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Training software for orthogonal packing problems

Gianluca Costa(1), Maxence Delorme(1), Manuel Iori(2), Enrico Malaguti(1), Silvano Martello(1)

(1) DEI “Guglielmo Marconi”, University of Bologna, Italy
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Abstract

An open source architecture for the interactive solution of packing problems in

two dimensions is presented. Although primarily developed for helping engineering

students to understand the algorithmic approaches to the solution of di�cult com-

binatorial optimization problems, the application can be useful to practitioners and

developers thanks to its visual tools. The paper gives intuitive and formal definitions

of the problems at hand, discusses two natural heuristic approaches, provides techni-

cal information on the application, and reports the results of classroom experimental

testings.

Key words: Training software; Combinatorial optimization; Orthogonal packing;

Visualization; Classroom experiments.

1. Introduction

When learning combinatorial optimization algorithms it is helpful that students can use
tools to easily understand the features and the di�culty of specific optimization problems.
This paper illustrates TwoBinGame, an open source visual application for interactively “play-
ing” with (i.e., trying to solve) two-dimensional packing problems. The application was
developed at the Universities of Bologna and of Modena and Reggio Emilia with the pri-
mary scope of guiding engineering students and assessing human performance in solving
hard problems. It can also be useful to practitioners and developers to visualize, test,
and evaluate possible exact or heuristic algorithms. In TwoBinGame, the user operates in a
computer generated environment where it is possible to interact with a graphical interface
and look for solutions by manipulating virtual objects. The application was developed
in Scala. The reader is referred to http://scala-lang.org/documentation/books.html

for an overview of recent books on the Scala language.
Two-dimensional packing problems arise in a variety of industrial applications, when

it is requested to allocate a given set of rectangular objects (items) to rectangular stan-
dardized stock units so as to minimize the waste area. In wood or glass industries, large
rectangular sheets of material (bins) are cut to obtain given sets of rectangular elements.
In warehouses, goods have to be allocated to shelves. When paging journals, it is necessary
to place articles, photographs, and advertisements in the various pages. In all such cases,
the standardized stock units can be seen as “large” rectangles to which smaller rectangles
have to be allocated without overlapping. In other industrial applications, such as, e.g.,
paper or cloth production, the standardized stock unit consists of a roll of material (strip)
from which one has to obtain the desired rectangular items by minimizing the used roll
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length. In both cases, two main variants occur in practice: either the items to be packed
have a fixed orientation (e.g., when the material is corrugated or decorated), or they can be
rotated (usually by 90 degrees). The interactive application we describe is capable of han-
dling the resulting four variants (fixed length stock units or infinite length rolls; oriented
or non-oriented items).

The primary scope of this work was to implement a tool to help students developing
an algorithmic thinking. In this respect, the computational testing was intended to under-
stand strengths and weaknesses of human thinking in solving combinatorial optimization
problems, so as to obtain balanced test beds for future use in classrooms. In the next sec-
tion a literature review is presented. Section 3 gives a formal definition of the problems at
hand. In Section 4 technical information on the developed visual application is provided,
and in Section 5 the results of our experimental testing are reported. Conclusions follow
in Section 6.

