
23 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Hamdioui S., Du Nguyen H.A., Taouil M., Sebastian A., Gallo M.L., Pande S., et al. (2019). Applications
of Computation-In-Memory Architectures based on Memristive Devices. Institute of Electrical and
Electronics Engineers Inc. [10.23919/DATE.2019.8715020].

Published Version:

Applications of Computation-In-Memory Architectures based on Memristive Devices

Published:
DOI: http://doi.org/10.23919/DATE.2019.8715020

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/729725 since: 2020-04-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.23919/DATE.2019.8715020
https://hdl.handle.net/11585/729725

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Said Hamdioui ; Hoang Anh Du Nguyen ; Mottaqiallah Taouil ; Abu Sebastian ; Manuel
Le Gallo ; Sandeep Pande ; Siebren Schaafsma ; Francky Catthoor ; Shidhartha Das ;
Fernando G. Redondo ; G. Karunaratne ; Abbas Rahimi ; Luca Benini, Applications of
Computation-In-Memory Architectures based on Memristive Devices, in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), Proceedings

The final published version is available online at:
https://doi.org/10.23919/DATE.2019.8715020

Rights / License:

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works

https://cris.unibo.it/
https://doi.org/10.23919/DATE.2019.8715020

Applications of Computation-In-Memory
Architectures based on Memristive Devices

Said Hamdioui1 Abu Sebastian2 Sandeep Pande3 Shidhartha Das4 G. Karunaratne5

Hoang Anh Du Nguyen1 Manuel Le Gallo2 Siebren Schaafsma3 Fernando G. Redondo4 Abbas Rahimi5

Mottaqiallah Taouil1 Francky Catthoor3∗ Luca Benini5

1Computer Engineering, TU Delft, Delft, the Netherlands; S.Hamdioui@tudelft.nl
2IBM Research - Zurich, Switzerland; ASE@zurich.ibm.com

3IMEC, Eindhoven, Netherlands, 3∗IMEC., Leuven, Belgium; Francky.Catthoor@imec.be
4ARM Limited, Cambridge, UK; Shidhartha.Das@arm.com

5Integrated Systems Laboratory, ETH Zurich, Switzerland; lbenini@iis.ee.ethz.ch

Abstract—Today’s computing architectures and device tech-
nologies are unable to meet the increasingly stringent demands
on energy and performance posed by emerging applications.
Therefore, alternative computing architectures are being explored
that leverage novel post-CMOS device technologies. One of these
is a Computation-in-Memory architecture based on memristive
devices. This paper describes the concept of such an architecture
and shows different applications that could significantly benefit
from it. For each application, the algorithm, the architecture, the
primitive operations, and the potential benefits are presented.
The applications cover the domains of data analytics, signal
processing, and machine learning.

I. INTRODUCTION

Emerging applications are extremely demanding and have
surpassed the capabilities of todays computational architec-
tures and technologies [1,2]. Hence, in order for computing
systems to continue delivering sustainable benefits for the
foreseeable future, alternative computing architectures have to
be explored. The emerging new device technologies could play
a key role in this exploration. Computation-in-Memory (CIM)
computing [3,4], brain-inspired neuromorphic computing [5]
and quantum computing [6] are some of the most promising
computational approaches being pursued, while memristive
devices, quantum dots, spin-wave devices are some of the key
emerging device technologies [7].

The EC H2020 MNEMOSENE project aims at demon-
strating the Computation-In-Memory (CIM) concept based on
memristive devices; it is based on integrating the processing
units and the memory in the same physical location. As a
consequence, it significantly reduces the memory accesses
and data movements while supporting massive parallelism,
resulting in potentially orders of magnitude improvement in
terms of energy and computing efficiency. However, to achieve
the ultimate objective of fully integrating the processing units
and the memory in the same physical location, several tech-
nological challenges need to be overcome.

A realistic implementation which is well within the reach
of today’s technology is to use the CIM core as an on-chip

This research on CIM architecture is supported by EC Horizon 2020
Research and Innovation Program through MNEMOSENE project under Grant
780215.

