would denote higher status, but strength and fire-proofing 

were equally attractive. When applied to single volume churches though, the scheme does not borrow the solid 

envelope that contained the thrust very effectively there but relies on buttresses to let windows, which usually 

open below springing level, so the geometry of the barrel is not disturbed. Their geometric study [29, 30] 

shows pointed profiles largely generated within an equilateral triangle. Parallel ribs divide them into bays and 

often mask construction breaks (as was found during the repair works in Bothwell in 2014-16, Fig. 1a). 

Consequently, there is no roof truss above them and flagstones cover the vault, laid directly on a rubble fill on 

the extrados or possibly diaphragm walls (called frenelli in Italy), adding a substantial load on the vault. 
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(a) (b) 

    (c) 

 

Fig. 1 – The earliest (a) (Bothwell 1398) and latest (b) (Ladykirk 1500) examples of barrel vaults in late-

medieval Scotland churches. Crack pattern in Bothwell (c) due to deformation in the South wall from [27] and 

its appearance at the East end of the interior (following repairs in 2016), (settlement caused at the right-hand 

corner). 

 

Considering the construction evolution since the earliest (1398) to the latest (1500) examples, we can observe 

that pier buttresses contain the thrust and become thicker and safer towards the end of the period (e.g. Ladykirk, 

Fig. 1b). Construction also improves in its visual expression, using polished ashlar (Crichton in 1449, Seton in 

1478). Measured surveys [29] have shown precision in the execution of the form and very little deformation. 

This was not the case of the Bothwell church though (Fig. 1a), which has suffered differential settlement on 

its South side (Fig. 1c), as the foundations had slipped outwards and the clay under the south-east corner had 

settled significantly, and had to undergo repair and bracing (2014-16). The horizontal spread component of 

this vault was examined first [30] in an experimental and analytical programme of a homogeneous model and 

then the vertical settlement only in a masonry-replica model [27], showing the vulnerability of the scheme to 

such instability. The two damage patterns were quite similar as well, which makes repair to a certain extent 

easier to plan. 

 

3 Experimental tests 

An attempt was made to construct a representative in geometry model of the barrel vault in the quire (choir) 

of Bothwell. A measured survey of the vault was carried out by the church once realised its geometry was 

slightly skewed and cracks started opening due to settlement over the years across the less braced South edge. 

A 1/12 scale was chosen for the construction of the model in the laboratory as it was convenient for the shaping 

of the blocks and the experimental set-up. To focus on the study of the original form of the Bothwell barrel 
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vault, its shape was kept simple and symmetric. This resulted in a model of an interior span equal to 508 mm 

and a rise of 317 mm, keeping the length of the vault as 1,400 mm. Particularly, the physical model was 

characterized by a thickness of about 30 mm. The original geometry of the Bothwell vault was based on an 

equilateral triangle, with the span equal to the two other sides of the section of the barrel vault. The same 

characteristic has been kept in the physical model, with an inner radius of the arch equal to 405 mm. The vault 

was composed of a series of equal in size varnished wooden units, bonded by a lime-based mortar. The length 

of the wooden blocks scaled a representative block of the original vault and the height to width ratio was 2/3. 

Mortar was composed of 3 parts of sand and 1 part of lime. Then, PVA glue and water were added. This 

mixture was used in previous experiments involving cross vaults [31] and it has been found to be convenient 

for construction reasons [27].  

The model vault was subjected to a vertical displacement of one of the corners producing a linear displacement 

along its edge (Fig. 2a). The right side of the vault was fixed while the left back corner was pinned so that the 

rest of the left side of the vault could rotate freely, following displacement imposed at the left front corner. 

Such experimental procedure has been designed to represent asymmetric differential settlement which often 

occurs in such structures. The vault was subjected to asymmetric settlement until collapse, which occurred at 

displacement of the left-hand corner of 132 mm or 42% of the rise of the vault. 

 

 (a)

(b) (c) (d) 

Fig. 2 – Experimental set-up (a) and cracks observed in the experiment: initial cracks (b) and crack pattern at 

the end of the test - corner view (c) and top view (d) [27]. 

