
26 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-
Bit RISC-V Core in 22-nm FDSOI Technology / Zaruba F.; Benini L.. - In: IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - ELETTRONICO. - 27:11(2019), pp.
8777130.2629-8777130.2640. [10.1109/TVLSI.2019.2926114]

Published Version:

The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology

Published:
DOI: http://doi.org/10.1109/TVLSI.2019.2926114

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/724613 since: 2020-02-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TVLSI.2019.2926114
https://hdl.handle.net/11585/724613

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Zaruba and L. Benini (2019) The Cost of Application-Class Processing: Energy and
Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI
Technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 11, pp. 2629-2640.

The final published version is available online at:

http://dx.doi.org/10.1109/TVLSI.2019.2926114

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109/TVLSI.2019.2926114

The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-ready 1.7GHz

64bit RISC-V Core in 22nm FDSOI Technology
Florian Zaruba, Student Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—The open-source RISC-V ISA [1] is gaining traction,
both in industry and academia. The ISA is designed to scale
from micro-controllers to server-class processors. Furthermore,
openness promotes the availability of various open-source and
commercial implementations. Our main contribution in this work
is a thorough power, performance, and efficiency analysis of the
RISC-V ISA targeting baseline “application class” functionality,
i.e. supporting the Linux OS and its application environment
based on our open-source single-issue in-order implementation
of the 64 bit ISA variant (RV64GC) called Ariane. Our analysis
is based on a detailed power and efficiency analysis of the
RISC-V ISA extracted from silicon measurements and cali-
brated simulation of an Ariane instance (RV64IMC) taped-out
in GlobalFoundries 22 FDX technology. Ariane runs at up to
1.7 GHz, achieves up to 40 Gop/sW energy efficiency, which is
superior to similar cores presented in the literature. We give
insight into the interplay between functionality required for
application-class execution (e.g. virtual memory, caches, multiple
modes of privileged operation) and energy cost. We also compare
Ariane with RISCY, a simpler and slower microcontroller-class
core. Our analysis confirms that supporting application-class
execution implies a non-negligible energy-efficiency loss and
that compute performance is more cost-effectively boosted by
instruction extensions (e.g. packed SIMD) rather than high-
frequency operation.

Index Terms—riscv, cost application-class, architectural anal-
ysis

I. INTRODUCTION

THE relatively new open Instruction Set Architecture
(ISA) RISC-V has already seen wide-spread adoption

in industry and academia [2], [3], [4], [5]. It is based on
Reduced Instruction Set Computer (RISC) principles and
heavily relies on standard and non-standard extensions to tailor
the ISA without cluttering the instruction set base. Further-
more, the base ISA is split into privileged and non-privileged
instructions. While the non-privileged ISA governs the base
instruction set, the privileged ISA includes different levels of
hardware support needed to run an Operating System (OS).
Common and standardized RISC-V extensions are integer (I),
multiply/divide support (M), atomic memory operations (A),
and single (F) and double (D) precision IEEE floating point
support. Together they form the general purpose processing
extension (G). Furthermore, the RISC-V ISA supports variable
length instructions. Currently, it only defines 32 and 16 bit
compressed instructions (C).

The authors are with the Integrated Systems Laboratory of ETH Zurich,
Zurich, Switzerland (e-mail: zarubaf@iis.ee.ethz.ch; lbenini@iis.ee.ethz.ch).

The instruction set was designed to scale from micro-
controllers to server-class platforms. While there already exist
a plethora of open micro-controller cores [6], [7], there are
fewer cores available in the higher, Linux-capable, perfor-
mance range, mostly due to increased design and verification
costs. CPUs which offer support for UNIX-like OSes are
usually called application-class processors. The hardware over-
head to efficiently support OSes like Linux is significant: To
enable fast address translation a Translation Lookaside Buffer
(TLB) and a Page Table Walker (PTW) are needed. A Linux-
like OS needs at least a few dozen MB of main memory.
In most of the cases, this memory will be off-chip making it
inefficient to be accessed constantly and requiring some sort of
caching mechanism. Cache look-up and address translation are
often on the critical path in modern CPU designs as accessing
memory is slow. Still, keeping the operating frequency high
is of importance since OSes contain large portions of highly
serial code. This requires further pipelining and more sophisti-
cated hardware techniques to hide the increased pipeline-depth
such as scoreboarding, branch-prediction and more elaborate
out-of-order techniques [8], [9]. This increases both static
and dynamic power. Furthermore, the advent of Symmetric
Multiprocessing (SMP) support in OSes made it necessary to
provide efficient and fast atomic shared memory primitives in
the ISA. RISC-V provides this as part of the A-extension in the
form of load-reserve and store-conditional as well as atomic
fetch-and-op instructions which can perform operations like
integer arithmetic, swapping and bit-wise operations close to
memory.

Nevertheless, there are significant gains in having support
for a full-blown OS: The OS eases programmability by pro-
viding a standardized interface to user programs, memory-
management, isolation between user programs, and a vast
amount of libraries, drivers, and user programs. Furthermore
full-featured OSes (e.g. Sel4 [10]) provide an additional guar-
anteed layer of security.

Energy-efficiency is becoming the paramount design goal
for the next generation architectures [11], [12]. Due to its
modularity, the RISC-V instruction set offers a wide variety
of microarchitectural design choices, ranging from low-cost
microcontroller to high performance, out-of-order, server-class
CPUs supporting Linux [13]. This modularity makes the ISA
suitable for a more thorough analysis of different architectural
features and their impact on energy efficiency.

Our work aims at giving insight on the energy cost and
design trade-offs involved in designing a RISC-V core with
support for a full-featured OS. For a thorough analysis, we de-
signed a competitive 64 bit, 6-stage, in-order application-class
core which has been manufactured in GLOBALFOUNDRIES
22 FDX technology. We performed extensive silicon charac-
terization and a detailed, per-unit efficiency analysis based
on silicon-calibrated post-layout simulations. The core runs
at 1.7GHz and achieves an efficiency of up to 40Gop/sW.

In particular, our main contributions in this work are:

• Implementation of an in-order (out-of-order execute, in-
order commit), single-issue, 64 bit application-class pro-
cessor called Ariane. Ariane has been open-sourced on
GitHub.1

• Silicon integration of Ariane in a state-of-the-art 22 nm
SOI process.

• Exploration of trade-offs in performance and efficiency
based on silicon measurements.

• Thorough analysis of the RISC-V ISA and Ariane’s
microarchitecture based on measurements and silicon-
calibrated post-layout simulations.

We explore Ariane’s microarchitecture in detail in the next
section. In Sec. III we touch upon physical design of a
particular Ariane instance. Finally Sec. IV contains a detailed
power, performance and efficiency analysis.

A. Related Work

Although RISC-V is a relatively young ISA there already
exists a plethora of different commercial and open-source
microarchitectural implementations. Currently most of them
focus on the base integer subset and do not feature more
sophisticated application-class features, like virtual memory.
To our knowledge, this is the first study, backed by silicon
measurements, focusing on the energy breakdown across the
various functional units and on the design rationale for micro-
architectural features, with links to ISA requirements on a
competitive 64 bit application-class core.