CPU CIM

DRAM

External Memory

Program

loop1:

loop2:

loop3:

CIM
Accelerator

(a) (b)

Fig. 1: The CIM-based architecture

accelerator. Figure 1(a) shows the concept; the CIM core may
consist of very dense memristive crossbar array and CMOS
peripheral circuitry responsible for the communication and
control from/to the crossbar. In a conventional computer, the
memory access part of the executed applications is dominating
the energy consumption and the performance degradation. If
we manage to get this part executed within the CIM core,
then significant energy and performance improvement can
be realized. Figure 1(b) illustrates a program that could be
executed efficiently on this architecture; multiple loops can
be executed within the CIM core while the other parts of
the program can be executed on the conventional core. It is
worth stressing that computations in CIM core takes place
within the memory core consisting of a memory array and the
peripheral circuits. Therefore, depending on where the result
of the computation is produced, CIM core architecture can
be divided into CIM-Array (CIM-A) [4,8] and CIM-Periphery
(CIM-P) [9,10]. Even though both CIM-A and CIM-P could
impact the design of the memory array, CIM-P entails a lesser
impact on the design and hence is particularly attractive for a
range of applications

This paper investigates three different application domains
that could significantly benefit from the proposed architecture,
and is organized as follows. Section II discusses the potential
of accelerating two data analytic application kernels, QUERY
SELECT for database and XOR encryption for security encryp-
tion. Section III and Section IV investigate the speed-up for
two signal processing applications (compressed sensing and
recovery and advanced image processing) and two machine

Dist. Size Year

A 55 Large 2016

B 23 Medium 2014

C 43 Small 2015

D 60 Medium 2016

E 25 Medium 2000

F 34 Medium 2001

G 18 Small 2012

H 30 Small 2011

SA

Vr

Vr

M1

M2

Iin

Vout

Vr/RL 2Vr/RL2Vr/RH
Iin

1110/0100 Input

OR

Output10

S1

S2

Iref

Iin

Input

Read
Iref

Output

Vr/RH

0

0

Vr/RL

1

1

Iref

Iin
AND

Iin
XOR

Iref1 Iref2

Output0 1

Output10 0

Vr/RL 2Vr/RL2Vr/RH

Vr/RL 2Vr/RL2Vr/RH

1110/0100 Input
Iref

1110/0100 Input

(a) (b)

(c)

Fig. 2: The database query problem and scouting logic

learning applications (deep learning inference for IoT sensory
applications, and brain-inspired hyper-dimensional comput-
ing), respectively. Section V concludes the paper.

II. CIM FOR DATA ANALYTICS

One of the potential applications is big-data analytics with
a high percentage of logical operations that perform poorly on
conventional architectures due to e.g., high cache miss rates.

A. Targeted problem

We consider to speed up kernels (driven by bit-wise op-
eration); examples are QUERY SELECT kernel (database
applications) [11,12] and XOR encryption kernel (security
encryption) [13].

• QUERY SELECT kernel: it performs the query-06 of
the TPC-H benchmark [11], which includes 22 queries
written in SQL language. The query-06 performs compare
instructions to check if the requested data is available in
the database or not.

• XOR encryption kernel: it performs an XOR operation of
a string sequence and a predefined (secret) key. It is used
for one-time-pad cryptography [14].

For QUERY SELECT kernel, we use a bitmap index
scheme; it uses bitmaps (i.e., a vector of zeros and ones)
to represent a database; generally they work well for low-
cardinality columns. Figure 2(a) shows an example dataset
with 8 entries, representing information of newly discovered
stars. Each entry has three characteristics, i.e., distance (dist.),
size and the year in which the star was discovered. Figure 2(b)
presents the bitmap transposed representation of the same
dataset, where the three characteristics (also called bins) are
encoded into seven rows of zeros and ones; each column (e.g.,
A) is an entry while each row is a characteristic or bin. For
example, a star with distance larger than 40 is defined as
far, and otherwise as near. Typical database queries consist of
searching for specific data patterns. These queries are carried
out by performing bitwise operations on the bitmaps.