2. Literature review

Besides their industrial relevance, two-dimensional packing problems have considerable
theoretical interest in the field of algorithmic combinatorial optimization. Already in 1965,
Gilmore and Gomory [22] studied a two-dimensional packing problem and presented a
column generation approach for its optimal solution. The analysis of the vast literature
produced in the following 50 years is beyond the scope of this paper. We refer the interested
reader, e.g., to the book by Dyckho↵ and Finke [20], to the more recent surveys by Lodi,
Martello, and Monaci [26] and Lodi, Martello, Monaci, and Vigo [27], and to the typologies
proposed by Lodi, Martello, and Vigo [28] and Wäscher, Haußner, and Schumann [36]. Ex-
act branch-and-bound approaches have been presented by Martello, Monaci, and Vigo [31],
Alvarez-Valdes, Parreño, and Tamarit [1], and Boschetti and Montaletti [8]. Upper bounds
have been studied, among others, by Iori, Martello, and Monaci [24] and Burke, Kendall,
and Whitwel [10], who presented heuristic and metaheuristic algorithms. Lower bounds
have been studied by Martello and Vigo [32] for the oriented case, and by Dell’Amico,
Martello, and Vigo [17] for the non-oriented case. More recently, exact approaches have
been presented by Côté, Dell’Amico, and Iori [15] and Delorme, Iori, and Martello [18].
For the variant (also considered in the presented software) in which the objective is to
maximize the total item area that is packed, we mention the exact approaches proposed
by Caprara and Monaci [11] and the upper bounding techniques studied by Egeblad and
Pisinger [21].

In order to experiment the developed application, we constructed a set of two-dimens-
ional packing instances, and we asked a set of engineering students to test their skills by
using the application to find good-quality feasible solutions within a time limit. Their solu-
tions were compared to optimal and approximate solutions produced by ad-hoc algorithms
from the literature.

The literature that presents interactive systems to study and solve decision problems is
very varied and multidisciplinary. Although a complete survey is out of the scope of this

2



paper, some interesting contributions are briefly discussed in the following.
A first branch of this literature focused on the way interactive systems can be used

in teaching. An early discussion was given in Asfahl, Swayze, Lee, and Sa↵ord [3], who
emphasized the fact that computer training programs can help capturing the attention
of the audience and teaching non-conventional subjects. A few years later, Llaugel and
Confesor [25] presented a computerized interactive program to teach quality control and
quality improvement to undergraduate students. The program was based on the simulation
of the process of filling medicine bottles, where over filling and under filling have a cost,
and was assigned to groups of students who competed with each other to get lowest cost
solutions. Crumpton and Harden [16] discussed the outcome of a test conducted on 20
students, who were asked to interact with a virtual reality tool simulating a pick and pack

problem in the cereal industry: cereal boxes were proceeding down a conveyor and the
operator was required to grab them, orient them, and then pack them into a larger box.
The results were discussed mainly from an ergonomics point of view. Bodin and Gass [7]
discussed key aspects in the teaching of the analytic hierarchy process. They developed
a series of educational tests by using the Expert Choice Software and assigned them as
classroom exercises to groups of students. Several pedagogical insights were discussed for
the attempted tests. More recently, Costa, D’Ambrosio, and Martello [13, 14] discussed
Java tools developed for the teaching of graph theory, including applications to solve a
number of optimization problems such as, e.g., shortest spanning trees, shortest paths,
and maximum flows. We also mention the special issue of INFORMS Transactions on

Education edited by Gri�n [23], entirely devoted to investigating the use of classroom
games in management science and operations research, as well as the study on how board
puzzles may help in teaching operations research by DePuy and Don Taylor [19], and the
recent classroom game on healthcare by Vliegen and Zonderland [35].

Another branch of this literature focused on the comparison between computerized and
human behavior in the solution of optimization problems. Large attention was devoted
to the well-known Traveling Salesman Problem (TSP), which requires to find a minimal
cost hamiltonian cycle in a weighted graph. Mac Gregor and Ormerod [30] showed that
humans are e�cient in solving Euclidean TSP instances when compared to basic heuristics.
They also discussed the practical di�culty of TSP instances as a function of the number
of non-boundary points. A related discussion can be found in Chapter 4 of the TSP book
by Applegate, Bixby, Chvatal, and Cook [2]. A review of this area of research is provided
by MacGregor and Chu [29]. Recently, Miyata, Watanabe, and Minagawa [33] studied
the performance of young children on the TSP using a city-block metric. They showed
that children tended to use strategies such as traveling straight to the farthest goal first,
whereas adults relied more on nearest neighbor attempts. Very recently, Pacaux-Lemoine,
Trentesaux, Zambrano Rey, and Millot [34] discussed the design of intelligent manufac-
turing systems through human-machine cooperation mechanisms. We also mention that
the Genetic and Evolutionary Computation Conference (GECCO) supports annual awards
for human-competitive results (“Humies” Awards). Among the works that participated
with success to this competition, we mention the genetic programming system for the two
dimensional strip packing problem by Burke, Hyde, Kendall, and Woodward [9], and the
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large-scale experiment comparing human and genetic programming solutions by Bartoli,
De Lorenzo, Medvet, and Tarlao [5].