A well-known, mature and competitive application-class
implementation of the RISC-V ISA is the one obtained through
the Rocketchip generator. Rocketchip a parametric SoC gen-
erator, capable of producing instances ranging in complexity
between single application-class cores and chache-coherent
multi-core systems [14]. Rocketchip is written in Chisel –
a hardware DSL embedded in Scala. The generator allows
for instantiating either “Rocket”, a single-issue, in-order core
or an out-of-order, superscalar core called BOOM. Another
major effort to provide a variety of different open-source
RISC-V cores is the SHAKTI project [15] led by IIT-Madras.
One particular implementation which is similar to Ariane
is the 64 bit, 5-stage, in-order C-class core. We provide a
detailed comparison between between Ariane, Rocket, BOOM
and SHAKTI C-class in Table V and related discussion in
Section IV-D.

TABLE I
RISC-V STATIC BINARY ANALYSIS

(RISCV64-UNKNOWN-LINUX-GNU-GCC 7.2.0)

Benchmark [17] Compr. Ratio Branches [%] Calls [%]

cjpeg-rose7 0.71 34.78 6.71
dhrystone 0.72 35.36 6.78
linear-alg-mid-100x100-sp 0.72 33.65 6.17
loops-all-mid-10k-sp 0.72 33.78 6.22
nnet 0.72 33.75 6.17
parser-125k 0.72 33.73 6.43
radix2-big-64k 0.85 22.77 1.99
sha 0.72 33.25 6.01
zip 0.72 33.48 6.21

II. ARCHITECTURE

Ariane is a 64 bit, single, in-order issue (out-of-order ex-
ecute) RISC-V core. It has support for hardware multi-
ply/divide, atomic memory operations as well as an IEEE
compliant Floating Point Unit (FPU). Furthermore, it supports
the compressed instruction set extension as well as the full
privileged instruction set extension. It implements a 39 bit,
page-based virtual memory scheme (SV39). The primary
design goal of the microarchitecture was to reduce critical
path length while keeping Instructions per Cycle (IPC) losses
moderate. The target logic depth was chosen to be below 30
NAND Gate Equivalents (GEs) which is just a factor of two
higher than state-of-the-art, highly tuned, server-class, out-of-
order processors [16]. To achieve desired performance goals
a synthesis-driven design approach lead to a 6-stage pipelined
design. To reduce the penalty of branches, the microarchitec-
ture features a branch predictor. A high-level block diagram is
depicted in Figure 1. In the following, we give a stage-by-stage
description of the complete microarchitecture.

1) PC Generation is responsible for selecting the next
Program Counter (PC). This can either come from Con-
trol and Status Registers (CSR) when returning from an
exception, the debug interface, a mispredicted branch, or
a consecutive fetch.

2) Instruction Fetch contains the instruction cache, the
fetch logic and the pre-decode logic which guides the
branch-prediction of the PC stage.
a) Address Translation: The instruction cache is virtually
indexed and physically tagged and fully parametrizable.
The PC calculated by the previous stage is split into page-
offset (lower 12 bit) and virtual page number (bit 12 up to
39). The page-offset is used to index into the instruction
cache in the first cycle while the virtual page number is
simultaneously used for address translation through the
instruction TLB. In case of a TLB miss the cache pipeline
is stalled until the translation is valid.
b) Cache Pipelining: Data coming from the instruction
cache’s data arrays is registered before being pre-decoded
to mitigate the effects of the long propagation delay of

1https://github.com/pulp-platform/ariane

ID EX

Decoder

Compressed
Decoder

Is
su

e

Reg�le
Read

LSU

Multiplier

CSR
Write

Reg�le
Write

Sc
or

eb
oa

rd

commit

Commit

DTLB

PTW

EP
C

CA
U

SE
V

Instruction Queue

Mispredict

to
 c

ac
he

 c
on

tr
ol

le
r

tim
er

ex
te

rn
al

 in
te

rr
up

t u
ni

t

Branch

Controller

In-order
Architechtural
Commit

in
te

rr
up

t

Backend

In-order Issue OoO WB

fr
om

 D
ec

od
er

Issue

Scoreboard

EP
C

CA
U

SE
V

Re-
aligner

Privilege Check

Exception

ALU

CSR Bu�er

Branch Unit

Frontend

PC
Select

4

npc

epc
mtvec

epc

Speculative Regime

Frontend

fr
om

 M
M

U

I$

In
st

r S
ca

n

instr

32

branch?

call/ret?

taken?

imm

PC

ITLB

CSR
Write

BHT

BTB

RAS

D$

Fig. 1. Blockdiagram of Ariane; Depicted are the six separate stages which exchange data via handshaking. The scoreboard logically wraps the execute stage
(cf. II-F) and provides an interface for the issue and commit stages. For a detailed description of each pipeline stage and functional unit see Section II.

the memory macros in the cache. This has the side-effect
that even on a correct control flow prediction we will
lose a cycle as we can not calculate the next PC in the
same cycle we receive the data from the instruction cache.
With the additional compressed instruction set extension,
this is usually not a problem as (with a fetch width of
32 bit) we are fetching 1.5 instructions on average, and
approximately 70% of all instructions are compressed.
Furthermore approximately 35% of the instructions are
branches (see Table I). This means we can easily tolerate
a single cycle delay on branch-prediction (caused by the
additional register stage after the instruction cache) and
still generate a consecutive instruction stream for the pro-
cessor’s back-end. This is possible as, due to compressed
instructions we are fetching up to two instructions and
can use the stall cycle to execute the other instruction.

c) Frontend: Together with the PC stage, the instruction
fetch stage forms the processor’s frontend. The frontend is
fully decoupled from the back-end, which is in charge of
executing the instruction stream. The decoupling is imple-
mented as a FIFO of configurable depth. Instructions are
stored in compressed form in the queue minimizing the
number of flip-flops necessary for the instruction FIFO.
Mis-predicted control flow instructions are resolved dur-
ing the execute stage in a specialized branch unit [18].

3) Instruction Decode re-aligns potentially unaligned in-
structions, de-compresses them and decodes them. De-
coded instructions are then put into an issue queue in the
issue stage.

4) Issue Stage contains the issue queue, a scoreboard, and
a small Re-order Buffer (ROB). Once all operands are
ready the instruction is issued to the execute stage.
Dependencies are tracked in the scoreboard and operands
are forwarded from the ROB if necessary.

5) Execute Stage houses all functional units. Every func-
tional unit is handshaked and readiness is taken into
account during instruction issue. Furthermore, we dis-
tinguish between fixed and variable latency units. Fixed
latency are the integer Arithmetic Logic Unit (ALU),
multiplier/divider and CSR handling. The only variable
latency units are currently the FPU and the load/store
unit (LSU). Instructions can retire out-of-order from
the functional units. Write-back conflicts are resolved
through the ROB.

6) Commit Stage reads from the ROB and commits all
instructions. Instructions ready to commit are brought into
issue-order by a small reorder buffer to enable precise
exceptions. Stores and atomic memory operations are
held in a store buffer until the commit stage confirms their
architectural commit. Finally, the register file is updated

by the retiring instruction. To avoid artificial starvation
because of a full ROB the commit stage can commit two
instructions per cycle.

Next, we describe the main units of the microarchitecture,
summarizing key features.

A. Branch Prediction

As the pipeline depth of processors increases the cost
for mis-predicted branches rises significantly. Mis-prediction
can occur on the jump target address (the jump address is
determined by a register value) as well as on a mis-predicted
branch outcome. On mis-prediction the frontend as well as the
decode and issue stages need to be flushed, which introduces
at least a five-cycle latency in the pipeline, and even more on
TLB or instruction cache misses.