During testing, a crack appeared after a settlement of 30 mm spreading longitudinally from the left front edge 

of the vault (Fig. 2b) and in the next stages the crack propagated quickly until the mid-span of the vault. At a 

settlement of 45 mm, the section of the vault along the crack began to separate and deflect visibly, while a 

diagonal shear crack began to form at the intrados, starting from the back-right edge and spreading at roughly 
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45 degrees angle towards the apex. This was accompanied by a crack along the apex spreading longitudinally 

from the back edge of the vault. At a settlement of 75 mm, the two cracks met, forming a hinge at the apex 

with the resulting triangular portion of the vault detaching from the lower vault structure. The test was 

continued until full collapse of the structure. Several small longitudinal cracks developed from the front of the 

vault near the apex. As the vault approached full collapse, a crack formed on the front extrados of the vault of 

the right side near the springing and propagated down the entire length, forming a hinge. In addition, another 

diagonal crack formed beginning at the front of the vault at 45 degrees angle. This joined with a longitudinal 

crack on the extrados and progressed to meet the first diagonal crack at the apex. Fig. 2c-d show the diagonal 

crack just before the vault collapsed. 
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4 Numerical strategy and verification 

The modelling approach adopted for the analysis of barrel vaults consists of a block-based model in which the 

interaction between adjacent blocks is formulated in a contact-based framework accounting for cohesion and 

friction, and the blocks are modelled through solid FEs (Fig. 3). The model is implemented in the general-

purpose FE software Abaqus [32] using an implicit solver. 

The adopted contact formulation conceives contact pairs composed of one slave face and one master face, 

following the traditional node-against-surface approach [33]. In particular, the nodes of the slave face contact 

the surface of the master face (Fig. 3a). The cohesive contact behaviour is governed by an ad-hoc modification 

of the standard surface-based contact behaviour available in Abaqus [32]. This contact-based cohesive 

behaviour has been presented by the Authors in [25] and extended to the cyclic regime in [26] for masonry 

walls and piers. The model has shown a good efficiency [25] with respect to other block-based models. 

  (a) 

(b) (c)  

Fig. 3 – Contact-based distinct block model: node-against-surface approach (a), assembly of the blocks (b) 

and adopted mesh (c). 

 

The compressive contact stress is computed by means of a Lagrange multiplier contact approach (contact 

constraint). Conversely, the tensile stress and the shear stress are computed, in the pre-failure regime, through 

the linear relationships:  

𝜎 = {
𝐾𝑛𝑛𝑢, 𝜎 ≥ 0

contact constraint, 𝜎 < 0 
,              𝜏 = 𝐾𝑠𝑠𝛿 

( 1 ) 

where 𝜎 is the normal contact stress (positive in tension), 𝜏 is the shear stress, 𝑢  is the normal displacement 

(separation), 𝛿 is the tangential slip, 𝐾𝑛𝑛 is the cohesive stiffness in normal direction and 𝐾𝑠𝑠 is the cohesive 

stiffness in shear. 

Contact failure is supposed when the contact stresses at a point intersects a Mohr-Coulomb failure surface with 

tension cut-off. This criterion can be expressed as: 
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max{
〈𝜎〉

𝑓𝑡
,
|𝜏|

𝑓𝑠(𝜎)
} = 1, 

( 2 ) 

where 〈𝑥〉 = (|𝑥| + 𝑥)/2 means that a purely compressive stress state does not induce contact failure, 𝑓𝑡 is the 

tensile strength and 𝑓𝑠 is the shear strength defined as: 

𝑓𝑠(𝜎) = −tan𝜙 𝜎 + 𝑐, ( 3 ) 

where 𝑐 is the cohesion and tan𝜙 is the initial friction of the shear response. 

The maximum normal and shear stress in a contact point are described by the relationships: 

𝜎 = {
(1 − 𝐷)𝑓𝑡, 𝑢 < 𝑢𝑘

0, 𝑢 ≥ 𝑢𝑘 
,      𝜏 = {

(1 − 𝐷)𝑓𝑠(𝜎) + 𝐷𝜇〈−𝜎〉, 𝛿 < 𝛿𝑘
𝜇〈−𝜎〉, 𝛿 ≥ 𝛿𝑘

 
( 4 ) 

where the degradation scalar variable 𝐷 is defined as: 

𝐷 = max

{
 
 
 

 
 
 
1 −

𝑢0
𝑢𝑀𝐴𝑋

(1 −
1 − 𝑒

−𝜁
𝑢𝑀𝐴𝑋−𝑢0
𝑢𝑘−𝑢0

1 − 𝑒−𝜁
)

