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This paper is the second of two companion papers addressing the dynamics of two coupled masses
sliding on analytical surfaces and interacting with one another. The motion occurs under the effect
of gravity, the reaction force of the surface and basal friction. The interaction force maintains the
masses at  a fixed distance and lies on the line connecting them. The equations of  motion form a
system  of  ordinary  differential  equations  that  are  solved  through  a  fourth-order  Runge–Kutta
numerical scheme. In the first paper we considered an approximate method holding when the line
joining  the  masses  is  almost  tangent  to  the  surface  at  the  instant  mass  positions.  In  this  second
paper we provide a general solution. Firstly, we present special cases in which the system has exact
solutions. Second, we consider a series of numerical examples where the interest is focused on the
trajectories of the masses and on the intensity and changes of the interaction force.
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1     Introduction

This paper is an extension of the study in Ref. [1]. More pre-
cisely,  we  present  a  system  of  ordinary  differential  equations
(ODEs)  that  describes  the  motion  of  a  couple  of  masses  sliding
down analytical  surfaces  and interacting with one another.  The
forces that act on the system are gravity, the reaction force of the
surface,  friction and the interaction force.  This  latter  represents
the core  of  this  study  and  is  widely  analyzed  to  see  how  it  de-
pends on the slope geometries and on the system dynamics.

Following  the  formulation  [1]  the  equations  are  built  under
the assumptions that the masses are strictly adherent to the sur-
face and cannot leap or jump from the surface itself. In all simu-
lations,  we  use  surfaces  described  by  equations  of  the  type z  =
f (x, y), where z  represents the vertical coordinate in a Cartesian
reference  system,  and x,  y  are  the  coordinates  in  a  horizontal
plane.

In the  previous  paper  we  considered  an  approximated  sys-
tem where the projections of the interaction forces in the direc-
tion normal  to  the  surface  were  neglected,  which  was  accept-
able for the surface geometries taken into account there. In this
paper, we deal with the full system of equations. In the next sec-
tion,  we  present  the  new  theoretical  approach.  Then  we  treat

simple no-friction analytical cases. Finally, we show and discuss
further  cases  where  masses  move  in  a  very  complicated  way,
mainly  due  to  the  presence  of  the  interaction  force.  The  two-
mass system considered here is a very simple structure. The ex-
tension to a  more complex structure formed by a large number
of interacting masses is one of the objectives of our research, but
as a first step, it requires the full understanding of the dynamics
of the basic system we describe here. In this paper, we do not fo-
cus  on  the  choice  of  the  numerical  method  used  to  solve  the
equations.  As  seen  in  Ref.  [1],  a  fourth-order  Runge–Kutta
scheme (RK4) provides satisfactory results in terms of computa-
tional  efforts  and accuracy and hence we use it  throughout this
paper.

In the  following  examples,  the  initial  conditions  of  the  sys-
tems are given in terms of positions and velocities values. In this
paper we are interested to the dynamic evolution of the systems.
Therefore, when we present cases of systems initially at rest, we
restrict  to  systems  that,  being  not  in  equilibrium,  start  moving.
Addressing  cases  of  stable  systems,  where  system  can  move  as
the result of destabilizing mechanisms, is not within the scope of
this paper and will be the object of future research and fully de-
scribed in upcoming works.

2     Formulation of the problem

We assume that two point-like particles with masses m1  and
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m2 are initially in the positions P1(x1,  y1,  z1) and P2(x2,  y2,  z2) on
the  surface z  =  f  (x,  y ),  in  a  Cartesian  reference  system  where x
and y are the horizontal coordinates and z is the vertical one. As
seen in Ref. [1], the equations of motion for a couple of interact-
ing particles sliding down a smooth surface are

m1Ä1 = 1+ ¡ ( ¢ 1) 1; (1a) 

m2Ä2 = 2 ¡ + ( ¢ 2) 2: (1b) 

i i

i

i

¡ ( ¢ i) i

where  (i  =  1,  2)  are  the  3D  position  vectors  and  are  the
forces  acting on the particles  including the effect  of  gravity  and
of surface reaction. By  we denote the interaction force exerted
by mass 2 on mass 1 and is supposed to be equal in intensity and
contrary  to  the  force  acting  on  mass  2  by  mass  1;  are  unit
vectors normal to the surface and pointing upwards in the points

. The last terms of Eq. (1) are the projections of  in directions
normal to the surface in the points P1 and P2. With this addition,
the total action of the interaction force  is tangential
to the surface. Pointedly, we can write

1 = m1 +m1 (Ä1 ¢ 1 ¡ ¢ 1) 1;

2 = m2 +m2 (Ä2 ¢ 2 ¡ ¢ 2) 2;

(Äi ¢ i) i

where  is  the  gravity  acceleration  vector  pointing  downwards
and  are  the  centripetal  accelerations.  In  case  of
friction, the system of Eq. (1) changes to

m1Ä1 = 1+ ¡ ( ¢ 1) ( 1 ¡ ¹ 1) ; (2a) 

m2Ä2 = 2 ¡ + ( ¢ 2) ( 2 ¡ ¹ 2) ; (2b) 

¹ 1 2

1 2

where  is  the  friction  coefficient  and  where  and   are  unit
vectors  tangential  to  the  surface  and  parallel  to  the
instantaneous  velocity  of  the  respective  masses.  In  parallel,  the
expression for  and  have to be generalized to

1 = m1 +m1 (Ä1 ¢ 1 ¡ ¢ 1) ( 1 ¡ ¹ 1) ; (3a) 