To mitigate the negative impact of control flow stalls on
IPC, Ariane contains three different means of predicting the
next PC, namely a Branch History Table (BHT), Branch
Target Buffer (BTB), and Return Address Stack (RAS). To
facilitate branch-prediction Ariane does a light pre-decoding in
its fetch interface to detect branches and jumps. It furthermore
needs to re-align instruction fetches as interleaved compressed
instructions (16 bit instructions) can offset regular (32 bit)
instructions effectively making it possible for an instruction to
wrap the 32 bit fetch boundary.

A classic two bit saturation counter BHT is used for pre-
dicting on the branch outcome. Branches in RISC-V can only
jump relative to the PC which makes it possible to redirect con-
trol flow immediately. If there is no valid prediction available
static prediction is being used as a fall-back strategy. Static
prediction in RISC-V is defined as backward jumps (negative
immediate) always taken and forward jumps (positive imme-
diate) never taken, hence they can be decided very efficiently
by looking at a single bit in the immediate field. Furthermore,
the ISA provides PC-relative and absolutely addressed control
flow changes. PC-relative unconditional jumps can be resolved
as soon as the instruction is being fetched. Register-absolute
jumps can either be predicted using the BTB or the RAS
depending on whether the jump is used as a function call or
not.

B. Virtual Memory

To support an operating system Ariane features full hard-
ware support for address translation via a Memory Manage-
ment Unit (MMU). It has separate, configurable data and
instruction TLBs. The TLBs are fully set-associative, flip-flop
based, standard-cell memories. On each instruction and data
access, they are checked for a valid address translation. If none
exists, Ariane’s hardware PTW queries the main memory for
a valid address translation. The replacement strategy of TLB
entries is Pseudo Least Recently Used (LRU) [19].

C. Exception Handling

Exceptions can occur throughout the pipeline and are hence
linked to a particular instruction. The first exception can occur
during instruction fetch when the PTW detects an illegal TLB

entry. During decode, illegal instruction exceptions can occur
while the LSU can also fault on address translation or trigger
an illegal access exception. As soon as an exception has
occurred the corresponding instruction is marked and auxiliary
information is saved. When the excepting instruction finally
retires the commit stage redirects the instruction frontend to
the exception handler.

Interrupts are asynchronous exceptions which are synchro-
nized to a particular instruction. This results in the commit
stage waiting for a valid instruction to retire, in order to
take an external interrupt and associating an exception with
it. Atomic memory operations must not be interrupted, which
simply translates to not taking an interrupt when we retire
an atomic instruction. The same holds true for atomic CSR
instructions which can alter the hart’s (HARdware Thread)
architectural state.

D. Privileged Extensions

In addition to virtual memory, the privileged specification
defines more CSRs which govern the execution mode of the
hart. The base supervisor ISA defines an additional interrupt
stack for supervisor mode interrupts as well as a restricted
view of machine mode CSRs. Access to these registers is
restricted to the same or a higher privilege level.

CSR accesses are executed in the commit stage and are
never done speculatively. Furthermore, a CSR access can have
side-effects on subsequent instructions which are already in the
pipeline and have been speculatively executed e.g. altering the
address translation infrastructure. This makes it necessary to
completely flush the pipeline on such accesses.

In addition to the base ISA the privileged ISA defines a
handful more instructions ranging from power hints (sleep
and wait for interrupt) to changing privilege levels (call to
the supervising environment as well as returning). As those
instructions alter the CSR state as well as the privilege level
they are only executed non-speculatively in the commit stage.

The RISC-V ISA defines separate memory streams for
instruction, data, and address translation, all of which need
to be separately synchronized with special memory ordering
instructions (fences). For caches, this means that they are
either coherent or need to be entirely flushed. As the TLBs
in Ariane are designed with flip-flops they can be efficiently
flushed in a single cycle.

E. Register Files

The core provides two physically different register files for
floating-point and integer registers. We provide the choice of
either a latch-based or flip-flop-based implementation. The ad-
vantage of the latch-based approach is that it is approximately
half the area of the flip-flop version. A known duty cycle is of
importance when using a latch-based register file as capturing
is happening on the falling edge of the clock. Therefore (high-
speed) clock generators need to take care of a balanced and
low jitter duty-cycle.

F. Scoreboard/Reorder Buffer

The scoreboard, including the ROB, is implemented as a
circular buffer which logically sits between the issue and
execute stage and contains:

• Issued, decoded, in-flight instructions which are currently
being executed in the execute stage. Source and destina-
tion registers are tracked and checked by the issue stage
to track data hazards. As soon as a new instruction is
issued, it is registered within the scoreboard.

• Speculative results written back by the various functional
units. As the destination register of each instruction is
known, results are forwarded to the issue stage when nec-
essary. The commit stage reads finished instructions and
retires them, therefore making room for new instructions
to enter the scoreboard.

Write after Write (WAW) hazards in the scoreboard are
resolved through a light-weight re-naming scheme which
increases the logical register address space by one bit. Each
issued instruction toggles the MSB of its destination register
address and subsequent read addresses are re-named to read
from the latest register address.

G. Functional Units

Ariane contains 6 functional units:

1) ALU: Covers most of the RISC-V base ISA, including
branch target calculation.

2) LSU: Manages integer and floating-point load/stores as
well as atomic memory operations. The LSU interfaces
to the data cache using three master interfaces. One
dedicated for the PTW, one for the load unit while the
last one is allocated to the store unit. The data cache is
a parameterizable write-back cache which supports hit-
under-miss functionality on the different master ports.
In addition, the store unit contains a variable-size store
buffer to hide the store latency of the data cache. Ideally,
the store-buffer is sized so that context store routines
commonly found in OS code can be retired with an IPC
of 1.

3) FPU: Ariane contains an IEEE compliant floating-point
unit with custom trans-precision extensions [20], [21]

4) The branch unit is an extension to the ALU which
handles branch-prediction and branch-correction.

5) CSR: RISC-V mandates atomic operations on its CSR,
as they need to operate on the most up-to-date value
Ariane defers reading or writing until the instruction is
committed in the commit stage. The corresponding write
data is buffered in this functional unit and read again
when the instruction is retiring.

6) Multiplier/Divider: This functional unit houses the nec-
essary hardware support for the M-extension. The mul-
tiplier is a fully pipelined 2-stage multiplier. We rely on
re-timing to move the pipeline register into the combina-
tional logic during synthesis. The divider is a bit-serial
divider with input preparation. Depending on the operand
values division can take from 2 to 64 cycles.

H. Caches

Both data and instruction caches are virtually indexed and
physically tagged. Set-associativity and cache-line size of both
caches can be adapted to meet core area constraints and timing.
As even fast cache memories are relatively slow compared to
logic, the instruction and data cache both have an additional
pipeline stage on their outputs. This allows for relatively easy
path balancing by means of de-skewing (i.e. adjusting the
memories clock to arrive earlier or later than the surrounding
logic).

I. Memory and Control Interfaces

The core contains a single Advanced eXtensible Interface
(AXI) 5 master port as well as four interrupt sources:

1) Machine External Interrupts: Machine-mode platform in-
terrupts e.g. UART, SPI, etc.

2) Supervisor External Interrupts: Supervisor-mode platform
interrupts (i.e. the OS is in full control)

3) Machine Timer Interrupt: Platform timer (part of the
RISC-V privileged specification). Used by the OS for
time-keeping and scheduling.