B. Implementation with CIM architecture

The implementation of CIM architecture considered for this
application it similar to that shown in Figure 1; it consists of
a conventional processor, main DRAM memory, novel data-
centric CIM core and an external memory. Both the main
memory and the CIM core can fetch data from the external
memory. Like the main memory, CIM core is addressable
from the processor and uses an extended address space.
For simplicity, we assume that the data stored in the CIM
core is not duplicated on the main DRAM memory; hence,
simplified memory coherency schemes are required. The CIM
core is initialized with data from the external memory, e.g.,
database(s); this initialization needs to be performed only once.

The architecture implementation considered here belongs
to CIM-P; i.e., computing within CIM takes place within the
peripheral circuitry. For the considered application, computing
consists mainly of performing bit-wise operations including
OR, AND, XOR gates. Hence, the peripheral circuit should be
modified. It is equipped with Scouting Logic [15] illustrated
in Figure 2(c) using two binary valued memristive devices
programmed to resistance values R1 (for M1) and R2 (for
M2), respectively. Instead of reading a single memristive
device at a time, two (or more) inputs are activated simulta-
neously (e.g., M1 and M2). The sensing current by the sense
amplifier depends on the equivalent input resistance (R1//R2).
By selecting appropriate reference currents Iref , the gates OR,
AND or XOR gates can be realized.

C. Analysis of the potential

To evaluate the the potential of considered architecture in
terms of (normalized) delay and energy, we developed two
analytical models similar to that in [16]; one for conventional
architecture and one for CIM architecture. Using an analytical
evaluation model makes it faster to perform a design space
exploration, although it could be less accurate. It is worth
noting that the model for the two bit-wise driven applications
considered here (QUERY SELECT kernel and XOR encryp-
tion kernel) are similar; it is about the potential impact the
CIM core on the overall performance rather than accurately
quantifying the impact.

For the conventional architecture, we use the Intel Xeon
E5-2680 multicore as a baseline with 4 cores, each with a
frequency of 2.5GHz. Each core contains an ALU, and a two
level cache (L1 of 32KB and L2 of 256KB). The cores share
a main DRAM memory of 4GB. For the CIM architecture, we
assume a single host processor with the same characteristics as
an individual core in the conventional architecture. It contains
an ALU, 32KB L1 cache and 256KB L2 cache, 1GB DRAM,
and a CIM unit comprising 1,048,576 parallel memory arrays
which has an area equivalent to that of 3GB DRAM. We
assume that a logical instruction takes ∼ 10ns on CIM core
which is equivalent to 20 CPU cycles [15,17].

We investigate the impact of the percentage of logical
instructions accelerated by CIM core, as well as the impact
of L1 and L2 cache miss rates on the potential improvement.

0
0.5

1 0 0.5 1

0

0.5

1

1.5

L2 miss rate

PS=~32GB, X=30%

L1 miss rate

N
o

rm
 D

el
ay

0
0.5

1 0 0.5 1

0

1

2

3

4

L2 miss rateL1 miss rate

N
o

rm
 D

el
ay

CIMConventional

PS=~32GB, X=60%

0
0.5

1 0 0.5 1

1

10

20

30

L2 miss rate

PS=~32GB,X=90%

L1 miss rate

N
o

rm
 D

el
ay

Fig. 3: Analytical results of the performance (delay) metric

0
0.5

1 0 0.5 1

1

2

3

4

5

6

7

L2 miss rate

PS=~32GB, X=30%

L1 miss rate

N
o

rm
 E

n
er

g
y

0
0.5

1 0 0.5 1

5

10

15

L2 miss rateL1 miss rate

N
o

rm
 E

n
er

g
y

CIMX

1

Conventional

PS=~32GB, X=60%

0
0.5

1 0 0.5 1

20

40

60

80

100

120

140

L2 miss rate

PS=~32GB, X=90%

L1 miss rate
N

o
rm

 E
n

er
g

y

1

Fig. 4: Analytical results of the energy metric

Figure 3 shows the performance metric (defined by the nor-
malized delay in seconds) for the conventional architecture
(red planes) with respect to CIM architecture (green planes)
for different percentages of accelerated instructions (X) on
CIM core (ranging from 30 to 90%), assuming the problem
size of ∼32 gigabyte (GB). It can be seen that the larger the
size of the accelerated part on the CIM core, the higher the
performance speed up; the speed up reaches up to 35x for
the considered case. This can be clearly observed as the gap
between the red and green planes increases. Moreover, the
higher the miss rates, the higher the performance speed up
of the CIM architecture. For low miss rates, the CIM could
be even worse than conventional architecture especially when
the percentage of accelerated instruction is low (e.g., 30% as
Figure 3 shows).