3. Orthogonal packing problems

Let n be the number of items to pack, and denote as wj and hj the width and height of
item j (j = 1, 2, . . . , n). When packing in a strip, the traditional representation is to see
it as a vertical band, having fixed width and infinite height. In order to obtain a better
display on a monitor, we decided instead of adopting an horizontal view, i.e., our strip has
fixed height and infinite width.

Let H be the height of the bin or strip, and W be either the width of the bin or any
upper bound on the maximum strip width. We consider two optimization problems, each
in two variants. In the strip case, the objective is to pack all the n items by minimizing the
width at which the strip is used. In the bin case, the objective is to pack a subset of items
having the largest total area. In both cases the items are either oriented (they cannot be
rotated) or they can be rotated by 90� degrees. We denote the resulting four variants as:

• [SO:] the stock unit is a strip and the items are oriented;

• [SR:] the stock unit is a strip and the items can be rotated by 90�;

• [BO:] the stock unit is a bin and the items are oriented;

• [BR:] the stock unit is a bin and the items can be rotated by 90�.

All problems we consider are strongly NP-hard and can be modeled in di↵erent ways.
In the following we adopt, for the sake of clarity, the modeling approach originally devel-
oped by Beasley [6], where the variables represent the coordinates at which the items are
packed in the bin/strip. As it will be clear later, such variables correspond to the decisions
that the user has to take when using our visual tool. We assume in the following that all nu-
merical data are positive integers. Consider a Cartesian system restricted to non-negative
integer coordinates with origin (0, 0) in the bottom-left corner of the bin/strip.

We first consider problem SO. The following Integer Linear Programming (ILP) model
makes use of a pseudo-polynomial number of binary decision variables

xj

pq
=

⇢
1 if item j is packed with its bottom-left corner at (p, q);
0 otherwise

(1)

for j = 1, . . . , n, p 2 Wj, q 2 Hj, where Wj = {0, 1, . . . ,W � wj} and Hj = {0, 1, . . . , H �
hj} denote all positions where the bottom-left corner of item j may be placed. The ILP
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model is:

min z (2)X

p2Wj

X

q2Hj

xj

pq
= 1 (j = 1, . . . , n) (3)

nX

j=1

rX

p=r�wj+1
p2Wj

sX

q=s�hj+1
q2Hj

xj

pq
 1 (r = 0, . . . ,W � 1; s = 0, . . . , H � 1) (4)

X

p2Wj

X

q2Hj

(p+ wj)x
j

pq
 z (j = 1, . . . , n) (5)

xj

pq
2 {0, 1} (j=1, . . . , n;p 2 Wj; q 2 Hj). (6)

The objective function (2) minimizes the width z at which the strip is used. Equations
(3) impose that each item is packed in exactly one position. Inequalities (4) impose that
at most one item occupies any unit square of the strip. Constraints (5) set the value of
the objective function. Note that, for each item j, definitions (6) only consider variables
corresponding to feasible positions for the bottom-left corner of the item, so no packed
item can exceed the height of the strip.