4) Machine Software Interrupt: Inter processor interrupts
The master port is arbitrated between instruction fetch, data

cache re-fill and write-back as well as cache bypass (i.e. un-
cached) accesses.

J. Debug Interface

Ariane contains a RISC-V compliant debug interface [22].
For the implementation of the debug interface an execution-
based approach was chosen to keep the debug infrastructure
minimally invasive on the microarchitecture and therefore
improving on efficiency and critical path length (e.g. no
multiplexers on CSR or general purpose registers). The core
uses its existing capability to execute instructions to facilitate
debugging by fetching instructions from a debug RAM. To put
the core into debug mode an interrupt-like signal is asserted by
the debug controller and the core will jump to the base address
of the debug RAM. Only one additional instruction (dret) is
required to return from debug mode and continue execution.
Communication with the external debugger is done through a
debug module (DM) peripheral situated in the peripheral clock
and power domain.

K. Tracing and Performance Counters

We support extensive tracing in RTL simulation. All register
and memory access are traced together with their (physical
and virtual) addresses and current values. Currently, we do
not support PC tracing in hardware.

Performance counters are mapped into the CSR address
space. In particular, we support counting the following events:
cycle count, instructions-retired, L1 instruction/data cache
miss, instruction/data TLB miss, load/store instruction counter,
exception counter and various branch-prediction metrics.

TABLE II
ARCHITECTURAL DESIGN CHOICES FOR SILICON IMPLEMENTATION

Parameter Chosen
BHT 8
BTB 8
ROB Entries 8
RAS Entries 0
Fetch latency 1
L1 I-cache (4-way) size 16 kB

L1 D-cache (8-way) size 32 kB

L1 D-cache latency 3
Integer ALU latency 1
Register File 31x64 flip-flops

L. Application-class features

In comparison to non-application class cores there is a
significant overhead attached to supporting a full-fledged OS
(e.g. Linux). In particular, multiple layers of trusted and less
trusted execution modes are needed to support the concept
of privilege levels. This inflates the architectural state by
requiring an interrupt stack and CSRs replication as well as
managing access permissions to given architectural features.
Furthermore, the essential requirement of supporting Virtual
Memory (VM) requires address translation on the critical
paths to and from instruction and data memory which further
increases the energy costs and hence impacts energy efficiency
to access memory.

M. Implementation Remarks

The design of a fast processor with a reasonably high
IPC poses some interesting challenges. Significant complexity
revolves around the L1 memory interface which ideally should
be large, low latency and fast (running at the speed of the
core’s logic). The introduction of virtual memory adds to the
already existing complexity. Large portions of the design are
built around the idea to hide (especially the load) memory
latency by cleverly scheduling other instructions and trying
to do as much useful work as possible in each clock cycle.
Furthermore, the introduction of more privileged architectural
state in the form of virtual to physical address translation
as well as additional CSRs results in an increased area and
(leakage) power. These cost factors are analyzed in details in
Sec. IV.

III. IMPLEMENTATION

Ariane has been taped-out in GLOBALFOUNDRIES 22 FDX.
The coreplex has been hardened as a macro and uses a shared
System on Chip (SoC) infrastructure for off-chip communi-
cation [23]. The Ariane coreplex can communicate with the
SoC via a full-duplex 64 bit data and address AXI interconnect.
The SoC contains 520 kB of on-chip scratchpad memory and
an extensive set of peripherals such as HyperRAM, SPI,
UART and I2C. The core is separately clocked by a dedicated
frequency locked loop (FLL) in the SoC domain.

The Ariane coreplex can be separately supplied and powered
down. Furthermore, the logic cells can be forward body biased

RAS BTB BHT SB Entries L1 D-cache
 latency

0.0

0.2

0.4

0.6

0.8

1.0

0

8

16 4

2

2 16

32

8 34 32
64

16128

IPC vs. Architectural Setting

Fig. 2. IPC sweep of different architectural settings from Table II. Each group
of bars sweeps one architectural setting while the base configuration is kept
stable at RAS: 2, BTB: 16, BHT: 128, ROB Entries: 8, L1 D-cache latency:
3. IPC was measured using the Dhrystone benchmark.

Fig. 3. Ariane has been implemented in GLOBALFOUNDRIES22nm on a
3mm× 3mm die. The SoC has been separately hardened as a macro and
is depicted on the left while a more detailed floorplan of Ariane can be seen
on the right.

(FBB) to increase speed at the expense of leakage power. The
taped-out instance of Ariane contains 16 kB of instruction
cache with a set-associativity of four. The data cache is
32 kB in size with a set-associativity of eight. The instruction
and data TLB are each 16 entries in size. The architectural
parameter settings are listed in Table II. We present an analysis
of the impact of architectural choices on IPC in Figure 2. Note
however, that at the time of tape-out the RAS was not present
and that BTB and BHT have been a combined data structures
which could either be used for predicting on the address or on
a branch outcome. A single entry of the BTB comprises of a
valid bit and a 64 bit jump target address while the BHT only

contains a valid flag and a two bit saturation counter. Hence,
the size of this combined data structure was limited by the
amount of BTB entries. This limitation was alleviated after
the tape-out.

The architectural choices have further been influenced by
physical design considerations. To keep IPC losses moderate
the ALU was architected to be single-cycle. The ROB, which
comprises of a content addressable memory (CAM), is placed
and routed using an unguided, standard cell-based, digital
design flow. As a CAM requires comparators and multiplexers
for each entry, there is a natural limit to what extend this CAM
can be automatically placed and routed before having a severe
impact on cycle time. We have found eight entries to be a a
sweet spot in balancing IPC and physical design feasibility.

The design has been synthesized using Synopsys Design
Compiler 2016.12. The back-end design flow has been carried
out using Cadence Innovus-16.10.000. We use the fastest to us
available cell library which is an eight track, multi-threshold,
multi-channel, standard cell library with nominal voltage at
0.8V from INVECAS. For the cache memories, we use a
high-performance, single-port SRAM generator provided by
INVECAS. The design has been signed-off at 902MHz at
0.72V, 125 ◦C, SSG. The floorplan of the chip is depicted in
Figure 3. The final netlist contains 75.34% LVT (low voltage
threshold) and 24.66% SLVT (super low voltage threshold)
cells.

A. Physical Design

To achieve higher clock speeds several optimizations have
been applied during physical design: Useful-skew has been
used for placement, clock-tree synthesis and routing to balance
the critical paths from and to the memories. Clock-shielding
was employed to mitigate the effects of cross-talk on the
clock tree. Furthermore, we have placed decap cells close
to clocktree buffers. Together with a dense power grid, this
mitigates the effects of IR drop.

The critical path, with a gate delay of 30 NAND Gate
Equivalents, are around the data caches, as the set-associativity
of eight requires significant wiring resources to be routed
close to the memory macros. Therefore, dedicated routing
channels have been provisioned in the floorplan between the
memory macros. Furthermore, due to the high hold-times of
the memory macros, special attention has been paid to hold-
time fixing on those paths by Engineering Change Order
(ECO) inserting dedicated buffer cells.

A multi-mode, multi-corner (MMMC)2 with AOCV views
(Advanced On Chip Variations) approach has been used for
the entire back-end flow to reduce the margin we need to
provision on clock frequency.

IV. RESULTS

We measured our silicon implementation using an ADVAN-
TEST 93000 industry-grade ASIC tester. Post-layout power
numbers have been obtained using the post-layout floorplan
and netlist of the fabricated design.