Hence, the CIM architecture could be very suitable for
applications with large data sizes and heavy memory access
instruction (and bad data locality) resulting in a relatively
high cache miss rate. Note that it has been shown that at
least 30% of a database application could be accelerated using
computation-in-memory [18].

Figure 4 shows the energy metrics (defined by the normal-
ized energy in joule) for both architectures. Overall, similar
trends are observed with respect to the percentage of accel-
erated instructions. However, the energy consumption of the
CIM architecture is always lower, irrespective of the cache
miss rates. In case 30% of the instructions are accelerated, the
conventional architecture consumes 6x more energy for the
same problem size. This grows up to two orders of magnitude
in case 90% of the instructions are accelerated. The high
energy consumption of the conventional architecture can be
partly attributed to the data movement and leakage current.

III. CIM FOR SIGNAL PROCESSING

Next, we will investigate the advantages of a CIM archi-
tecture for applications such as advanced image processing
and data compression. First, we will motivate an image
processing application namely, guided image filter. Thereafter,

Fig. 5: Bilateral Filtering and Guided Filtering Processes [19]

we will present a detailed investigation of the application of
compressed sensing and recovery.

A. Image and video processing

The next generation of advanced image and video
processing kernels often exhibit a mix of regular and
irregular (or data-dependent) memory accesses. Moreover,
they require data access which goes beyond the immediate
local neighbours. Typically, they need a medium-size
neighbourhood around the current pixel access. Typical
values can be from 7 × 7 up to 11 × 11 pixels of 23 bits
(in the case of colour images); and these do not directly
fit in the local register-files, so they need to be accessed
from SRAM caches or scratchpad memories. This limits the
efficient mapping of these kernels on modern GPUs. The
guided image filtering application [19] comprises a guidance
image I , a filtering input image p, and an output image q.
Both the guidance image I and the input image p act as input
to the application, and as a special case, they can even be
identical. Figure 5 illustrates the bilateral and guided filtering
process. The guided image filtering problem is ideally suited
to be implemented in a CIM-P architecture. The essential
idea is store the data in a large non-volatile memristive array
and enable irregular memory access by modifying the address
decoder of the memory macro.

B. Compressed sensing and recovery

1) Targeted problem: Reconstruction of a sparse high-
dimensional signal from low dimensional noisy measure-
ments, for example received by sensor arrays, is used in
many application fields, including radio interferometry for
astronomical investigations, and magnetic resonance imaging,
ultrasound imaging, and positron emission tomography for
medical applications. Unfortunately, high-performance sparse
signal recovery algorithms typically require a significant com-
putational effort for the problem sizes occurring in most
practical applications. While the computational complexity is
not a major issue for applications where off-line processing
on CPUs or graphics processing units can be afforded, it
becomes extremely challenging for applications requiring real
time processing at high throughput or for implementations on
power-constrained devices.

In practically all the applications mentioned above, the
observation model can be formulated as

y = Ax0 + w

Fig. 6: Proposed CIM implementation of compressed sensing
with AMP recovery

where A ∈ IRM×N is a known measurement matrix, x0 ∈ IRN

is the signal of interest, y ∈ IRM is the measurement data
vector and w ∈ IRM represents the measurement noise. The
goal is to recover x0 from y when M<N. A first order approx-
imate message passing (AMP) technique for reconstructing x0
given y [20] may be represented as

zt = y −Axt + N

M
zt−1

〈
η

′

t−1(A
∗zt−1 + xt−1)

〉
xt+1 = ηt(A

∗zt + xt)

where xt ∈ IRN is the current estimate of x0 at iteration t,
zt ∈ IR M is the current residual, A∗ is the transpose of A,
ηt(·) is a function, η′t(·) its derivative, 〈·〉 denotes the mean
and x0= 0. The final value of xt provides the estimate of x0.
The AMP algorithm has a relatively simple formulation and
requires only multiplications and additions, making it suitable
for a memristive CIM architecture.