2 = m2 +m2 (Ä2 ¢ 2 ¡ ¢ 2) ( 2 ¡ ¹ 2) : (3b) 

iConsidering  that  the  forces  include  terms  depending  on
the position of  the masses and on the centripetal  accelerations,
that in turn can be written in terms of curvature radiuses Ri  and
of velocities (see Appendix A1), we can isolate the mass acceler-
ations in the first member of Eq. (2) and write

Ä1 =
1

m1
+

1
m1
[ ¡ ( ¢ 1) ( 1 ¡ ¹ 1)] ; (4a) 

Ä2 =
2

m2
¡ 1

m2
[ ¡ ( ¢ 2) ( 2 ¡ ¹ 2)] ; (4b) 

12 = 1 ¡ 2

12

where  the  forces  are  given  by  Eq. (3) .  The  interaction  force  we
consider  here  is  such  that  the  distance  between  the  masses  is
constant, which means that the joining vector  has a
constant magnitude. Imposing this constraint in the way given in
detail  in  Appendix  A1,  and  assuming  that  the  force  points
towards the same direction as direction 

= h 12

( 12 ¢ 12)
1=2

: (5) 

We  can  obtain  the  following  expression  for  the  interaction
force

=¡ 12

½
m1+m2

m1m2
12 ¢ 12 ¡

( 12 ¢ 1) [ 12 ¢ ( 1 ¡ ¹ 1)]

m1

¡ ( 12 ¢ 2) [ 12 ¢ ( 2 ¡ ¹ 2)]

m2

¾¡1

£
·

12 ¢
µ

1

m1
¡ 2

m2

¶
+ _12 ¢ _12

¸
: (6) 

Equation (6) shows that  depends on the positions and velo-
cities of the masses. It is convenient to rewrite it in the following
simplified form

= ¡ 12;

¡where  is defined implicitly. With this in mind, the total forces
acting on the masses m1 and m2 can be given the expressions

1;tot = 1+ ¡ 1T; (7a) 

2;tot = 2 ¡ ¡ 2T; (7b) 

1 2where  and  are given by Eq. (3) and where

1T = 12 ¡ ( 12 ¢ 1) ( 1 ¡ ¹ 1) ; (8a) 

2T = 12 ¡ ( 12 ¢ 2) ( 2 ¡ ¹ 2) : (8b) 

Considering Eqs. (2), (7), and (8), we can write the equations
of motion for the various components in the form

m1Äx 1 = F 1x + ¡R 1Tx; (9a) 

m1Äy1 = F 1y + ¡R 1Ty; (9b) 

m2Äx 2 = F 2x + ¡R 2Tx; (9c) 

m2Äy2 = F 12+ ¡R 2Ty: (9d) 

If we introduce the arrays p and b such that

T = [x 1; y1; x 2; y2] ; (10) 

T = [F 1x + ¡R 1Tx; F 1y + ¡R 1Ty; F 2x ¡ ¡R 2Tx; F 2y ¡ ¡12R 2Ty]:
(11) 

The system of Eq. (9) can be written in the compact form

Ä = ; (12) 

where A  is  a 4×4 diagonal matrix with: A11  = m1,  A22  = m1,  A33  =
m2, A44 = m2. Eventually, Eq. (12) can be turned into a system of
first-order differential equations as

_ = ; (13a) 

_ = ¡1 : (13b) 
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Equation (13)  is  suitable  for  solution  searched  by  means  of
Runge–Kutta  numerical  methods.  More  precisely,  we  use  RK4,
which  was  shown  to  be  satisfactorily  accurate  for  this  kind  of
problems [1].

3     Analytical solutions

The theory just described is first tested through cases admit-
ting an  analytical  solution  for  the  motion  of  the  two-mass  sys-
tem. These solutions allow us to find an exact form for the inter-
action force given in Eq. (6).

3.1 Case 1

The first  case we propose is  a constant velocity circular mo-
tion on a concave sphere described in a Cartesian reference sys-
tem by the equation

z = R ¡
p

R 2 ¡ x 2 ¡ y2 ; z < zmax · R ; (14) 

where R is the sphere radius.

r = R sin#0

As  seen  in  Ref.  [1]  a  particle  on  a  spherical  surface  moves
along a  horizontal  circular  trajectory,  if  it  is  posed at  a  distance

 from the vertical axis and pushed with an initial ho-
rizontal velocity v0 equal to

v0 =
p

gR sin#0 tan#0; (15) 

#0

#0

where  is  the  slope  of  the  plane  tangent  in  the  particle  initial
position.  Notice  that  the  kinetic  energy  needed  to  keep  the
motion on the horizontal circle grows with .

'0

Here,  we  impose  that  the  two  masses  have  initial  velocities
given by Eq. (15), are initially placed on a horizontal circumfer-
ence of radius r and are separated by the angular shift .

'0

Under these conditions, we expect that,  independently from
the choice of , the particles will spin on the same plane keep-
ing their initial velocities and shift constant over time. The equa-
tions for the displacement components are given by

x 1 (t) = r sin (!t) ;

y1 (t) = r cos (!t) ;

x 2 (t) = r sin(!t + '0);

y2 (t) = r cos(!t + '0)

! = v0=rwith . Since the two masses move like they would move
if  they  were  free  individual  systems,  their  interaction  force  is
expected to be identically zero.