In order to model problem SR, we add to (1) a twin set of variables,

yj
pq

=

⇢
1 if item j is packed, rotated, with its (new) bottom-left corner at (p, q);
0 otherwise

(7)

for j = 1, . . . , n, p 2 W j, q 2 Hj, where W j = {0, 1, . . . ,W � hj} and Hj = {0, 1, . . . , H �
wj} denote all positions where the bottom-left corner of the rotated item may be placed.
The resulting ILP model for SR has the same objective function as SO, while constraints
become

X

p2Wj

X

q2Hj

xj

pq
+

X

p2W j

X

q2Hj

yj
pq
=1 (j = 1, . . . , n) (8)

nX

j=1

✓ rX

p=r�wj+1
p2Wj

sX

q=s�hj+1
q2Hj

xj

pq
+

rX

p=r�hj+1

p2W j

sX

q=s�wj+1

q2Hj

yj
pq

◆
1(r=0, . . . ,W�1;s=0, . . . ,H � 1) (9)

X

p2Wj

X

q2Hj

(p+ wj) x
j

pq
+

X

p2W j

X

q2Hj

(p+ hj) y
j

pq
 z (j = 1, . . . , n) (10)

xj

pq
2{0, 1}(j=1, . . . , n;p 2 Wj; q 2 Hj) (11)

yj
pq
2{0, 1}(j=1, . . . , n;p 2 Hj; q 2 W j)(12)

to impose feasibility with respect to the two possible orientations.
An ILP model for problem BO (pack oriented items in a bin) can be immediately

derived from (2)-(6) by: (i) eliminating constraints (5), as definitions (6) guarantee that
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no packed item can exceed the borders of the bin; (ii) replacing objective function (2) with

max
nX

j=1

wj hj

✓ X

p2Wj

X

q2Hj

xj

pq

◆
, (13)

that maximizes the packed area; (iii) replacing the ‘=’ sign with ‘’ in (3), as not all items
must be packed.

Finally it is easily seen that the non-oriented bin packing version BR can be modeled,
by introducing the twin variables (7), as

max
nX

j=1

wj hj

✓ X

p2Wj

X

q2Hj

xj

pq
+

X

p2W j

X

q2Hj

yj
pq

◆
(14)

X

p2Wj

X

q2Hj

xj

pq
+

X

p2W j

X

q2Hj

yj
pq

 1 (j = 1, . . . , n) (15)

(9), (10), (11), (12).

As already mentioned, the purpose of this paper is not to present the state-of-the-art
of algorithms for the exact or approximate solution of two-dimensional packing problems,
for which the interested reader is referred to the surveys and the articles mentioned in
Section 1. In order to be self-contained, we give however a brief description of two classical
and intuitive heuristic algorithms that we used to evaluate the solutions produced by the
students who took part in the classroom tests. (The exact solutions were obtained through
the exact approaches proposed by Côté, Dell’Amico, and Iori [15] and Delorme, Iori, and
Martello [18].)

The classical Bottom-Left algorithm was introduced by Baker, Co↵man, and Rivest [4]
for problem SO, in the (equivalent) version in which the strip is vertical (see Section 3).
It preliminary sorts the items according to a prefixed policy (non increasing width, or non
increasing height, or non increasing area), and packs one item at a time, in the lowest
possible position, left justified. Its worst-case performance is 3, i.e., it is guaranteed to
produce a vertical strip whose hight does not exceed by more than three times the hight of
the optimal solution. The algorithm can be implemented so as to run in O(n2) time (see
Chazelle [12]). In our case (horizontal strip), the item is packed in the leftmost possible
position, top justified.

As the classroom tests were performed both on problems SO and SR, we also imple-
mented a simple variation that preliminarily sorts the items according to a given policy
(non-increasing max(width,height) or non-increasing area) and, at every iteration, packs
the current item in the leftmost-top position: if both orientations are feasible, the item is
packed by selecting the smallest side as the width.

Another stream of heuristics (Best-fit algorithms, see Burke, Kendall, and Whitwell
[10]) first finds, in the current packing, holes (empty orthogonal spaces) at which the next
item may be packed (initially, the bottom of the strip/bin is the unique hole). It selects the
bottommost hole and inserts in it the largest item that fits. If the item width is smaller
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than that of the hole, it is packed according to a prefixed policy (leftmost, or close to
the tallest neighbor, or close to the smallest neighbor). If no item can be packed in the
selected hole, the hole is “closed” (filled with empty space). When rotation is allowed, the
algorithm considers both orientations when checking if an item fits in a hole, and selects
the largest item that fits, selecting the highest one in case of tie.