2) Implementation with CIM architecture: A CIM archi-
tecture comprising CIM-P-type units that can store the mea-
surement matrix A and perform the matrix-vector multi-
plications within the array would significantly increase the
area/time/power efficiency. The elements of A are mapped
as conductance values of memristive devices organized in a
crossbar array, as depicted in Figure 6 [21]. One possible
method to program the conductance values is by an iterative
program-and-verify procedure. The compressed measurements
y are acquired by applying x0 as voltages to the crossbar
rows via digital-to-analog conversion, and obtaining y through
analog-to-digital conversion of the resulting output currents
at columns. The positive and negative elements of A can be
coded on separate devices together with a subtraction circuit,
whereas negative vector elements can be applied as negative
voltages.

Once the matrix A is programmed in the crossbar array and
the measurements y are obtained, the AMP algorithm is run in
a dedicated processing unit, while the computation of qt=Axt

and ut=A∗zt is performed using the (same) crossbar array.
The vector qt is computed by applying xt as voltages to the
rows and reading back the resulting currents on the columns,
and ut by applying zt as voltages to the columns and reading
back the resulting currents on the rows.

In the AMP algorithm, ignoring the ηt(·) and η′t(·) functions,
the main computational cost comes from the matrix-vector

TABLE I: FPGA resource utilization, frequency and estimated
dynamic on-chip power consumption

LUT FF BRAM f[MHZ] Pstatic[W] Pdynamic[W]
307908 180368 1024 200 4.04 26.4
[46.4%] [13.6%] [47.4%] (utilization on the xckul 15 FPGA device)

multiplications Axt and A∗zt which both require O(MN)
operations for dense A. The other operations in the AMP
algorithm are vector additions and multiplications which re-
quire O(N) operations. Thus, one could potentially reduce the
complexity of AMP from O(MN) to O(N) by performing
Axt and A∗zt in memristive arrays, assuming that ηt(·) and
η′t(·) involve only O(N) or less operations. The expectation
is that in a memristive crossbar, matrix-vector multiplications
can be performed with constant time complexity O(γ), where
γ is independent of the crossbar size.

3) Analysis of the potential: To quantify the potential en-
ergy gains of the CIM implementation over a conventional de-
sign, based on the figures currently achieved with a prototype
phase-change memory (PCM) chip [22], we made an FPGA
design that operates at the same speed and the same precision
at which we expect a PCM-based crossbar to perform. In the
AMP algorithm, the matrix-vector multiplications are the most
expensive operations, so we compared the memristive crossbar
analog multiplier with a 4-bit FPGA multiplier design. We fo-
cus in this analysis on the energy drawn by the computational
units and disregard the time and power consumption of the
data transfers.

The time to compute one dot-product is equal to the vector
size divided by 8, plus 5 cycles to complete the pipeline.
For a 1024× 1024 matrix-vector product using the 1024-unit
design, each dot-product unit stores one of the matrix row
of 1024 elements encoded with 4-bit per value in the local
32Kbit BlockRAM. To read the row vector from memory and
to perform the dot-product operation takes a total of 133 clock
cycles. Hence, it takes 665 ns to complete one matrix-vector
multiplication at a clock frequency of 200 MHz. Considering
a dynamic power consumption of 26.6W, one matrix-vector
multiplication consumes 17.7µJ on the FPGA.

In a memristive crossbar of size 1024×1024 based on PCM
devices, the dynamic power dissipation in the devices for one
READ operation is expected to be on the order of 0.21W,
assuming an average READ current of 1µA per device and
average voltage of 0.2V. In order to operate this crossbar at 1µs
cycle time, 8 analog-to-digital converters (ADCs) operating
at 125MSps are needed to read the currents from all 1024
columns in approximately 1µs. The power consumption of
8-bit ADCs in 90nm technology is estimated to be around
12 mW/GSps, thus 12.3mW for 1024 reads per microsecond.
Therefore, the total power consumption of the crossbar and
ADCs is estimated to be around 222mW, which is 120 times
lower than the 4-bit FPGA design. The energy per READ is
222nJ, which is 80 times lower than the FPGA. Assuming
90nm technology and 25F2 1T1R PCM cells (F = 90nm), the
area occupied by a 1024x1024 crossbar and 8 ADCs (each of
size 50µmx300µm) would be on the order of 0.332mm2.