P01 = (#0; 0) P02 = (#0; '0) #0

'0 = =2
V01 = (0; v0) V02 = (0;¡v0)

T = 2 r=v0

We set up a simulation case where we take a spherical unit-
radius surface and two equal masses (m1 = m2 = m) at the initial
positions  and , with =23.6° and the
phase  shift .  The  initial  velocities  are  correspondingly
set to  and , with v0 evaluated through
Eq. (15) .  We  run  the  numerical  simulations  for t  =  5T,  where

 is the motion period. The difference of the numeric-
al and analytical solution is found to be very small. For example,
the  discrepancy  for  horizontal  displacement x(t )  normalized
over  the  motion  radius r  results  to  be  confined  to  the  order  of
10–9). Likewise, from our computations the interaction force nor-
malized  over mg  turns  out  to  be  in  the  range  of  10–13)  which  is
practically zero, as it should be.

P01 = (R sin#1; 0) P02 = (R sin#2; 0)

r1 = R sin#1 r2 = R sin#2

( _1)0 = (0; v1; 0) ( _2)0 = (0; v2; 0)

The second case we propose regards a system of particles on
a  sphere  where  the  interaction  differs  from  zero.  We  set  the
masses m1 and m2 at different heights on the sphere in the same
vertical plane. With no loss of generalization, we take the initial
horizontal positions in  and .
It  can  be  shown  that  the  masses  move  uniformly  on  the  circles
respectively of radius  and , if their ini-
tial  velocities  are  and  ,  with v1

and v2 satisfying the expressions

v2
1 =

gR sin2#1

cos#1

£
·

1+ (cos#1 ¡ cos#2)
m2 sin#2

m1 sin#1 cos#1+m2 sin#2 cos#2

¸
;

(16a)

v2
2 =

gR sin2#2

cos#2

£
·

1¡ (cos#1 ¡ cos#2)
m1 sin#1

m1 sin#1 cos#1+m2 sin#2 cos#2

¸
:

(16b)

It is worth pointing out that the masses have the same angu-
lar velocity, given by

!2 =
g
R

m1 sin#1+m2 sin#2

m1 sin#1 cos#1+m2 sin#2 cos#2
: (17) 

#1 < #2Let's  suppose  that ,  so  that  particle  2  moves  above
particle 1. It is worth observing that if the two particles were free
to  move  (with  no  binding)  the  speeds  to  sustain  the  horizontal
circular trajectories would be given by Eq. (15) and would be dif-
ferent  from one another.  Namely,  the speed of  particle  1  would
be smaller than the velocity v1 given in Eq. (16a) and the speed of
particle 2 would be larger than v2 of Eq. (16b). Hence the interac-
tion  in  the  coupled  system  has  the  effect  of  constraining  the
masses  to  the  same angular  speed pushing the  lower  mass  and
slowing down the upper mass.

The analytical solution for the motion of the masses is

x 1 (t) = R sin#1 cos (!t) ;

y1 (t) = R sin#1 sin (!t) ;

x 2 (t) = R sin#2 cos (!t) ;

y2 (t) = R sin#2 sin (!t) :

It  can  be  shown  that  the  interaction  force  has  a  constant
magnitude given by the following exact expression

h = g
jcos µ1 ¡ cos µ2j

cos [1=2 (#2 ¡ #1)]

m1m2 sinµ1 sinµ2

m1 sin#1 cos µ1+m2 sinµ2 cos µ2
; (18) 

#1 = 0

where h is defined in Eq. (4). It is worth observing that h does not
depend on the sphere radius R .  Notice further that if  one of the
two  masses  is  set  at  the  bottom  of  the  sphere  (for  example  if

), the mass does not move, while the other one spins as it
were free, with v2 taking the form seen in Eq. (15).

#1 #2

In Fig.  1 we  display  the  values  of h  given  by  Eq. (18) ,  in  the
case of two equal masses (m1 = m2  = m) normalized to mg ,  as a
function of  and . In virtue of its definition given by Eq. (4),
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#1 = #2

when h is positive, it means that mass 1 is pushed away by mass
2 (rejected), which is a reciprocal action. In our case, h  as given
by  Eq. (18)  is always  positive,  and  hence  the  interaction  is  re-
pulsive  in  character.  To  explain  this,  one  should  consider  that
mass  1  rotates  at  a  speed  higher  than  the  corresponding  free
particle. A free particle with the same speed would then tend to
move outward from the rotation axis  and therefore  to  climb up
to  higher  values  of z .  Likewise,  the  upper  mass,  if  free,  would
tend  to  move  downward.  The  interaction  force  opposes  this
trend  and  keeps  them  at  their  own  level  pushing  them  away
from  one  other.  Looking  at  the  contour  plot  of Fig.  2,  one  sees
that,  on  the  bisecting  line  where ,  the  magnitude  of h  is
zero, because the two-mass system degenerates to a single mass.
Expectedly,  the  plot  is  symmetric  with  respect  to  the  bisecting
line.

#1 = 0 #2 = =2 #1 = =2 #2 = 0p
2mg #1 = 0 #2 = 0

Notice  that h  results  to  be  a  multivalued  function  in  the
nodes ( , ) and ( , ), where its value
ranges  from  0  to .  Also  in  the  node  ( , ),  it  is
undefined and takes on values in the range from 0 to mg. Figure
3 shows  the  contour  plot  of h  for  a  two  different-mass  system.
The masses are m1 = (1–k)m and m2 = (1+k)m, where m is the av-
erage  mass  and k  is  the  mass  unbalance  coefficient.  Looking  at

p
2mg (1+ k)

mg (1+ k) p
2mg

¡
1¡ k2

¢

the  graph,  one  can  see  that  the  bisecting  line  is  still  a  locus  of
zero values, but not a symmetry line. It can be shown that in the
bottom  right  corner  the  function  values  range  from  0  to

,  in the upper right corner they are in the interval
from 0 to , while in the upper left corner the interval of

variation is between 0 and .