For both families of algorithms, our approach performs a separate execution for each of
the three prefixed policies, and returns the best solution. For the cases with rotation, a so
called tower reduction post process is executed, that tries to rotate, if possible, the items
whose top edges touch the top of the strip, in order to reduce the strip height.

An instance of any problem variant can obviously include a number of identical items.
In order to obtain a compact definition and visual rendering, our representation of an
instance handles it without duplicating the items, but defining the number of copies of
each item type.

4. Architecture and tools

In this section, we detail TwoBinPack, the open source Scala architecture that was de-
veloped to support TwoBinGame. Scala is a general-purpose programming language that
combines ideas from both the functional and the object-oriented paradigm. It runs on the
Java platform and is released under a BSD licence. Full documentation can be found at
http://scala-lang.org/documentation.

The application we describe is published under the GPLv3 license. A self-contained ver-
sion is available for free download, as a compressed file, from http://www.or.deis.unibo.

it/staff_pages/martello/Tools/T.html. Instructions, additional information, and (fu-
ture) enhanced versions can be found at http://gianlucacosta.info/TwoBinPack/. A
visual tutorial can be seen online at https://youtu.be/SS6mJxugyxc.

The architecture includes three main components:

1. TwoBinManager, that manages the problem instances (creation, modification, re-
moval, import, export) and the solutions (import, visualization);

2. TwoBinGame, that loads the instances created by TwoBinManager and enables the
user to interactively solve them;

3. TwoBinKernel, a Scala library referenced by the two previous components.

In addition, TwoBinPack is based on four modules of the general-purpose library Helios
(see https://www.facebook.com/pages/Helios/206962992779275): Helios-core, Helios-
fx, Helios-jpa, and Helios-reflection. The overall architecture is summarized in Figure 1.

TwoBinKernel is the core of TwoBinPack’s architecture. It provides the ScalaFX
components for rendering two-dimensional packing problems, as well as model concepts
such as dimensions, frames, coordinate system, templates, problem, and user solution.
TwoBinKernel is also an open source Scala library, released under the GPLv3 license,
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Figure 1: The architecture stack.

available for the creation of new applications (see https://github.com/giancosta86/

TwoBinKernel). In the next sections we provide some details on the two other components
of the architecture.

TwoBinManager

TwoBinManager is a ScalaFX application designed to manage instances, bundles, and so-
lutions through a local HyperSQL database residing in the user’s home directory.

An instance corresponds to a certain problem variant, it allows or prevents rotation, it
has a total number of items (called blocks in the application), a gallery of item types, each
having a quantized amount of items, and the amount of items of each type. It might also
have a time limit for the user to find a solution. Figure 2 shows a strip packing instance
with 10 items of 8 item types, where rotation is not allowed and 6 minutes are given to
find a solution.

Figure 2: A strip packing instance.

An instance can be generated within the program, or it can be read from a standard
text file or from a bundle file (a set of one or more instances) previously generated by
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TwoBinManager. A few parameters of the instance can be modified in TwoBinManager

(e.g., the time limit).

TwoBinGame

TwoBinGame is a ScalaFX application enabling users to interactively solve two-dimensional
packing problems. It reads problem bundles (for example, created by TwoBinManager) and
returns a file that contains the best solution found by the user for each instance in the
bundle as well as the time required to obtain it. Figure 3 depicts the solution given by a
student for the instance shown in Figure 2, that packs the items into a strip of width 14,
found in 3 minutes and 17 seconds. Upon reading a bundle file, the user tries to solve, in

Figure 3: A solution for the instance of Figure 2.

sequential order, all the instances in the bundle. As soon as the time limit has expired(or
if the user decides to pass to the next instance), TwoBinGame stores the best solution found
for the current instance. When all instances of the bundle have been tried, the user can
save the obtained results. TwoBinGame provides two di↵erent ways for building a solution:
usual drag and drop, or a mouse-wheel and click approach (for faster interaction).