1 −
𝛿0
𝛿𝑀𝐴𝑋

(1−
1 − 𝑒

−𝜉
𝛿𝑀𝐴𝑋−𝛿0
𝛿𝑘−𝛿0

1 − 𝑒−𝜉
)

, 

( 5 ) 

being 𝜇 the residual friction, 𝑢0 and 𝛿0 the separation and the slip at the limit of the linear elastic behaviour in 

tension and shear, respectively, 𝑢𝑀𝐴𝑋 and 𝛿𝑀𝐴𝑋 the maximum separation and the maximum slip ever 

experienced by the contact point, respectively, 𝑢𝑘 and 𝛿𝑘 the ultimate separation and the ultimate slip of the 

cohesive behaviour, respectively, 𝜁 and 𝜉 non-dimensional brittleness parameters in tension and shear, 

respectively. The cohesive behaviour in tension and shear (Fig. 4) is governed by the same degradation scalar 

variable 𝐷.  

(a)  (b)  

Fig. 4 – Normal (a) and shear (b) contact behaviour. 

 

The experimental test described in Section 3 is modelled through the numerical approach here presented. The 

assembly of the blocks used to model the gothic barrel vault is shown in Fig. 3b and the adopted mesh (which 

has been found by the Authors a good compromise between accuracy and computational effort [25, 26]) is 

shown in Fig. 3c. 
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The block-based model herein adopted concerns expanded blocks (which account for the mortar layer 

thickness as well) assembled by zero-thickness contact-based interfaces. Therefore, mortar layers are not 

explicitly modelled in this numerical approach, similarly to other well-known modelling strategies [34]. 

However, the vault’s key was realized in the physical model through a thick wedge-shaped mortar layer, see 

Fig. 2b. This geometric feature could not be finely represented by the numerical model, given the assumption 

at the basis of the modelling approach (i.e. any mortar layer explicitly modelled). Therefore, an approximation 

on the geometry of the vault’s key was needed, and fictitious wedge-shaped blocks in the key stone were 

conceived. 

In general, the model can be characterized by a nonlinear plastic-damage behaviour of the block, as pursued 

in [25, 26] to reproduce the response of brick. However, since in this case the experimental set-up was made 

by timber blocks, for simplicity the blocks have been described by means of an isotropic linear elastic material 

law, adopting the values 520 kg/m3, 9 GPa and 0.25 for density, Young’s modulus and Poisson’s coefficient, 

respectively. Since the experimental campaign [27] did not investigate the mechanical response of mortar 

joints, the mechanical characterization of the contact behaviour has been primarily carried out using the 

parameters calibrated in [25, 26] from small-scale tests. In particular, three different settings (S1, S2 and S3)  

of the main mechanical parameters, i.e. 𝑓𝑡 in tension and 𝑐 in shear, have been considered by keeping constant 

the ratio 𝑓𝑡/𝑐 = 1.5, which appears quite a common value as per [35]. In particular, the values of 𝑓𝑡 and 𝑐 in 

S2, which seem rather realistic, have been reduced four times (S1) and increased five times (S3) to realize their 

influence in the global structural response. The mechanical parameters used in the numerical simulations are 

collected in Table 1. 

Given that no mechanical characterization was available for the mortar used in the experiments, the linear 

elastic material properties adopted for the blocks have been also used for the wedge-shaped blocks in the key 

stone, for simplicity. However, other preliminary analyses were performed, by using typical values of mortar 

Young’s modulus from the literature, showing a negligible influence of this aspect on the mechanical response 

of the vault. 

The model in Fig. 3c, after the application of the gravity load, had a non-uniform vertical settlement imposed 

on its left side, following the scheme depicted in Fig. 2a. The settlement has been incrementally applied to the 

base nodes of one side of the vault, while clamped boundary conditions have been considered for the nodes of 

the other side of the vault. Basically, the constraints adopted in the model attempted to follow those of the 

experimental test, which had no diaphragms on either end (arches) and no dead load was applied in the test 

during the settlement (apart from the vault’s own weight). It has to be pointed out that the vault under study, 

on which a non-uniform vertical displacement is applied on one side, is mainly subjected to shear deformations. 