P01 = (#1; 0)
P02 = (#2; 0) #1 #2

T = 2 =!

In the  numerical  simulations,  we  suppose  the  initial  hori-
zontal  positions  of  the  two  equal  masses  in  and

 on  a  unit-radius  sphere  with  =  17.5°  and  =
23.6°.  According  to  Eq. (17) ,  the  period  of  rotation  around  the
vertical axis is slightly larger (by a factor 7 × 10–3) than the corres-
ponding period of the free particle 2 (see the previous example).
From Eq. (18) ,  the  interaction force  turns  out  to  be  quite  weak,
having  the  value h/mg  =  6.9  ×  10–3.  We  compute  the  numerical
solution for t = 5T, where .

The differences  between  the  numerical  and  analytical  posi-
tions on the x-axis, i.e. x(t), normalized to the radiuses of the cir-
cular  motion,  are  in  the  order  of  10–6. Furthermore,  the  differ-
ence  between  the  interaction  force  estimated  through  the  RK4
scheme and the analytical expression Eq. (18) are in the range of
10–3,  which  suggests  that  the  RK4  scheme  provides  satisfactory
results.

3.2 Case 2

#0

'0

The next  theoretical  case is  the motion of  two equal  masses
that start from rest on a spherical surface from the same height.
Let's suppose that m1  = m2  = m, and that the initial positions on
the sphere can be described by the colatitude  and the longit-
ude  as follows

P10 = (R sin#0 cos'0;¡R sin#0 sin'0;R (1¡ cos'0)) ;

P20 = (R sin#0 cos'0;R sin#0 sin'0;R (1¡ cos'0)) ;

#
'

where R  is  the  radius.  Due  to  the  perfect  symmetry  of  the
problem  with  the  respect  to  the  vertical  plane y  =  0,  we  expect
that  the  two  masses  have  equal  colatitude  and  opposite
longitude  at  any  time.  This  means  that  the  instantaneous
position of the two masses are

P1 = (R sin# cos';¡R sin# sin';R (1¡ cos')) ;

P2 = (R sin# cos';R sin# sin';R (1¡ cos')) ;

and their distance is
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Fig. 1.   Interaction force between two equal masses spinning at dif-
ferent heights on a sphere, normalized over mg, as a function of the
angles  and  in the range from 0 to . The angles are meas-
ured in  units. The contour lines are spaced by 0.1. The black
thick line represents the bisecting line where h is zero.
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Fig. 2.   Interaction force between two different masses spinning at
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age mass of the particles (unbalance coefficient k = 0.82). Angles 
and  are measured in  units. The contour lines are spaced by
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d = 2R sin# sin':

sin# sin'
Since d  does  not  change  in  time,  it  implies  that  the  product

 is a constant of the system motion.
The center of mass (CoM) of this system has the position

PCM = (R sin# cos'; 0;R (1¡ cos'))

R CM = R
q

1¡ (sin# sin')2

°

° #

and  its  distance  from  the  sphere  center  is

. Because the product of the sinuses

is a motion constant, it  follows that during the motion the CoM
moves on an arc of radius RCM .  If  we call  the angle formed by
the radius RCM with the vertical axis at the time t, we can use it as
a coordinate describing the instantaneous position of  the CoM.
It is easy to see that the link between  and the colatitude  is

R CM cos° = R cos#: (19) 

Considering that only the gravity forces contribute to the mo-
mentum  calculated  with  respect  to  the  center  of  the  sphere,  it
can be shown that the CoM dynamics is governed by the pendu-
lum equation

Ä° = ¡ g
R CM

sin°; (20) 

which is cyclic with a period equal to

T = 4

s
R CM

g

Z
2

0

d®q
1¡ sin2

¡ 1¡cos°0
2

¢
sin2®

; (21) 

°0

#0 '0

=2 (
p

R=g)=2

#0 =2 '

'0 =2

where  is  the  initial  position  of  the  center  of  mass  (see
Appendix  A2).  In Fig.  3,  the  oscillation  period  is  displayed  as  a
function of the initial colatitude  and longitude  in the range
from 0 to . Values are normalized over  that is the
expected period for  small  oscillation angles.  It  is  found that  the
scaled T is almost constant and close to 1 around the origin. On
the contrary, when  is close to , the variations of  strongly
affect the period, that tends to zero when also  approaches 
since the oscillation radius RCM goes to zero.

°Passing from  to the Cartesian coordinates of the CoM and
of the  masses  is  straightforward.  The  Cartesian  CoM  coordin-
ates are given by

x CM (t) = R CM sin° (t) ;

yCM (t) = 0;

zCM (t) = R ¡ R CM cos° (t) ;

and the coordinates of the masses are

x 1 (t) = x 2 (t) = x CM (t) ;

y1 (t) = ¡d=2; y2 (t) = d=2;

z1 (t) = z2 (t) = zCM (t) :

The  interaction  force  calculated  through  the  Eq. (5)  can  be
written as

h (t) =
mgdR CM

R 2

3
2 cos° (t)¡ cos°0

1¡ d2

4R 2

: (22) 

In  terms  of  colatitude  and  longitude,  the  above  expression
turns out to be

h (t) = mg sin# (t) sin' (t)
3 cos# (t)¡ 2 cos#0

1¡ (sin# (t) sin' (t))2 : (23) 

° (t)
#

'

The  solution  of  the  problem  can  only  be  found  numerically
by solving Eq. (20) providing , and then using the geometric-
al relation Eq. (19) and the invariance of the distance d to find 
and . There  are,  however,  some  properties  that  can  be  de-
duced  analytically.  For  example,  the  interactive  repulsive  force
h(t) oscillates between a minimum and maximum value that can
be written as

hmin =
mgsin#0sin'0

1¡ sin2#0sin2'0
cos#0; (24) 

hmax =
mgsin#0sin'0

1¡ sin2#0sin2'0

³
3
p

1¡ sin2#0sin2'0 ¡ 2 cos#0

´
: (25) 

#0

'0 =2

One can observe that h does not depend on the radius R, and
scales  as mg .  In Fig.  4 we  show  contour  plot  of hmax/(mg )  as  a
function  of  the  initial  colatitude  and  longitude  of  the  masses.
The plot suggests that hmax grows larger and larger when  and

 approach  , and  provides  an  example  where  the  interac-
tion force can largely dominate on the weight of the masses.