Figure 4 shows the visual interface of TwoBinGame for the instance of Figure 2.
Figure 5 shows a possible workflow for TwoBinPack: problem bundles created via

TwoBinManager can be imported into TwoBinGame and the corresponding solutions are
usually imported back into TwoBinManager. At the same time, standard problems provide
interoperability with third-party software.

5. Experiments

We used TwoBinGame to perform a series of classroom tests on the SO and SR variants
with students of Engineering (Degrees in Management Engineering) of the Universities of
Bologna and of Modena and Reggio Emilia. Classroom tests were optional and competitive.

9



Figure 4: The user view for the instance of Figure 2.

Figure 5: Workflow.
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Each student that accepted to participate received a small bonus in her/his final mark.
The students achieving the best solutions received a larger bonus. In the next section we
describe in details the setup of the tests, whereas in Section 5.2 we discuss the results that
were obtained.

5.1 Setup

We decided to focus on SO and SR random instances having the following characteristics:

1. n 2 {10, 13, 17, 20};

2. H 2 {10, 15, 20};

3. wj and hj values uniformly randomly distributed in [H/4, H/2], [1, 2H/3];

4. rotation either allowed or forbidden.

For each quadruplet (n, H, range, rotation) one instance was generated, producing in
total 48 instances. After a manual check, we removed the instances that could be trivially
solved, and generated others with the same parameters. We fairly distributed the 48
instances into 8 bundles of 6 standard instances each. For statistical purposes, we added
to each bundle an additional instance, having either medium or high di�culty. The one
of medium di�culty had 13 items to be packed into a strip of height 15 without rotation,
while the di�cult one had 20 items to be packed into a strip of height 20 allowing rotation.
According to the presumed di�culty, each instance was allowed a time limit of x minutes,
with x 2 {4, 5, 6, 7, 8}.

Each student was assigned a bundle. Each test lasted about one hour: 20 initial minutes
were used to instruct the students on how to download the software, solve a toy instance,
and learn on a standard instance with no time limit. The remaining 40 minutes were used
to solve the seven instances in the assigned bundle. At the end of the test, each student
sent by email the file containing the best solution obtained for each instance.

Four classroom tests were performed. At the University of Bologna, 65 students of
the second year of the Bachelor Degree performed the test in the university lab, while 18
students from the same class performed the test at home using their own PCs. In the
latter case, links and instructions on how to download TwoBinGame, as well as the bundle
number, were communicated to the students by email. At the University of Modena and
Reggio Emilia, two tests were performed in the university lab: the former one involved 72
students of the first year of the Master Degree, while the latter involved 58 students of the
third year of the Bachelor Degree. Overall, 213 students performed the test: 195 in the
lab and 18 online.

The outcome of the tests showed no remarkable di↵erence in the performance of students
of di↵erent courses so, in the next section, we evaluate the results through aggregate
information.
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5.2 Results

We report in the following the outcome of 201 tests out of the 213 that were performed. The
results of the remaining 12 tests were disregarded because either incomplete information
was provided via email or the student did not reach a minimum of 5 feasible solutions out
of 7. We evaluate in Tables 1–5 the 201⇥ 6 = 1206 solutions of the six standard instances
in the bundles, while in Table 6 and Figure 6 we comment on the 201 solutions of the
additional, more di�cult, instances.

The tables aggregate the instances into subgroups, one per line, according to di↵erent
characteristics. Let zopt be the optimal solution value. The tables provide, for each line,
the number of tests performed on the corresponding instances and, respectively for the
humans and the heuristics,

• average percentage of optimal solutions (avg. perc. opt.);

• average absolute gap (avg. abs. gap) between solution value and optimal value;

• average relative gap (avg. rel. gap), computed as (solution value - zopt)/zopt.

