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Smallholder agriculture involves millions of farmers worldwide. A methodical utilization

of their traditional knowledge in modern breeding efforts may help the production of

locally adapted varieties better addressing their needs. In this study, a combination

of participatory approaches, genomics, and quantitative genetics is used to trace the

genetic basis of smallholder farmer preferences of durum wheat traits. Two smallholder

communities evaluated 400 Ethiopian wheat varieties, mostly landraces, for traits of

local interest in two locations in the Ethiopian highlands. For each wheat variety,

farmers provided quantitative evaluations of their preference for flowering time, spike

morphology, tillering capacity, and overall quality. Ten agronomic and phenology traits

were simultaneously measured on the same varieties, providing the means to compare

them with farmer traits. The analysis of farmer traits showed that they were partially

influenced by gender and location but were repeatable and heritable, in some cases

more than metric traits. The durum wheat varieties were genotyped for more than 80,000

SNP markers, and the resulting data was used in a genome wide association (GWA)

study providing the molecular dissection of smallholder farmers’ choice criteria. We

found 124 putative quantitative trait loci (QTL) controlling farmer traits and 30 putative

QTL controlling metric traits. Twenty of such QTL were jointly identified by farmer and

metric traits. QTL derived from farmer traits were in some cases dependent on gender

and location, but were consistent throughout. The results of the GWA study show that

smallholder farmers’ traditional knowledge can yield QTL eludingmetricmeasurements of

phenotypes. We discuss the potential of including farmer evaluations based on traditional

knowledge in crop breeding, arguing for the utilization of this untapped resource to

develop better adapted genetic materials for local agriculture.

Keywords: GWAS, folk wisdom, traditional knowledge, small farming, smallholder farmers, QTL mapping,

landraces, Triticum
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INTRODUCTION

Through time, plant breeding has adapted crops to societal needs.
Since the invention of agriculture more than 10,000 years ago
(Diamond, 2002), a pressing selection for favorable traits have
been exerted on the allelic pools of major crops (Purugganan
and Fuller, 2009). Those plant features addressing the needs
of agriculture were identified and promoted, shaping nowadays
crops. With the progress of agriculture, the methods available
to produce better plants radically changed. The quantitative
evaluation of crop phenotypes moved from an unconscious
process based on visual assessment of plant traits to the most
recent field (Fahlgren et al., 2015) and greenhouse (Li et al.,
2014) sensing platforms. Concurrently, genotyping and genome
sequencing technologies provided the means to dramatically
increase inter-generation genetic gain through quantitative trait
loci (QTL) mapping and cloning (Fu et al., 2009), marker assisted
selection (Lande and Thompson, 1990), and genomic selection
(Goddard and Hayes, 2007). The requirement of an increasingly
complex technology to produce better crops sided the shift from
subsistence farming to industrialized agriculture and centralized
breeding (Evenson and Gollin, 2003; Borlaug, 2007). Much of
the world, however, still lays outside the benefits of highly
productive and profitable modern varieties (MV) introduced
since the green revolution (Diao et al., 2008), either because of
poor seed circulation or because farmers still prefer to grow their
traditional varieties over MVs poorly adapted to local agriculture
(Jarvis et al., 2011).

As many as 900 million of world’s poor people live and
work as smallholder farmers in rural areas exposed to harsh
and low-input farming conditions and to dramatic climate
change effects (International Fund for Agricultural Development,
2001; Morton, 2007). A vivid example of the smallholder
farming system in Sub-Saharan Africa is Ethiopia, where 8
out of 10 persons in the population of the country now
approaching 100 million people are involved in farming (FAO
Statistics Division, 2015), and more than 80% of the farmers
are smallholders (Salami et al., 2010). Ethiopian farming
communities typically conduct mixed farming, keeping animals
and growing cereals, pulses and oil crops in small land parcels.
Despite the productivity of the Ethiopian farming system is
highly exposed to shifts in climate and weather (Mann and
Warner, 2017), Ethiopia is the biggest wheat producer in Sub-
Saharan Africa (FAO Statistics Division, 2015). Primary wheat
production constrains in Ethiopia are poor access to inputs,
fertilizers, and quality seeds, that are employed on a fraction
of the total area cultivated (Bergh et al., 2012). Most of the
Ethiopian farming communities inhabit fragile landscapes with
poor soils, erratic rainfalls, and modest connections to markets.
Seeds are exchanged through an informal seed system that
favors the spread and maintenance of locally adapted landraces.
Although new varieties are released every year by national
and international breeding efforts, the deployment of MVs
in smallholder fields is hampered by poor distribution and
poor farmers’ uptake, especially due to MVs failure to address
farmers’ needs and to their poor adaptation to marginal growing
conditions.