#0 '0

The  numerical  solution  of  the  Eq. (20)  has  been  computed
through an  RK4  scheme.  It  is  taken  here  as  the  reference  solu-
tion against  which we compare the solutions of  Eq. (13)  for  the
coupled system.  On  a  unit-radius  sphere,  we  select  the  colatit-
ude  = 24.35° and the longitude  = 14.04°.

Initial velocities are set to zero. The oscillation period estim-
ated  through  Eq. (21)  and  by  the  numerical  solution  of  the
coupled system leads to almost the same value with a relative er-
ror in the order of 10-5. Computations are carried out for 5 peri-
ods.

The  absolute  differences  between  the  values  of x(t ) com-
puted numerically and analytically, normalized to RCM, are equal
for both masses, in the order of 10-12. The interaction force h os-
cillates between the values 0.092mg and 0.118mg, as it is clear in
Fig.  5 where the  time  history  of  the  interaction  force  of  the  nu-
merical  solutions  is  shown.  Differences  between  the  numerical
and analytical solutions are very small, in the order of 10-12.

The previous case is also treated considering the presence of
the friction force acting on the system. In this case, the CoM dy-
namics is represented by the equation
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Fig. 4.     Maximum interaction force (in logarithmic scale) for two
equal masses oscillating in parallel and at same height on a sphere,
scaled to mg, as a function of initial colatitude and longitude. Angles
are in the range from 0 to  and are measured in  units.
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Ä° = ¡ g
R CM

sin°¡ ¹
j _°j

R CM

µ
R _°2 +

gR
R CM

cos°

¶
:

The interaction force is independent of basal friction but de-
pends on the particles velocities.  Hence, its general trend is not
given  by  Eq. (23)  since  we  expect h  to  decrease  as  the  particles
decelerate under the effect of friction. The minimum value is still
given analytically by Eq. (24),  as in the frictionless case,  but the
maximum  value  depends  on  the  maximum  velocity  value  that
can  be  obtained  only  numerically.  When  the  modulus  of  the
particles  velocities  reaches  the  minimum,  the  interaction  force
becomes constant and is given by

hf in =
mgsinµsin'p
1¡ sin2µsin2'

:

¹ = 0:02

To  illustrate  this  case  we  set  the  masses  at  the  same  initial
positions  as  for  the  no-friction  example  and  we  use  a  friction
coefficient .  We  obtain  differences  between  the x(t )  of
10-2,  proving  a  loss  of  accuracy  of  the  numerical  methods  with
the presence of a dissipative force such as basal friction. The in-
teraction force variations vs. time estimated through the numer-
ical  solutions  are  shown  in Fig.  6.  As  can  be  easily  noticed  the
first oscillation is similar to the no-friction case since the velocit-
ies  are  quite  similar.  As  the  effect  of  damping  becomes  more
evident, the  interaction  force  clearly  decreases  reaching  a  con-
stant  value  when  the  particles  velocities  are  close  to  zero.  The
differences  between  the  reference  and  numerical  solutions  are
in the order of 10-3.

4     Numerical solutions

Analytical  solutions for the two-mass problem can be found
only in very special cases. In this section we consider a series of
problems  admitting  only  numerical  solutions  with  the  purpose
of getting some hints on the interaction force and on how it  in-
fluences the system dynamics.

4.1 Example 1

First  examples  are  variants  of  the  case  we  proposed  in  the
previous section: a pair of equal masses initially set at the same
longitude on a unit-radius sphere with initial velocities given by

#1 #2

¹ = 0:01

Eq. (16). Here we consider the effect of friction. We take the col-
atitudes  as  =  17.5°  and  =  23.6°,  and  compute  the  solution
for t  =  5T,  where T  is  the  rotation  period  of  frictionless  masses.
We show the mass trajectories in Fig. 7 when the friction coeffi-
cient is set to . Friction decelerates the particles that are
not able to keep the initial  colatitude but tend to move towards
lower heights.

¹ ¹ = 0:01

¢#
h = mgtan (¢#=2)

We analyze  the  trend  of  the  interaction  force  when  the  fric-
tion coefficient  is increased from zero to . For the fric-
tionless case, the interaction force h is constant in time and giv-
en by Eq. (18). From Fig. 8 one can observe that, when friction is
active, h  tends  to  increase  with  time.  The  reason  is  that  since
masses loose longitudinal speed, the interaction force has to bal-
ance the fraction of the mass weight that is not balanced by the
sphere  surface.  It  can  be  shown  that,  if  the  masses  are  initially
separated by the angle , the equilibrium value for h when the
masses are eventually at rest is given by . For
the  case  treated  here,  this  limiting  value  turns  out  to  be h  =
0.053mg. Figure  8 shows  that h  tends  to  attain  this  value  more
rapidly for higher friction coefficients.