2Total of 21 corners: functional-mode, worst RC, best RC, SSG, TT, FFG,
0.72V to 0.88V, −40 ◦C to 125 ◦C

0 200 400 600 800 1000 1200 1400
Max Frequency [MHz]

5

10

15

20

25

30

35

GO
p/

s/
W

Energy Efficiency vs. Speed
0.5 V
0.55 V
0.6 V
0.65 V
0.7 V
0.75 V
0.8 V
0.85 V
0.9 V
0.95 V
1.0 V

Fig. 4. Detailed power measurement for an Integer Generalized Matrix Matrix
Multiplication (IGEMM) at different operating points (voltage and frequency)
and constant bias voltage of 0V. As the maximum speed is determined by the
operating voltage the most efficient operating point is the maximum achievable
frequency at a given VDD. Efficiency decreases for slower frequencies as
leakage starts to dominate the power consumption. See Section IV-B for a
detailed discussion about power and energy efficiency.

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88 0.93 0.98 1.03 1.08
VDD [V]

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

M
ax

. F
re

qu
en

cy
 [M

Hz
]

SSG, 125C, RC Max (sign-off)

TT, 25C, RC Typ

FFG, -40C, RC Min

Max. Frequency vs. Supply Voltage

Library Characterization Points
Silicon Speed Measurement

Fig. 5. Average frequency measurement of 8 chip samples under different
supply voltages with zero Forward Body Bias (FBB), the error bar indicates
the standard deviation of the measured samples. Worst, typical and best
case library characterization points are denoted in red. Sign-off was done
at 902MHz worst case. Section IV-B1 gives further details on worst case
paths and achievable frequency.

TABLE III
ENERGY PER OPERATION CLASS [pJ], LEAKAGE [mW]

Instr. Class PC IF Stage ID Stage Issue EX Stage WB CSR CTS Rest Tot

I$ Rest Dec Rest L/S VM Mult ALU D$ Rest

Mul 0.30 4.72 0.51 0.01 0.09 1.42 0.22 3.46 0.97 0.02 5.53 0.07 0.05 0.22 4.25 0.76 22.60
% 1.33 20.88 2.26 0.04 0.40 6.28 0.97 15.31 4.29 0.09 24.47 0.31 0.22 0.97 18.81 3.36 100.00

Div 0.25 3.19 0.35 0.00 0.02 1.11 0.22 3.43 0.68 0.00 5.54 0.05 0.02 0.20 4.07 0.81 19.94
% 1.25 16.00 1.76 0.00 0.10 5.57 1.10 17.20 3.41 0.00 27.78 0.25 0.10 1.00 20.41 4.06 100.00

LS w/ VM 0.32 4.63 0.54 0.01 0.09 1.38 0.30 3.50 0.09 0.03 9.18 0.18 0.06 0.22 4.06 0.62 25.21
% 1.27 18.37 2.14 0.04 0.36 5.47 1.19 13.88 0.36 0.12 36.41 0.71 0.24 0.87 16.10 2.46 100.00

LS w/o VM 0.30 4.39 0.51 0.00 0.07 1.36 0.30 3.48 0.07 0.02 9.12 0.17 0.06 0.22 4.04 0.64 24.75
% 1.21 17.74 2.06 0.00 0.28 5.49 1.21 14.06 0.28 0.08 36.85 0.69 0.24 0.89 16.32 2.59 100.00

ALU 0.30 4.36 0.50 0.05 0.13 1.69 0.24 3.47 0.11 0.03 5.53 0.08 0.08 0.24 4.05 0.72 21.58
% 1.39 20.20 2.32 0.23 0.60 7.83 1.11 16.08 0.51 0.14 25.63 0.37 0.37 1.11 18.77 3.34 100.00

IGEMM 0.61 10.17 1.59 0.19 0.65 5.88 0.61 3.84 4.41 0.71 13.75 1.00 0.31 1.12 4.68 2.28 51.80
% 1.18 19.63 3.07 0.37 1.25 11.35 1.18 7.41 8.51 1.37 26.54 1.93 0.60 2.16 9.03 4.40 100.00

Leakage 0.02 0.11 0.02 0.00 0.00 0.12 0.02 0.07 0.08 0.01 0.33 0.04 0.01 0.05 0.00 0.20 1.08

Fig. 6. Detailed Area Breakdown. The total core area without cache memories
amounts to 210 kGE @ 1.5 ns

A. Methodology

We have developed a number of assembly-level tests which
exercise particular architectural elements to provide a clas-
sification for the different instruction groups and hardware
modules commonly found in the RISC-V ISA manual. The
assembly-level tests are synthetic benchmarks which try to
achieve 100% utilization of the respective functional unit under
test. To keep code size under control and to hit on a hot
instruction cache, such tests contain a (long) sequence of the
actual target instructions which are executed in an infinite loop.

The body of the loop containing instructions is dimensioned
with 300 instructions, so as to minimize the relative impact of
the branch. In particular we focused on the following

• ALU instructions: The ALU is used in the majority of
RISC-V base instructions. It is used to calculate branch
outcomes, arithmetic and logic operations.

• Multiplications: The multiplier is a fully pipelined 2-
cycle multiplier, hence it is a relatively big design and
consumes considerable amounts of power.

• Divisions: The divide algorithm is a radix-2 iterative
divider. Hence area and power overhead are small but
divisions can take up to 64 cycles. An early out mech-
anism can reduce division time significantly (depending
on the operands). The test exercises long divisions.

• Load and stores without virtual memory enabled: For
this test load and stores are triggered subsequently. The
cache is warmed-up in this scenario. Address translation
is not activated and the program operates in machine
mode.

• Load and stores with virtual memory enabled: Similar
to the above program except that the program is run in
supervisor mode with address translation enabled. Both
TLBs are regularly flushed to trigger a page fault and
activate the PTW.

• Mixed workload: This i s a generalized matrix-matrix
multiplication. This test provides a compute intensive
real-world workload triggering all architectural features.
Furthermore this test is used for speed measurements.

The tests have been run on silicon and on the post-layout
netlist to provide a detailed per-unit listing. Separate power
supplies for the core area, cache memory array and periphery
allow for detailed power measurements on the actual silicon.
Post-layout and silicon measurements lie within a 10 %
error margin and a calibration factor has been applied to the
post-layout power estimates to be aligned with our silicon

FBB [V]
 (a)

0

20

40

60

80

100

120

Po
we

r [
m

W
]

f = 250 MHz

Leakage Power
Dynamic Power
Total Power

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
FBB [V]

 (b)

0

20

40

60

80

100

120

Po
we

r [
m

W
]

max. energy-efficiency

f = 1000 MHz

Leakage Power
Dynamic Power
Total Power

0

5

10

15

20

25

30

35

40

Ef
fic

ie
nc

y
[G

op
/s

W
]

Efficiency
0.340.360.380.400.420.440.460.480.50

VDD [V]

0

5

10

15

20

25

30

35

40

Ef
fic

ie
nc

y
[G

op
/s

W
]

Efficiency
0.640.660.680.700.720.740.760.780.80

VDD [V]

Power and Efficiency vs. Forward Body Bias (FBB)

Fig. 7. Leakage power, dynamic power, total power and efficiency for 0.0V
to 1.7V FBB and supply voltages at (a) 0.5V and (b) 0.8V. Dynamic power
is decreased as VDD is adjusted to achieve constant frequency under FBB
conditions. For 0.1V FBB VDD can be reduced by 0.01V to achieve the
same maximum frequency. (a) For low voltage operation efficiency decreases
with higher FBB as leakage becomes the dominant factor. FBB can be used
to trade energy-efficiency for performance. (b) For nominal conditions FBB
can be used to increase the energy-efficiency.

measurements. We have determined the calibration factor by
running a mixed workload benchmark both on silicon and
on the post-layout netlist under similar conditions assuming
typical case silicon. We provide detailed results in Table III,
separately listing the major contributors to power dissipation.