Always ON NN

Network of Sensors

Normally OFF
High-end CPU

W
a

k
e

s

Battery or
harvested

Standard
power domain

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

32 64 128 256 512

To
ta

l E
n

e
rg

y
(J

)

Fully-Connected Network Dimensions (N^2)

4-bit ADC

Sub-Vth CM0

10pJ/cycle

Vnom CM0 (100pJ/Cycle)(a) (b)

Fig. 7: Inference on IoT sensory devices

IV. CIM FOR MACHINE LEARNING
In this section, we will investigate the application domain of

machine learning in particular applications where the training
or inference has to be performed in highly energy/area con-
strained environments. First, we will present the application
domain of deep learning for internet-of-things (IoT) and
subsequently, we will present the emerging machine learning
paradigm of hyperdimensional computing.

A. Deep learning inference for IoT sensory applications

1) Targeted problem: Computing systems with CIM archi-
tectures could play a key role in the Internet of things (IoT)
sensory domain. When deployed in edge-devices, always ON
deep learning inference applications require minimum power
consumption, and therefore, CIM architectures particularly suit
these hard requirements. Examples include Human Activity
Recognition (HAR), Key Word Spotting (KWS) and online
Electro-cardiograph (ECG) event detection and classification.
As shown in Figure 7(a), the always ON CIM architectures
can process the data coming from a network of sensors in
an efficient manner, and either work as the main computing
element on the IoT device, or on the other hand, sparsely wake
up a higher-end CPU should a specific condition be met.

2) Implementation with CIM architecture: Similar to the
compressed sensing application, the computational primitive
is matrix-vector multiplication using a memristive crossbar
array. Deep neural networks are just a cascade of matrix-
vector multiply units and activation functions. The multiple
layers of a standard fully connected neural network (FCNN)
or convolutional neural network (CNN) can be mapped to CIM
cores comprising memristive crossbar arrays. Even though
the matrix-vector multiplications are performed in the analog
domain using Ohms law and Kirchhoffs current summation
law, DACs are used to input the data to each crossbar array
and ADCs are used to digitize the resulting current. A key
challenge is the lack of precision associated with the analog
multiplication as well as the quantization of the input and
activations as dictated by the DAC/ADC resolution. However,
it has recently been demonstrated that it is possible to perform
deep learning inference with limited precision. It is shown
that one can achieve comparable classification accuracy as
networks operating with floating point precision [23].

3) Analysis of the potential: Preliminary comparative study
of implementations of the DL algorithms was conducted. First,
we analyzed the effects that low precision layers have on
the overall NN accuracy, determining the quantization char-
acteristics of the different layers. Second, the CIM approach

HD Mapping:
Item memory

HD Encoding:
MAP operations

Associative
memory

Letter

d-bit

Labels: languages with 21 classes

d-bit

Training or
classification

d-bit

Preprocessing

Channel 1

HD Mapping:
Item memory

HD Encoding: MAP Operations

Associative Memory

d-bit

Labels: hand gestures with 5 classes

Training or
classification

…

…

…

d-bit

Preprocessing

Channel 4

HD Mapping:
Item memory

(a) (b)

Fig. 8: General and scalable HD computing for various learn-
ing and classification tasks

was compared with implementations using low-power near
threshold Cortex-M processors [24]. The study shows the
significant potential for energy gains with the use of a low
precision CIM architecture (see Figure 7(b)).

B. Brain-inspired hyper-dimensional computing

1) Targeted problem: We present another application space
for CIM namely hyperdimensional (HD) computing suitable
for various learning and classification tasks using memristive
devices [25]. HD computing is a brain-inspired computing
paradigm where information is represented in hypervectors:
d-dimensional holographic (pseudo)random vectors with inde-
pendent and identically distributed (i.i.d.) components. When
the dimensionality is in the thousands, e.g. d >1000, there
exist a very large number of quasiorthogonal hypervectors.
This lets HD computing combine such hypervectors into a
new hypervector using well-defined vector space operations.
These mathematical operations are bitwise and ensure that the
resulting hypervector has the same dimensionality—i.e., fixed-
width. The resulting hypervectors can then be directly used to
not only classify but also to bind, associate, and perform other
types of “cognitive” operations in a straightforward manner.