4.2 Example 2

The next example is a complex motion over an elliptic para-

 

0.120

0.115

0.110

0.105

0.100

0.095

0.090
0 1 2 3

t/T

N
or

m
al

iz
ed

 in
te

ra
ct

io
n 

fo
rc

e

4 5

 

Fig. 5.   Interaction force, normalized to mg, vs. time for the numer-
ical solution of the coupled masses problem.
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Fig. 6.    Interaction force, scaled to mg, vs. time for the numerical
solution  of  the  coupled  masses  moving  on  a  rough  surface
( ).
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Fig. 7.   Trajectories (yellow and black) for two equal masses initially
set at the same longitude on a rough spherical surface. Initial, inter-
mediate and final positions are marked with circles, diamonds and
triangles (red for one mass, pink for the other).
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boloid. The bottom surface is described by the equation

z = ax 2 + by2 + cx ;

where a  = 2.0×10–4 m–1,  b  = 4.0×10–4 m–1,  c  = 10–5.  The surface is
centered  on  the  origin,  where  the  surface  bottom  is  found.  The
coefficients  are  such  that  the  slope  gradients  in x -  and y-
directions are quite small, in the order of 10–4 and steeper along
the y-axis.

We  select  two  different  masses  with m2/m1  =  5  and  place
them  initially  on  the x -axis  on  the  opposite  sides  of  the  origin,
namely  at P01  =  (4,  0)×102 m  and P02  =  (–2,  0)×102 m,  with  the
lighter  mass  at  higher  altitude.  The  initial  horizontal  velocities
are opposite, so that the two-mass system has an initial angular
momentum around its CoM: they are v01  = (0, 50) m/s and v02  =
(0,  –50)  m/s.  The  simulation  is  computed  for t  =  200  s,  with  a
time step dt = 0.05 s. Trajectories for the frictionless case are dis-
played in Fig.  9 over a contour map of the paraboloid.  The mo-
tion  of  the  masses  is  a  complex  combination  of  the  swinging
around  the  paraboloid  center,  of  the  rotation  around  the  CoM
and of an asymmetric uniform acceleration along the x-axis (due

to  the  coefficient c ).  It  can  be  observed  that  the  rotation  of  the
lighter mass (mass 1) has a larger radius since the CoM is closer
to mass 2.

In order to have a better understanding of the motion, a plot
of  the  energies  time-histories  is  useful. Figure  10 shows the  ra-
tios  between  potential,  and  kinetic  energies  to  the  total  system
energy.  Since  this  is  a  frictionless  case,  one  can  observe  that
there is  a perfect balance between the loss (gain) of  kinetic and
potential energies, as expected.

The exchange  between  the  two  forms  of  energy  occurs  al-
most  periodically  (about  36  s),  with  about  45%–55%  of  kinetic
energy being converted to potential. The total energy of the CoM
exhibits  small  amplitude  oscillations  with  a  double  frequency
(about  19  s)  around  the  level  of  50%  of  the  total  energy.  This
means that the rest of the system energy is taken by the motion
of the masses around the CoM, which is the result of our choice
for the initial velocities.

m = (m1+m2) =2

When masses move also under the effect of friction, the mo-
tion slows  down  and  in  the  same  time  span  the  masses  com-
plete  less  oscillations.  This  is  clear  in Fig.  11 where  trajectories
are displayed. In this study a special attention is given to the in-
teraction  force.  Its  time  history  is  given  in Fig.  12 where  it  is
scaled  by  means  of mg  with  m  being  the  average  mass  of  the
particles, i.e. .

In the first instants of the motion all time histories are equal,
but soon after they differentiate. They start from an initial negat-
ive value, which means that the force is attractive. Indeed, due to
the  initial  velocities  we  selected,  the  particles,  if  not  linked,
would  move  away  from  one  another,  and  so  the  force  needs  to
oppose  the  tendency  to  separation.  In  the  no-friction  case,  the
masses keep rotating around the CoM, as we know from Fig. 10.
So  we  can  interpret h  also as  a  centripetal  force  pointing  to-
wards the CoM. This explains why h remains negative. The oscil-
lations of h have the same frequency as the CoM total energy os-
cillations  (about  19  s)  and  magnitude  maxima  occur  together
with  the  minima  of  the  CoM  energy,  which  correspond  to  the
maxima of rotation energy for the masses. It is interesting to ob-
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Fig. 10.   Energy vs. time for the example shown in Fig. 9. The system
energy is partitioned between kinetic (green) and potential (blue)
that oscillate with an amplitude that is approximately 50% of the
total. The total energy of the CoM (red) oscillates with about double
frequency. It swings around 50% of the total energy, which means
that about half of the energy is due to the masses rotation around the
CoM.
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Fig. 8.   Interaction force vs. time for a pair of equal masses initially
set at the same longitude over a unit-radius sphere, normalized to
mg.  The horizontal  blue line is  the no-friction case.  Red,  yellow,
purple  and  light-blue  curves  represent  cases  respectively  with

, , , . Simulations are carried
out for t = 5T where T is the period of the no-friction case.
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Fig. 9.   Trajectories of two different masses sliding over an elliptic
paraboloid with no friction: yellow (heavier mass) black (lighter)
lines. Initial, intermediate and final positions are shown with circles,
diamonds and triangles: red (heavier) and pink (lighter).
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serve  that  in  the  first  stage  of  the  motion  the  interaction  force
tends  to  decrease  in  magnitude,  since  the  speed  of  the  masses
decreases. Figure 14 shows a clear trend, which is larger for lar-
ger values of the friction coefficient. It is also worth pointing out
that for larger times, h becomes positive, which means that from
attractive it transforms to a repulsive force. This occurs when the
particles velocity  becomes too small  and particles,  losing angu-
lar momentum, tend to converge towards the center of the ellipt-
ical paraboloid, and therefore towards one other.