B. Discussion

We report up to 1.65 DMIPS/MHz for Ariane depending on
the branch-prediction configuration and load latency (number
of registers after the data cache). On the rather small Dhrystone
benchmark the mispredict rate is 5.77% with a 128-entry BHT
and a 64-entry BTB. This results in an IPC of 0.82 for the
Dhrystone benchmark.

1) Instruction and data caches: As can be seen in the
area overview (Figure 6) and on the floorplan (Figure 3),
including the size of the SRAM memories (470 kGE data and
210 kGE instruction cache), the largest units are the private
L1 instruction and data caches. Furthermore, the critical path
in the design is from the memories as the propagation delay
of the slower SRAMs adds to the already costly 8-way tag
comparison and data selection process. In addition, the wire
delay and the diminishing routing resources close to and over
the SRAM macros makes routing challenging.

Figure 5 plots the maximum frequency over a large selection
of operating voltages. The operating voltage is 0.5V to 1.15V
with a frequency from 220MHz to 1.7GHz. Below 0.5V the
cache SRAMs are no longer functional.

2) Impact of Forward Body Bias (FBB): Body-biasing (BB)
provides an additional tuning knob which allows for trading
more power for higher frequency. The used standard cells
allow for forward body-bias (FBB) from 0.0V to 1.8V which
results in up to 30% higher speed at 0.5V. This results
confirms that body biasing is very effective at low supply
voltage to compensate for PVT variations, and to give a
significant speed boost for run-to-halt operation. On the other
hand, at higher voltages, the achievable speed-up reduces
(only 6% at 1V) and leakage power dissipation increases
exponentially.

Furthermore, we have analyzed the impact of FBB on power
consumption and energy-efficiency. As FBB will allow us to
run the circuit faster, we can reduce the supply voltage to
achieve the same speed as without FBB. We can observe two
effects:

1) FBB at low voltages: In this operating regime leakage
power makes up a large part of the total power. Hence,
the exponential impact of FBB on leakage dominates
the quadratic power savings achieved by reducing, the
already low, supply voltage. This impact of this effect on
the present work is especially prominent as the circuit
was tuned for speed and contains approximately 25%
super-low threshold cells which have higher impact on
leakage (see Section III). Hence, at low voltages, forward
body biasing does not improve energy efficiency (as
shown in Figure 7.a), but it useful as a performance
centering method, to ensure that the core can be operated
at constant frequency across a wide range of process,
voltage, temperature (PVT) variations.

2) FBB at higher voltages: At higher operating voltages the
impact of dynamic power on the total power is much
higher. Therefore, a decrease in supply voltage reduces
the dynamic power which up to 0.8V FBB outweighs
the leakage increase giving an overall energy-efficiency
boost of 5%. For more than 0.8V the leakage component
becomes dominant decreasing the energy-efficiency. At
this operating regime FBB can be used to gain energy-
efficiency (see Figure 7.b) as well as for PVT compen-
sation.

3) Application-class features: The impact of virtual mem-
ory (including TLB and PTW) is significant on the overall
power dissipation. In particular on every instruction and data
access a lookup in the TLB has to be performed which can
account for up to 27% of the overall instruction energy while
the energy used for actual computation is below 1% in the
case of ALU-centric instructions.

Furthermore the support for user and supervisor mode, and
other architectural state like programmable interrupt vector and
status registers, adds a significant area and power overhead on
the CSR file. The difference between virtual memory activated
and deactivated is quite small as the largest impact on power
dissipation is the parallel indexing in the fully-set-associative
TLB’s which is also performed when address translation is
disabled. The main difference is the regular page-table walking
which does not have a large impact as the PTW is not on the
critical path and iteratively walks the tables.

4) Multiplication and divisions: The multiplier consumes
over 13% of the overall core area and can consume up to
4.4 pJ per cycle when active. The serial division unit was
optimized for area and energy efficiency hence its overall
impact is minimal.

C. Comparison with non-application-class cores

The modular organization of the RISC-V instruction set
makes it possible to compare our application-class core to an
embedded profile core to get an estimate on the price we pay
for the application-class features. The majority of instructions
executed is from the base ISA indicate its name in (I) in the
RISC-V lingo. Only very few extra instructions and architec-
tural features (related to privilege and VM management) are
defined in the privileged specification, which is necessary for
the application-class core.

In comparison with a smaller, 32 bit, embedded profile
RISC-V core as implemented and reported in [24], we can see
a considerable overhead mostly associated with the increased
bit width, L1 caches and the application-class profile of
Ariane. In [24], authors report 12.5 pJ in 40 nm technology
for an integer matrix multiplication, which is comparable to
the workload we used and reported (cf. Table III). Adjusting
for technology scaling gains from 40 nm to 22 nm [25] we
compare 10 pJ of the small core to 51.8 pJ of Ariane. The
same 32 bit core has also been manufactured in GLOBAL-
FOUNDRIES 22 FDX on the same die as part of Ariane’s SoC.
The small core achieves 12.5 pJ per instruction at 0.8V [23].
Considering that there is a power overhead involved with the
larger SRAMs, Standard Cell Memories (SCM) and supporting

TABLE IV
16 BIT 2D (5X5) CONVOLUTION BENCHMARK

Ariane RI5CY [6]

ISA RV64 RV32 RV32 + DSP RV32 + SIMD

Instructions [×103] 129 135 110 29
Cycles [×103] 152 137 117 31
IPC 0.85 0.99 0.94 0.93
Freq. [MHz] 1700 690 690 690
Ex. Time [µs] 89.5 198.8 179.7 45.2

logic which are also part of the 22 FDX design results,
the estimated energy per instruction is comparable to our
technology scaled estimate of 10 pJ.

Most of the overhead stems from the private L1 caches
used in Ariane. The memory macros are power hungry and
impose significant challenges during physical design. Another
contributor to increased power consumption is the larger bit
width. The architectural state (register file and CSR file)
effectively doubles. This accounts for a 5.7 % (12 kGE) area
overhead for the register file and 2.8 % (6 kGE) area over-
head for the CSR file. Resulting in larger leakage power
and increased switching power, both in the clock tree and
on the registers themselves. Furthermore, also the datapath
(e.g.: the functional units like ALU and multiplier) suffers
from increased complexity, more logic area and tighter timing
requirements resulting in decreased energy efficiency. Last but
not least, the overhead associated with the support for virtual
memory is non negligible. TLBs and PTW are consuming up
to 3.8 pJ per instruction which is a significant 38% of the
whole 32 bit core.

Loss of IPC mainly results from mis-predicted branches and
load data dependencies which need to stall subsequent, de-
pendent instructions because of the three cycles latency of the
data cache. Branch prediction can be improved by using more
sophisticated prediction schemes like gshare, loop predictors
or tournament predictors. However, branch prediction is a well
researched topic [26] and has not been explored in this work.
The load latency can be decreased at the expense of increased
cycle time.