HD computing uses three operations to combine binary hy-
pervectors: addition (which can be weighted), multiplication,
and permutation (more generally, multiplication by a matrix)
that are collectively called as MAP operations. “Addition” and
“multiplication” are meant in the abstract algebra sense where
the sum of binary hypervectors [A+B+ . . .] is defined as the
componentwise majority function with ties broken at random,
the product is defined as the componentwise XOR (addition
modulo 2, ⊕), and permutation (ρ) shuffles the components.
All these MAP operations produce a d-bit hypervector.

HD computing has been used in various applications such
as language recognition [26] (Figure 8(a)) and biosignal pro-
cessing (Figure 8(b)) including electromyography (EMG) [27],
electroencephalography (EEG) [28], and electrocorticography
(ECoG) [29] with up to 100 electrodes. These learning and
classification tasks are based on the same hardware construct:
1) mapping to the HD space, 2) encoding with the MAP
operations, and 3) associative memory (see Figure 8). During
training, the associative memory updates the learned patterns
with new hypervectors, while during classification it computes
distances between a query hypervector and learned patterns.

Hence, it is possible to build a CIM engine based on these
operations to cover a variety of tasks.

2) Implementation with CIM architecture: The CIM prim-
itives used for HD computing implementation are dot-product
and bitwise operations. The dot-product is performed using
binary input values, binary memristor states, and analog
output. The bitwise operations are performed using binary
input values, binary memristor states, and binary output. The
memristor values are written only once before the execution
of the HD algorithm and are never modified again. Additional
digital computations and memory buffers are needed in order
to implement the entire HD algorithm.

3) Analysis of the potential: Simulation studies were con-
ducted using a CIM unit based on realistic models of phase-
change memory devices. It was shown the CIM architec-
ture can deliver comparable accuracies to the ideal software
simulations for the task of language recognition. Preliminary
results were also obtained comparing the energy efficiency
of a potential CIM-based implementation over 65nm digital
CMOS implementation. A cycle-accurate RTL model that has
equivalent throughput to that of the proposed CIM HD proces-
sor was developed. The RTL model was synthesized in UMC
65nm technology node using Synopsys Design Compiler.
Energy estimation was carried out in Synopsys PrimeTime
by providing the netlist and the activity file as the inputs.
A best area improvement of 9× and an energy improvement
of 5× is expected with the CIM HD processor architecture
compared to CMOS counterpart. By utilizing more efficient
ADCs the performance numbers could be improved further.
Nevertheless if only the replaceable module in the architecture
are considered vast improvements can be expected which are
eclipsed by the current energy budget of the non-replaceable
modules. When only replaceable modules are considered,
energy efficiency can be two to three orders of magnitude
higher in the case of a CIM architecture.

V. CONCLUSION

Computation-in-memory using memristive devices is an
emerging computing paradigm that tries to address the chal-
lenge of memory wall posed by the conventional von Neu-
mann architecture. Although the extent of improvement in
terms of energy/time efficiency is application and problem-
size dependent, the CIM architecture clearly has the potential
to outperform the traditional von Neumann architecture due
to many reasons. For instance, it uses non-volatile memristive
technology which reduces the static power. In addition, it
performs computation within the memory core, meaning that
data movement is significantly reduced; this results both in
energy saving and performance improvement. Moreover, given
the nature of the CIM core, the time complexity of some
primitive function such as matrix-vector multiplication could
be reduced from O(N2) to O(1), resulting in further per-
formance improvement. In this paper, we presented concrete
examples from the domains of data analytics, signal processing
and machine learning that could significantly benefit from
this new architecture. We presented how a CIM architecture

could tackle these problems and in many instances presented
a detailed study on the potential area/energy/time benefits.

REFERENCES

[1] Patterson, “Future of computer architecture,” in Berkeley EECS Annual
Research Symposium (BEARS), US, 2006.

[2] Jones, “Whitepaper: semiconductor industry from 2015 to 2025,” Inter-
national Business Strategies, 2015.