For  the  sake  of  completeness,  we  also  show  in Fig.  13 the
CoM total energy with respect to the total system energy, for dif-
ferent  values of  the basal  friction coefficient.  The friction forces
have the effect of decelerating the masses. Hence, we do expect
that the energy given by the particles rotation around the CoM is
smaller as the friction force has stronger magnitude.

This  behavior  is  evident  in  the  trends  of Fig.  13,  with  the
purple  line  representing  the  bigger  friction  coefficient  and  the
blue line the no-friction case. In this latter, the CoM total energy
is  around  the  50%  of  the  total  system  energy  while  it  increases
until 80%–90% as the velocities reduce due to the friction forces
being larger.

5     Conclusions

This paper is an extension of the study presented in the com-
panion  paper  [1].  We  treat  the  motion  of  two  particles  sliding
down analytical surfaces and interacting with each other. The in-
teraction is  expressed  in  the  form  of  a  constraint,  since  we  im-
pose that the two masses remain at  a constant distance.  Such a
system can be also seen as a rigid body, formed by two massive
elements  connected  by  a  rigid  inextensible  massless  rod.  To
study how the system slides on a surface, in this paper and also
in  Ref.  [1],  we  proposed  two  different  formulations  both  based
on  expressing  all  the  forces  acting  on  the  masses  including  the
interaction  force  and  the  reaction  force  exerted  by  the  surface.
An alternative classical approach is to formulate the equations of
motion for a mechanical system with holonomic constraints [2-
5],  by  using  Lagrangian  theory  and  generalized  variables.  This
approach  is  known  to  be  quite  appropriate  in  case  of  motion
constants such as total system energy or angular momentum [5],
but  has  no  advantage  in  case  of  dissipative  terms  like  surface
friction.

Furthermore,  the  approach  used  here  allows  us  to  compute
all the forces acting on the masses. Our main interest in this pa-
per is the calculation and discussion of the properties of the con-
stant-distance interaction  force.  To  this  purpose  we  have  con-
sidered a few cases and examples, some of which admit interest-
ing analytical solutions. It has been shown that the force h,  that
is  assumed  to  lie  on  the  line  joining  the  two  masses,  can  take
positive or  negative  values  during  the  motion.  We  have  inter-
preted that when the force is positive it acts as a repulsive force,
pushing the masses away from one another. Vice versa, when it
is negative, it  is attractive. Simply, since the force is responsible
for keeping  the  inter-distance  constant,  it  opposes  instantan-
eously  any  attempts  to  change  it,  and  attracts  masses  if  they
would  tend  to  separate,  whereas  it  repels  them  if  they  would
tend to come closer.

The  magnitude  of  the  force  depends  on  the  surface  (local
gradients) and on the position and velocity of the masses. In the
case of equal masses spinning on a spherical surface (Case 1), h
is  shown  to  be  repulsive  and  for  some  combinations  of  angles
(see Fig. 2) to reach values comparable or larger than the weight
mg.  This  remains  true  also  when  the  masses  are  different  (see
Fig. 3), since the force h can take on values larger than the weight
of the bigger mass.
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Fig. 11.   Trajectories for two different masses over an elliptic para-
boloid, in case of friction ( ). See caption of Fig. 9 for fur-
ther details.
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Fig. 12.   Interaction force h/(mg) vs. time for different values of the
basal  friction coefficient.  No-friction case (blue)  and cases  with

 (red),  (orange),  (purple), 
(green).
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Fig. 13.   CoM total energy vs. time for different values of the basal
friction coefficient. No-friction case (blue) and cases with 
(green),  (red), , (light-blue),  (purple).
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Case 2 concerns two equal masses moving with identical mo-
tion but on the opposite sides of a sphere (equal colatitude and
opposite  longitude  at  any  time).  The  magnitude  of h  is  small
compared to  the weight.  This  is  due to  the fact  that  the  motion
takes place close to the bottom of the sphere ( =24.35°) and the
initial angular distance is also small ( =14.04°). Selecting larger
initial  values  for  and   could  lead  to  values  exceeding  the
particle weight (see Eqs. (24) and (25)). Interestingly, h oscillates
cyclically  between  a  minimum  and  a  maximum  value,  with  the
same period as the particles, given by Eq. (21).

Accounting for  the bottom friction,  leads to solutions where
the mechanical  energy dissipates progressively,  and the masses
tend to reach a rest position. The interaction force is seen to tend
to a steady final value, that for all examples treated in this paper
is positive. This is clear from the graph of Fig. 6 concerning Case
2, but also for plots of Fig. 8 and of Fig. 12 concerning Examples 1
and 2. All these have in common an oscillatory damped behavi-
or  with period growing with time,  that  is  superposed to  a  trend
toward the final state. Expectedly, the trend is quicker when the
friction coefficient  is  larger.  Example 2  where masses are in the
ratio 1 to 5 and the surface is a concave asymmetric paraboloid,
shows a  very  striking  behavior  of  the  system  that  is  character-
ized  by  two  typical  periods,  as  may  be  seen  from Fig.  10.  The
total  energy  of  the  system  for  a  frictionless  motion  transforms
from kinetic to potential and vice versa almost cyclically, with a
period of about 36 s. The total energy of the CoM also oscillates
but with a much smaller  period of  about 19 s.  Interestingly,  the
interaction force h  oscillates  with irregular  amplitude almost  in
phase with the CoM and remains on the negative axis  meaning
that it is attractive. In a sense the motion is governed by the lar-
ger mass that pulls the other behind. When one introduces fric-
tion,  the  interaction  force  tends  to  a  final  value  that  is  positive
(Fig.  12),  and  the  total  energy  of  the  system  tends  to  coincide
with the energy of the CoM (Fig. 13).