Since the speed of Ariane is higher than the speed reported
for the embedded profile core, and its IPC is comparable
[6], we conclude that execution time is lower, although less
energy efficient when comparing only the baseline RISCV
ISA. However, the ISA extensions proposed in [6] such as
post-incrementing load and stores, hardware loops and Single
Instruction Multiple Data (SIMD) capability show a speedup
of up to 10x compared to the baseline ISA. Hence, greatly
outperforming pure architectural hardware performance en-
hancements (like scoreboarding and branch predicition) both
in execution time and energy-efficiency.

Table IV quantifies the above observation through an exam-
ple of a compute-bound, 2D (5 × 5 filter kernel) convolution
of 16 bit data types. The vanilla RISC-V baseline is 129 k
instructions for the 64 bit ISA and 135 k instructions for the
32 bit ISA. When using the DSP ISA extensions the number of

TABLE V
RISC-V CORE COMPARISONS

Ariane Rocket [14] Boom 2-w [27] Shakti [28]

Bits 64 32/64 64 64
User Spec IMC IMAFDC IMAFD IMAFD
Priv. Spec 1.11 1.11 1.11 1.10
Tech GF 22nm TSMC 45nm TSMC 45nm 22nm

Speed 1.7 GHz 1.6 GHz [29] 1.5 GHz [27] 800 MHz
Area 0.3mm2 0.5mm2 1.7mm2 [27] 0.29mm2*

Power 52mW 125mW [30] 300mW [30] 90mW

IPC 0.87a 0.95‡ 1.45‡ 0.91

Energy/Op 52pJ 100pJ [30] 133pJ [30] 122pJ

* Assumption: 1 GE = 0.199 µm2 and the same cache configuration as our
work.

a Measured on Dhrystone benchmark compiled with riscv64-unknown-elf-
gcc 7.2.0 using recommended ARM compiler settings [31].
‡ Measured on Coremark [17] benchmark with unknown compiler settings.
1 Measured on Dhrystone benchmark with unknown compiler settings.

executed instructions drops to 110 k instruction. At this stage
all optimizations are automatically inferred by the compiler.
Additional hand-tuning and usage of GCC’s SIMD builtins the
executed instructions further reduces the instruction count to
29 k instructions. While the IPC is higher for the 32 bit core,
the higher clock frequency of Ariane significantly reduces the
execution time. Nevertheless, all the proposed instruction set
extensions reduce the amount of retired instructions by a factor
of 4.6 compared to the 32 bit RISC-V baseline, overall result-
ing in half the execution time compared to Ariane. We can
therefore conclude that the cost for fundamental “application-
class” microarchitectural features is significant, even within a
simple, single-issue, in-order microarchitecture. Furthermore,
we observe that computer performance and energy efficiency
can be boosted more effectively with ISA extensions than with
pure clock speed optimization.

D. Comparison to application-class cores
The default Rocket core is a 5-stage, in-order core which

can be parameterized to be either 64 or 32 bit. The core
achieves up to 1.6GHz in 45 nm [32]. They report 1.72
DMIPS/MHz [33]. The architecture is comparable to Ariane.
They achieve a slightly higher IPC of 0.95 at the expense of a
slower clock speed. The authors report a core power efficiency
of 100 pJ in 45 nm TSMC technology excluding periphery and
DRAM power. Considering technology scaling [25] this would
result in 80 pJ per instruction in our target technology which
is comparable, but still significantly worse, than 51.8 pJ per
operation which we report.

For BOOM the authors report an IPC of 1.45 for a dual-
issue, out-of-order implementation at a frequency of 1.5GHz
in 45 nm TSMC technology. The increase in IPC comes at
the expense of a significantly higher hardware complexity of
590 kGE3. [30] reports 133 pJ per instruction which scales to
approximately 100 pJ per instruction in our target technology.

Another application-class core has been developed as part
of the SHAKTI project. The SHAKTI C-class core has been

3Estimated from a similar cell library available to the authors

fabricated in Intel 22 nm FinFet technology and consumes
about 90mW and requires about 175 kG logic elements.It
also targets mid-range compute systems from 200-800MHz.
They report 1.68 DMIPS/MHz [28] which translates to an
IPC of 0.9. Therefore the IPC is similar to Ariane but Ariane
is running at approximately double the speed of the C-class
core and consumes less power at higher speeds. Moreover,
no detailed energy breakdown analysis has been published
on SHAKTI. Assuming an IPC of 0.9 it requires 122 pJ per
operation. Due to the limited amount of information available
it is unclear to the authors what the exact contributors to power
are and comparisons might therefore be inaccurate.

As remarked earlier, no detailed energy efficiency analysis
has been performed on these cores on a functional unit level
and we present first results of this kind based on Ariane,
our custom RISC-V core, which achieves best-in-class energy
efficiency.

Many studies, e.g. [34], [35] have researched the energy
efficiency of processors through high-level design space ex-
ploration. However, most of these studies either do not have
silicon calibrated analysis or do not go into analysis of the
various contributions to energy and cost, mainly because most
processors are commercial and have a closed (secret) microar-
chitecture [36]. Other studies have solely focused on analyzing
and improving certain aspects of the microarchitecture like for
example the register file [37].

Most of these studies on energy-efficient processors were
based on proprietary ISAs and/or microarchitectures. This is
also one of the key novelties of our work on Ariane: not only
the ISA is open, but also the whole microarchitecture and
RTL design. Hence, it is possible to reproduce our results
independently, as well as using Ariane as a basis to modify
and improve the microarchitecture and its implementation.

V. CONCLUSION

We have presented Ariane, a 64 bit, single-issue, in-order
core taped-out in 22 nm FDSOI technology which achieves
best-in-class energy efficiency. Based on this microarchitec-
ture, we provide a rigorous efficiency analysis of the RISC-V
ISA and its hardware impact.

Furthermore, Ariane has been open-sourced in February
2018 and is available for download on GitHub with a very
liberal license for the industry and research community. We
provide support for Verilator- and QuestaSim-based RTL sim-
ulation as well as a ready-to-go FPGA bitstream and a pre-built
Linux image4.

Our analysis reveals that, although many of Ariane’s com-
plex features are necessary to run full-featured OSes, most
of the computation can be done on simpler, non-application-
class cores as they share the same base ISA but lack features
such as address translation and different privilege levels.
Future work should focus on ISA-heterogeneous systems with
microarchitectures consisting of many compute-centric, bare-
metal cores and only a few higher-performance application-
class management cores, as proposed by early high-level
architectural studies [38]. We expect such systems to achieve a

4https://github.com/pulp-platform/ariane/releases

high gain in energy-efficiency while keeping the programming
model reasonable by just using the highly-efficient embedded
cores for unprivileged compute tasks.

In contrast to licensed ISAs like ARM or x86, the openness
of the RISC-V ISA and the availability of encoding space
makes it possible to differntiate and explore different architec-
tures and ISA extensions to enhance the efficiency of future
computing systems.

ACKNOWLEDGMENTS

The authors would like to thank Michael Schaffner and
Fabian Schuiki for comments that greatly improved the
manuscript. This work has received funding from the European
Unions Horizon 2020 research and innovation program under
grant agreement No 732631, project “OPRECOMP”.

REFERENCES

[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v
instruction set manual. volume 1: User-level isa, version 2.0,” CALI-
FORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEER-
ING AND COMPUTER SCIENCES, Tech. Rep., 2014.