[3] Hamdioui et al., “Memristor based computation-in-memory architecture
for data-intensive applications,” in DATE’15, 2015, pp. 1718–1725.

[4] Sebastian et al., “Temporal correlation detection using computational
phase-change memory,” Nature Communications, vol. 8, p. 1115, 2017.

[5] Sebastian et al., “Tutorial: Brain-inspired computing using phase-change
memory devices,” Journal of Applied Physics, vol. 124, p. 111101, 2018.

[6] “https://www.research.ibm.com/ibm-q/.”
[7] ITRS, “Beyond cmos white paper,” ITRS, Tech. Rep., 2014.
[8] Hosseini et al., “Accumulation-based computing using phase-change

memories with fet access devices,” IEEE Electron Device Letters,
vol. 36, pp. 975–977, 2015.

[9] Du Nguyen et al., “Memristive devices for computing: Beyond cmos
and beyond von neumann,” in VLSI-SoC’17. IEEE, 2017.

[10] Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC’16.
IEEE, 2016.

[11] Council, “Tpc-h, a decision support benchmark,” 2015.
[12] Wu et al., “Using bitmap index for interactive exploration of large

datasets,” in SSDBM’03. IEEE, 2003, pp. 65–74.
[13] Yang et al., “Improving memory encryption performance in secure

processors,” IEEE Trans. on Comp., vol. 54, pp. 630–640, 2005.
[14] Yang et al., “Memristive devices for computing,” Nature nanotechnol-

ogy, vol. 8, pp. 13–24, 2013.
[15] Xie et al., “Scouting logic: A novel memristor-based logic design for

resistive computing,” in ISVLSI’17. IEEE, 2017, pp. 176–181.
[16] Du Nguyen et al., “On the implementation of computation-in-memory

parallel adder,” IEEE TVLSI, 2017.
[17] PS.Yu, “merging memory technologies,” SPRING 2016 Solid-sate cir-

cuits magazine, vol. 8, pp. 43–56, 2016.
[18] Seshadri et al., “Fast bulk bitwise and and or in dram,” IEEE Computer

Architecture Letters, vol. 14, pp. 127–131, 2015.
[19] He et al., “Guided image filtering,” IEEE transactions on pattern

analysis & machine intelligence, pp. 1397–1409, 2013.
[20] Donoho et al., “Message-passing algorithms for compressed sensing,”

Proceedings of the National Academy of Sciences, vol. 106, pp. 18 914–
18 919, 2009.

[21] Le Gallo et al., “Compressed sensing with approximate message passing
using in-memory computing,” IEEE Transactions on Electron Devices,
vol. 65, pp. 4304–4312, 2018.

[22] Le Gallo et al., “Mixed-precision in-memory computing,” Nature Elec-
tronics, vol. 1, p. 246, 2018.

[23] Zhou et al., “Incremental Network Quantization: Towards Lossless
CNNs with Low-Precision Weights,” pp. 1–14, Feb 2017. [Online].
Available: http://arxiv.org/abs/1702.03044

[24] Myers et al., “A 12.4pJ/cycle sub-threshold, 16pJ/cycle near-threshold
ARM Cortex-M0+ MCU with autonomous SRPG/DVFS and tempera-
ture tracking clocks,” in Symposium on VLSI Circuits. IEEE, jun 2017,
pp. C332–C333.

[25] Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” IEEE TCAS I, vol. 64, pp. 2508–2521, Sept 2017.

[26] Rahimi et al., “A robust and energy efficient classifier using brain-
inspired hyperdimensional computing,” in Symposium on Low Power
Electronics and Design, August 2016.

[27] Rahimi et al., “Hyperdimensional biosignal processing: A case study
for EMG-based hand gesture recognition,” in IEEE International Con-
ference on Rebooting Computing, October 2016.

[28] Rahimi et al., “Hyperdimensional computing for noninvasive brain–
computer interfaces: Blind and one-shot classification of EEG error-
related potentials,” BICT’17, 2017.

[29] Burrello et al., “One-shot learning for iEEG seizure detection using end-
to-end binary operations: Local binary patterns with hyperdimensional
computing,” in BioCAS’18, 2018, pp. 1–4.