The last line of each table provides the overall average values.
Table 1 evaluates the solution quality when varying the number n of items. As it could

be expected, the students found good quality solutions for instances with a small number
of items and worse solutions when this number was larger. A similar behavior cannot be
clearly established for the heuristics. Overall, the students beat the heuristics in finding
proven optimal solutions (22.5% vs 18%), but they resulted slightly worse in terms of
average solution quality (1.83 vs 1.65, and 6.1% vs 5.7%).

Table 1: Evaluation by varying n

n # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

10 304 28% 9.2% 1.35 1.41 7% 7.5%
13 299 25.4% 29.1% 1.62 1.48 5.9% 5%
17 299 19.1% 11% 2.12 2.05 6.4% 6.5%
20 304 17.4% 22.7% 2.23 1.66 5.2% 3.9%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

Table 2 ranks the solutions according to the range of the optimal solution value (strip
length). The students performed very well on the 168 tests made on instances for which
zopt 2 [5; 14], optimally solving almost 40% of them. Their performance decreased con-
sistently when the range increased, and no instance with zopt � 55 could be solved to
optimality. A similar behavior can be noticed for the heuristics, confirming that the range
of the optimal solution value has considerable impact on the di�culty of an instance. It
is interesting to observe that the students clearly beat the heuristics in finding optimal
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Table 2: Evaluation by varying the optimum solution range

zopt range # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

[5; 14] 168 39.3% 35.1% 0.73 0.74 5.6% 5.7%
[15; 24] 289 32.2% 23.5% 1.15 1.03 5.9% 5.5%
[25; 34] 462 20.8% 16.7% 1.58 1.73 5.5% 6%
[35; 44] 124 9.7% 10.5% 2.96 2.19 7.5% 5.3%
[45; 54] 90 4.4% 0% 4.16 3.11 8.3% 6.2%
[55; 64] 73 0% 0% 4.25 3.05 7.3% 5.3%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

solutions, probably because the visualization gives good opportunities for a clever post-
processing of near-optimal solutions.

Table 3 takes the variation of the strip height into account. Both students and heuristics
found better solutions for instances with small strip height. The strong impact of the strip
height on the instance di�culty is also shown by the increase in the absolute and relative
gaps when H increases. The reason for this behavior is probably that a small strip height
gives few possibilities for the vertical placement of an item.

Table 3: Evaluation by varying the strip height H

H # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

10 402 39.8% 39.3% 0.78 0.66 4.2% 3.8%
15 402 21.4% 14.7% 1.56 1.64 6.2% 6.7%
20 402 6.2% 0% 3.22 2.65 8% 6.7%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

Table 4 shows the results for the two ranges adopted for the items dimensions: in
the former range the items have comparable dimensions, while in the latter they are quite
dissimilar from each other. This parameter only marginally a↵ected the performance of the
students who, however, performed slightly better for the wider range. The fact that such
range appears to produce easier instances is confirmed by the heuristics, whose performance
is clearly better for it.

Table 5 concerns the possibility of rotating the items (by 90 degrees). On average,
allowing rotation helps the students in finding optimal or good-quality solutions. A similar
behavior cannot be observed for the heuristics: when rotation is allowed they find less
optimal solutions, but at the same time they provide better absolute and relative gaps.
This could be produced by the tower-reduction post processing: when rotation is allowed,
the algorithm repositions some long and thin items packed at the top of the strip, which
helps in reducing the gap but not in reaching optimality.
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Table 4: Evaluation by varying the item dimensions’ range

item range # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

[H/4;H/2] 603 21.4% 14.6% 1.97 2.01 6.2% 6.5%
[1; 2H/3] 603 23.5% 21.4% 1.69 1.29 6% 4.9%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