[2] “Greenwaves gap 8: The iot application processor,” https:
//greenwaves-technologies.com/en/gap8-product/, accessed: 2019-
12-01.

[3] “Sifive core designer,” https://www.sifive.com/core-designer, accessed:
2019-12-01.

[4] “Unleashing innovation from core to the edge,” https:
//blog.westerndigital.com/unleashing-innovation-core-to-edge/,
accessed: 2019-12-01.

[5] K. Patsidis, D. Konstantinou, C. Nicopoulos, and G. Dimitrakopoulos,
“A low-cost synthesizable risc-v dual-issue processor core leveraging the
compressed instruction set extension,” Microprocessors and Microsys-
tems, vol. 61, pp. 1–10, 2018.

[6] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

[7] “Picorv32-a size-optimized risc-v cpu,” https://github.com/cliffordwolf/
picorv32, accessed: 2018-01-12.

[8] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[9] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
MIPS Edition: The Hardware/Software Interface. Newnes, 2013.

[10] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009, pp.
207–220.

[11] S. Kiamehr, M. Ebrahimi, M. S. Golanbari, and M. B. Tahoori,
“Temperature-aware dynamic voltage scaling to improve energy effi-
ciency of near-threshold computing,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 7, 2017.

[12] I. Hwang and M. Pedram, “A comparative study of the effectiveness
of cpu consolidation versus dynamic voltage and frequency scaling in
a virtualized multicore server,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 6, pp. 2103–2116, 2016.

[13] C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and K. Asanović,
“Boom v2: an open-source out-of-order risc-v core,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2017-157,
Sep 2017. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2017/EECS-2017-157.html

[14] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[15] N. Gala, A. Menon, R. Bodduna, G. Madhusudan, and V. Kamakoti,
“Shakti processors: An open-source hardware initiative,” in VLSI Design
and 2016 15th International Conference on Embedded Systems (VLSID),
2016 29th International Conference on. IEEE, 2016, pp. 7–8.

[16] B. Bowhill, B. Stackhouse, N. Nassif, Z. Yang, A. Raghavan, O. Men-
doza, C. Morganti, C. Houghton, D. Krueger, O. Franza et al., “The
xeon R© processor e5-2600 v3: A 22 nm 18-core product family,” IEEE
Journal of Solid-State Circuits, vol. 51, no. 1, pp. 92–104, 2016.

[17] “Eembc coremark pro benchmark,” https://www.eembc.org/
coremark-pro/, accessed: 2019-08-01.

[18] A. Gonzalez, F. Latorre, and G. Magklis, “Processor microarchitecture:
An implementation perspective,” Synthesis Lectures on Computer Archi-
tecture, vol. 5, no. 1, pp. 1–116, 2010.

[19] A. Bhattacharjee and D. Lustig, “Architectural and operating system sup-
port for virtual memory,” Synthesis Lectures on Computer Architecture,
vol. 12, no. 5, pp. 1–175, 2017.

[20] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2018. IEEE, 2018, pp. 1051–1056.

[21] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A
transprecision floating-point architecture for energy-efficient embedded
computing,” in Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on. IEEE, 2018, pp. 1–5.

[22] T. Newsome and M. Wachs, “Risc-v external debug support version
0.13.1,” 2018.

[23] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: an ultra-low-power pulpissimo soc in 22nm fdx,” in
IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Con-
ference (S3S 2018), 2018, pp. 6–1.

[24] A. Pullini, D. Rossi, I. Loi, A. Di Mauro, and L. Benini, “Mr. wolf: A
1 gflop/s energy-proportional parallel ultra low power soc for iot edge
processing,” in ESSCIRC 2018-IEEE 44th European Solid State Circuits
Conference (ESSCIRC). IEEE, 2018, pp. 274–277.

[25] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law through
energy efficient integrated circuits,” Proceedings of the IEEE, vol. 98,
no. 2, pp. 253–266, 2010.

[26] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of
the 8th annual symposium on Computer Architecture. IEEE Computer
Society Press, 1981, pp. 135–148.

[27] K. Asanović, D. A. Patterson, and C. Celio, “The berkeley out-of-order
machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” University of California at Berkeley Berkeley United
States, Tech. Rep., 2015.

[28] “Shakti c-class,” http://shakti.org.in/c-class.html, accessed: 2018-18-12.
[29] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas,

A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin et al., “Single-
chip microprocessor that communicates directly using light,” Nature,
vol. 528, no. 7583, p. 534, 2015.

[30] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee,
J. Bachrach, and K. Asanovicc, “Strober: fast and accurate sample-based
energy simulation for arbitrary rtl,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2016, pp. 128–139.

[31] “Dhrystone benchmarking for arm cortex processors,” https://static.docs.
arm.com/dai0273/a/DAI0273A dhrystone benchmarking.pdf, accessed:
2019-20-05.

[32] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović,
and K. Asanović, “A 45nm 1.3 ghz 16.7 double-precision gflops/w risc-
v processor with vector accelerators,” in European Solid State Circuits
Conference (ESSCIRC), ESSCIRC 2014-40th. IEEE, 2014, pp. 199–
202.

[33] Y. Lee, B. Zimmer, A. Waterman, A. Puggelli, J. Kwak, R. Jevtic,
B. Keller, S. Bailey, M. Blagojevic, P.-F. Chiu et al., “Raven: A
28nm risc-v vector processor with integrated switched-capacitor dc-dc
converters and adaptive clocking,” in Hot Chips 27 Symposium (HCS),
2015 IEEE. IEEE, 2015, pp. 1–45.

[34] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design: a
marginal cost analysis,” ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, pp. 26–36, 2010.

[35] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “Cmp design
space exploration subject to physical constraints,” in High-Performance
Computer Architecture, 2006. The Twelfth International Symposium on.
IEEE, 2006, pp. 17–28.

[36] S. M. Tam, H. Muljono, M. Huang, S. Iyer, K. Royneogi, N. Satti,
R. Qureshi, W. Chen, T. Wang, H. Hsieh et al., “Skylake-sp: A 14nm
28-core xeon R© processor,” in Solid-State Circuits Conference-(ISSCC),
2018 IEEE International. IEEE, 2018, pp. 34–36.

[37] X. Zeng, Y. Li, Y. Zhang, S. Tan, J. Han, X. Zhang, Z. Zhang, X. Cheng,
and Z. Yu, “Design and analysis of highly energy/area-efficient multi-
ported register files with read word-line sharing strategy in 65-nm cmos
process,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 7, pp. 1365–1369, 2015.

[38] X. Liang, M. Nguyen, and H. Che, “Wimpy or brawny cores: A
throughput perspective,” Journal of Parallel and Distributed Computing,
vol. 73, no. 10, pp. 1351–1361, 2013.

Florian Zaruba received his BSc degree from TU
Wien in 2014 and his MSc from the Swiss Fed-
eral Institute of Technology Zurich in 2017. He is
currently pursuing a PhD degree at the Integrated
Systems Laboratory. His research interests include
design of very large scale integration circuits and
high performance computer architectures.

Luca Benini holds the chair of digital Circuits and
systems at ETHZ and is Full Professor at the Univer-
sita di Bologna. Dr. Benini’s research interests are
in energy-efficient computing systems design, from
embedded to high-performance. He has published
more than 900 peer-reviewed papers and five books.
He is a Fellow of the ACM and a member of the
Academia Europaea. He is the recipient of the 2016
IEEE CAS Mac Van Valkenburg award.