All examples treated here regard masses moving on concave
surfaces  (the  interior  of  a  spherical  surface  or  of  a  paraboloid)
where  the  line  joining  the  masses  does  not  cross  the  surface.
Therefore,  the  system  can  be  a  real  mechanical  system,  where
the masses are connected by a real round bar of negligible mass.
However,  we believe  that  our  model  can be applied to  concave
as well as convex surfaces where the surface reaction can be re-
spectively positive,  i.e.  pointing  upward,  or  negative,  i.e.  point-
ing downward. In this case, our formulation gives an approxim-
ate solution.

The  understanding  of  the  two-mass  scheme  is  fundamental
in  order  to  extend  the  model  to  a  large  number  of  particles.  In
fact,  our  research aims to  the development of  a  model  that  can
simulate rockslides where the volume is partitioned into a set of
a  large  number  of  massive  nodes  that  interact  with  each  other,
while moving on the common sliding surface. Realistic surfaces
are complex and usually entail convex and concave regions. The
model,  of  which the present and the companion paper [1] form
the basic seminal part, aims to improve the model family where
slide bodies are approximated by discrete elements [6, 7], or dis-
crete blocks [8-10] or discrete particles [11, 12].
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Appendix A1

i

= ¡g

The  forces  acting  on  the  particles  include  the  effect  of
gravity  and  of  surface  reaction.  The  gravity  acts  in  the  vertical
direction, i.e. . As seen in Ref. [1], the centripetal accel-
eration can be expressed by means of horizontal velocities com-
ponents and derivatives of the function f (x, y) as

Ä1 ¢ 1 =
_1 ¢ _1

R 1
=

v2
1x f 1xx + 2v1xv1yf 1xy + v2

1yf 1yyq
1+ f 2

1x + f 2
1y

;

Ä2 ¢ 2 =
_2 ¢ _2

R 2
=

v2
2x f 2xx + 2v2xv2yf 2xy + v2

2yf 2yyq
1+ f 2

2x + f 2
2y

:

The difference between the accelerations expressed in Eq. (4)
is

Ä1 ¡ Ä2 =
1

m1
¡ 2

m2
+

m1+m2

m1m2
¡ 1

m1
( ¢ 1) ( 1 ¡ ¹ 1)

¡ 1
m2
( ¢ 2) ( 2 ¡ ¹ 2) : (A.1) 

Imposing that the distance between the masses is constant in
time implies that

(Ä1 ¡ Ä2) ¢ ( 1 ¡ 2) + (_1 ¡ _2) ¢ (_1 ¡ _2) = 0: (A.2) 

Replacing Eq. (A.1) in Eq. (A.2), we obtain

104 S. Tinti, G. Gallotti / Theoretical & Applied Mechanics Letters 9 (2019) 96-105

http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1016/S0045-7825(01)00283-3
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1007/s10035-015-0586-9
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1002/nag.2544
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1023/A:1007934804464
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1016/j.enggeo.2016.02.006
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1680/jgeot.15.P.222
http://dx.doi.org/10.1007/s00603-015-0909-5
http://dx.doi.org/10.1007/s00603-015-0909-5


m1+m2

m1m2
¢ ( 1 ¡ 2)¡

1
m1
( ¢ 1) ( 1 ¡ 2) ¢ ( 1 ¡ ¹ 1)

¡ 1
m2
( ¢ 2) ( 1 ¡ 2) ¢ ( 2 ¡ ¹ 2)

= ¡ ( 1 ¡ 2) ¢
µ

1

m1
¡ 2

m2

¶
¡ (_1 ¡ _2) ¢ (_1 ¡ _2): (A.3) 

Using Eq. (5) we can write

m1+m2

m1m2
¢ ( 1 ¡ 2) =

m1+m2

m1m2
h [( 1 ¡ 2) ¢ ( 1 ¡ 2)]

1=2 :

If we expand the second and third terms of Eq. (A.3), we get

¡ 1
m1
( ¢ 1) ( 1 ¡ 2) ¢ ( 1 ¡ ¹ 1)

= ¡ 1
m1

h
[( 1 ¡ 2) ¢ 1] [( 1 ¡ 2) ¢ ( 1 ¡ ¹ 1)]

[( 1 ¡ 2) ¢ ( 1 ¡ 2)]
1=2

;

¡ 1
m2
( ¢ 2) ( 1 ¡ 2) ¢ ( 2 ¡ ¹ 2)

= ¡ 1
m2

h
[( 1 ¡ 2) ¢ 2] [( 1 ¡ 2) ¢ ( 2 ¡ ¹ 2)]

[( 1 ¡ 2) ¢ ( 1 ¡ 2)]
1=2

:

Gathering all together, we obtain the expression for the inter-

action force h given in Eq. (6).

Appendix A2

°0

The period of a pendulum of length L  with maximum angu-

lar displacement  can be shown to have the expression

T = 4

s
L
g

K sin
³°0

2

´
;

where K(w )  is  the  complete  elliptic  integral  of  the  first  kind

defined as

K (w) =
Z =2

0

d®p
1¡ w2sin2®

:

Hence, we can write

T = 4

s
L
g

Z =2

0

d®r
1¡ sin2

³°0

2

´
sin2®

;

sin2
³°0

2

´
=

1¡ cos°0

2
since , we easily obtain Eq. (23).
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