Table 5: Evaluation by allowing/preventing rotation

rotation # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

not allowed 603 19.2% 18.4% 1.85 1.8 6.8% 6.6%
allowed 603 25.7% 17.6% 1.81 1.51 5.4% 4.9%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

Table 6 presents results for the two additional instances that were included in the
bundles. The instance having a supposed medium di�culty was attempted 71 times by
the students, whereas the di�cult one was attempted 130 times. Just one of these attempts
resulted in an optimal solution (for the medium di�culty instance). The table shows the
impact of the allowed time limit (from 4 to 7 minutes). For the medium di�culty instance,
the time appears to be a relevant factor to decrease the gaps. For the di�cult instance,
instead, it does not allow to produce better solutions, probably because the instance was
“too di�cult”.

Table 6: Solution quality for the di�cult shared instances by varying time

time limit
Medium instance Di�cult instance

# tests avg. abs. gap avg. rel. gap # tests avg. abs. gap avg. rel. gap

4 16 2.9 9.8% 33 5.0 7.3%
5 19 2.5 8.7% 32 3.7 5.5%
6 15 1.9 6.6% 31 4.9 7.1%
7 21 1.9 6.7% 34 4.9 7.2%

overall 71 2.3 7.9% 130 4.6 6.8%

The medium di�culty instance had zopt = 26, which was found just by one student
(in 4:44 minutes), whereas the heuristics found a strip of length 28. The di�cult instance
had zopt = 62: the best student found a solution with z = 63 in 7:02 minutes, while the
heuristic solutions (both the one found by bottom-left and the one found by best-fit) had
z = 67. The four solutions obtained for this instance are shown in Figure 6, which gives
some insight in the packing processes. The best student solution is very good: some small

14



waste portions of the strip are accepted even at an early stage of the packing, but this
results in a small final waste of just 24 units out of 1240. The possibility of rotating the
items has been conveniently exploited (see the light blue items). The heuristic solutions
are instead quite bad. Best-fit managed to produce a very dense packing at the beginning
of the strip, but this resulted in a large waste towards the end. Bottom-left had a similar
behavior. Note that both heuristics left for the final portion of the strip the yellow, red,
and purple items. In particular, the yellow items appear to be di�cult to pack, and the
optimal solution is the only one that managed to conveniently pack them together with a
light blue item.

(a) optimal, z = 62 (b) bottom-left, z = 67

(c) best human, z = 63 (d) best-fit, z = 67

Figure 6: Solutions of the di�cult instance

5.3 Discussion

The main reason for the experiments was to evaluate the human performance on a di�cult
algorithmic task. The results have shown that human operators can perform quite well
on two dimensional packing problems when compared with heuristic approaches. As high-
lighted by the discussion on the solution structure, humans have the capability to keep
a global view of the solution construction. In this way, they obtain solutions that are
good on average, in the sense that we do not observe a poor space utilization when the
last items are inserted, as it happens for the heuristic algorithms. Indeed most heuristic
(greedy) paradigms are based on the idea of inserting the next best item in the best posi-
tion, which can lead to the need of inserting items with poor fitting at the last iterations.
Clearly, humans have a limited capacity of keeping under control complexity, and hence
their performance deteriorates when the instance to be solved becomes more complex in
terms of number of items, length of the optimal strip, and height of the strip. Again, the
advantage of human intuition is exploited when rotation is allowed, which instead does not
appear to help heuristic algorithms.
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6. Conclusions

This paper has presented TwoBinGame, a visual application developed in order to guide
engineering students through the process of tackling di�cult optimization problems via a
heuristic approach. Although mainly conceived for didactical purposes, the application can
be conveniently used in professional contexts. Practitioners can find it useful to build good
quality solutions for real world two-dimensional packing instances arising, e.g., in the glass,
steel or paper industry. On the other hand, TwoBinGame can help developers in the design of
e↵ective algorithms for the solution of such problems. The reported classroom experiments
proved to be useful in testing students’ skills versus exact and heuristic approaches.
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