Therefore, the Heyman’s hypotheses (high or infinite compressive strength, no tensile strength, no sliding) 

appear a priori not particularly suitable to investigate the mechanics of this vault. Indeed, by neglecting the 

tensile cohesion between blocks, using quasi-rigid blocks and a no sliding condition between the blocks, the 

vault could stand without deformations also if a single support is applied on one external edge of one abutment 

(while keeping the other abutment with clamped boundary conditions).  

The node displacements at the extrados of the front (see Fig. 2a for reference) end of the vault, as well as the 

apex displacements of the whole vault, have been recorded and compared with the experimental data (Fig. 5). 

In particular, Fig. 5 compares the experimental and numerical deformation of the front end and the apex vertical 

displacement at three subsequent vertical settlements (i.e. 45mm, 75mm and 132mm) showing a reasonable 

agreement. In particular, the three different parameter settings (S1, S2 and S3) show slight differences, 

suggesting that the absolute values of tensile strength and cohesion of the interfaces do not considerably 

influence the failure mode and the crack pattern of the vault subjected to differential settlements, giving 

robustness to the adopted modelling approach.  

The numerical crack pattern at the end of simulation S2 (vertical settlement equal to 132 mm) is shown in Fig. 

6. Some deviations from the actual crack pattern (Fig. 2) can be noted. For example, on the left of the apex, 

where the experimental test shows a fast-developing detachment [27] while in the numerical model this failure 

is smoother and results suggest the generation of a hinge (Fig. 5). The large curvatures at width 0.2m in Fig. 5 
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(bottom left) and the crack pattern of Fig. 6a are representative of a hinge that opens at the centre of the right 

midspan of the vault. Although this crack opens also in the experimental test, its magnitude seems to be slightly 

overestimated by the numerical analysis as the experimental measures of Fig. 5 (bottom left) and the computed 

displacements do not perfectly overlap on this part of the vault. Furthermore, the great relative displacement 

between the fourth and fifth experimental measures of Fig. 5 (bottom left) is not fully captured by the numerical 

model. Also, in all of the simulation, upwards vertical displacements of the apex are recorded in the sections 

close to the back end of the vault (Fig. 5), while the experimental profile shows upwards displacement only 

for large settlements (e.g. 132 mm).To this regard, it has to be pointed out that the experimental recording of 

displacements by means of the total station (Fig. 2a) was challenging or impossible for the points close to the 

back end of the vault due to the set-up. However, all things considered, the numerical results can be considered 

reasonably consistent with the experimental ones. 

Finally, it has to be pointed out that, on the one hand, the contact properties (in terms of shear cohesion and 

tensile strength) do not have significant effects on the failure model of the vault (i.e. when displacements are 

imposed to the model). On the other hand, the influence of contact properties on the mechanical response of 

masonry structures (e.g. in terms of global strength) has been highlighted in other studies (see, for example, 

[26]). 

 

Table 1. Mechanical parameters used in the numerical simulations. When more than one value is given in a 

cell, the first value refers to the simulation S1, the second to S2 and the third to S3. 

Tensile behaviour  Shear behaviour 

𝑓𝑡 [MPa] 0.0075, 0.03, 0.15   c [MPa] 0.005, 0.02, 0.1  

𝑢𝑘 [mm] 1.0   tan𝜙 [\] 0.5  

𝜁 [\] 8   𝛿𝑘 [mm] 1.0  

𝐾𝑛𝑛 [N/m3] 75∙109   𝜉 [\] 4  

    𝜇 [\] 0.5  

    𝐾𝑠𝑠 [N/m3] 7.5∙109  
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(a)

(b)

(c) 

Fig. 5 – Comparison between experimental and numerical deformation of the front end (left) and apex vertical 

displacement (right) at three subsequent vertical settlements: (a) 45mm, (b) 75mm and (c) 132mm. 

 

 

 

Undeformed 

Undeformed 

Undeformed 
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(a) 

(b)

(c) 

Fig. 6 – Numerical crack pattern at the end of simulation S2: vertical displacement contour plot (a), main 

failures in a top view (b) and interfaces which exhibited failure of the vault side opposite to the settlement (c). 
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5 Further insights on historic barrel vaults undergoing differential settlements 

Further analyses were carried out to gain insight on the effects of several plausible uniform and non-uniform 

settlement patterns on a representative historic barrel vault model. In particular, vertical, horizontal, diagonal, 

inward and outward settlements are considered. The representative mechanical setting S2 has been adopted in 

all the analyses. The failure modes are summarized in Fig. 7 (uniform settlements) and Fig. 8 (non-uniform 

settlements) according to the imposed settlement pattern (left column in Fig. 7 and Fig. 8).  

In general, the failure modes of uniform settlements (Fig. 7) could be also suitably predicted by an arch model, 

as, in this case, the bonding of the structure along the longitudinal axis plays a marginal role. Conversely, the 

masonry bonding plays a fundamental role in non-uniform settlements, leading to complex crack patterns (Fig. 

8). 

As expected, uniform horizontal settlements (outward and inward, Fig. 7) lead to symmetric crack patterns. In 

particular, diffuse longitudinal cracks are recorded in the extrados close to the abutments and in the intrados 

close to the apex for an outward settlement. Quite the opposite is recorded for an inward settlement. More 

localized cracks are observed in the other cases (Fig. 7 and Fig. 8). 

As can be noted in Fig. 8, the failure modes of non-uniform vertical, outward horizontal and outward diagonal 

settlements are quite similar. On the one hand, this pools the effects of these settlements and simplifies the 

detection, as the exactness on the origin of the settlement is less required. On the other hand, however, an 

accurate knowledge on the active settlement appears more complicated as these three settlements have similar 

effects. 

Different failure modes are, instead, observed for non-uniform inward horizontal and inward diagonal 

settlements Fig. 8. Indeed, although they are both characterized by an inward horizonal component of the 

settlement, the non-uniform inward diagonal settlement shows a crack in the extrados of the fixed side, while 

the non-uniform horizontal settlement shows a crack in the extrados of the active side. 

Obviously, the described scenario could be further enriched by analysing other cases with different settlements 

and/or by considering also more complex boundary conditions to account for the effect of adjacent structural 

elements. By way of example, the presence of a diaphragm wall along the back end of the vault could be 

simulated by adopting, for simplicity, clamped boundary conditions in the nodes on the back side (Fig. 9). The 

crack pattern of the analysis with fixed back non-uniform vertical settlement is depicted in Fig. 9. As can be 

noted, although quite similar to the crack pattern of the non-uniform vertical settlement simulation (Fig. 8), 

several cracks arise close to the clamped side. In particular, this outcome was not visible in the non-uniform 

vertical settlement (Fig. 8), suggesting that the effect of a diaphragm wall on the damage pattern of a vault 

could result in cracks in the proximity of the diaphragm wall (Fig. 9). A similar damage pattern was observed 

in Bothwell (Fig. 1c) in the West side close to the West diaphragm wall, indicating a complex and sensible 

interaction of the vault with adjacent vertical structures. 
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Fig. 7 – Summary of crack patterns for uniform settlements.  
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Fig. 8 – Summary of crack patterns for non-uniform settlements.  
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Fig. 9 – Fixed back non-uniform vertical settlement crack pattern. 

 

6 Conclusions 

In this paper, the effects of differential settlements on historic masonry barrel vaults have been investigated. 

A 3D non-standard contact-based model has been developed to reproduce experiments on a scaled pointed 

barrel vault specimen, representative of late medieval barrel vaults in Scotland, undergoing non-uniform 

differential settlement.  

Firstly, there is good agreement between the experimental and numerical results in terms of crack pattern and 

transverses-longitudinal deformation profiles, capturing the major longitudinal cracks close to the applied 

settlement and also those at the other end of the vault.  

Then, further analyses have been carried out to gain insight on the effects of several plausible uniform and 

non-uniform settlement patterns. All the failure modes have been collected according to the imposed settlement 

pattern. This summary of results, although preliminary, could help analysts in understanding the nature of the 

on-going deformation process in historic masonry vaults. The design of strengthening strategies can be made 

in the spirit of the “minimum intervention” principle to guarantee conservation is precise to the problems 

addressed or even considering not cancelling a deformation if it is proved to represent a significant phase or 

inherent design fault of the vault. 

Further aspects, such as the influence of the nonlinear behaviour of the units, the dead load and the thickness 

of the vaults, the masonry bonding as also the segmentation of a vault (as masked by the ribs in Bothwell) 

should be investigated and collected in a more comprehensive matrix.  

Crack 

patter

n 
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