In subsistence systems, farmers are still entrusted with the
selection of the varieties capable of sustaining the household
in the following season. Their choice of varieties relies on
traditional knowledge and past field experiences, and determines
food security at the household level. Smallholder farmers must
be efficient in determining whether crop varieties suit their needs
and the agroecology they inhabit. For these reasons, smallholder
farmers are knowledgeable of traits concerning environmental
adaptability such as resistance to drought, frost, pests, and
diseases (Asrat et al., 2010), as well as of agro-morphological
traits such as number of spikes and seeds produced (Elmyhun
and Mekonen, 2016). The varietal evaluation given by farmers
may not overlap to that of breeders (Burman et al., in press).
In some cases, preferred traits can differ among locations and
gender groups: women are often more concerned with filling the
food security gap and may have a preference for cooking related
traits, whereas men are more concerned with field problems and
market demand and tend to prefer traits more related with yield
stability and productivity (Assefa et al., 2014; Kolech et al., 2015).

Traditional knowledge has already benefited several fields
of quantitative sciences. The poison on Amazonians’ arrows
has become antidepressants (Feldman, 2009), and willow bark
extracts have been made into anti-inflammatories (Mahdi
et al., 2006). Hundreds of plant-derived medical compounds
have the same or related purposes as their ethnomedical
history suggests (Fabricant and Farnsworth, 2001). Here, we
advocate that smallholder farmers’ traditional knowledge could
be similarly harnessed for the benefit of local and global wheat
breeding, through the identification of loci contributing to wheat
desirability by the farmers themselves. Our results show that
farmer evaluations are measurable and repeatable, and can
be used in a genome-wide association (GWA) study to close
the loop between farmers’ traditional knowledge and modern
breeding. Our study focuses on two separate smallholder farming
communities in Ethiopia. Farmers expressed their preferences on
durum wheat genotypes based on previously defined traits, and
their evaluation was used to determine the genetic basis of their
preferences. The aim of this study is not to individually discuss
the QTL identified by GWA on either farmer traits and metric
traits, but rather to report the congruity (or lack thereof) among
the two and to demonstrate the feasibility of incorporating
farmers’ traditional knowledge in molecular breeding methods.

MATERIALS AND METHODS

Experimental Sites
The study was conducted during the 2012 wheat growing season
in two locations in the Ethiopian highlands. The first location was
in the Geregera area, in the village of Workaye, Meket district
(Amhara region, 11◦40′N/38◦52′E, WGS84; hereafter identified
as Geregera). The second location was in the Hagreselam district,
in the village of Melfa (Tigray region, 13◦39′N/39◦10′E, WGS84;
hereafter Hagreselam). The two locations are representative of
Ethiopian wheat growing areas at high (2,867 m.a.s.l.) and
medium (2,572 m.a.s.l.) altitudes, respectively. On average,
households in Geregera and surrounding areas are 1.43 ha in size
and are composed by 5.5 members. In Hagreselam, households
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have the same membership (5.5 people on average) but cover
only 0.6 ha per household. Livestock is usually part of the farm
in both locations: tropical livestock units for smallholder farmers
in Geregera are 2.6, while in Hagreselam are 2.1.

Farmer Selection and Focus Group
Discussions
In each location, 30 smallholder farmers growing wheat were
selected on a voluntary basis, but keeping a 50:50 gender
representation. Both man and women involved in the study
were themselves durum wheat growers, and belonged to different
households so to avoid family bias. Among volunteers, the farmer
panel was assembled to avoid bias in gender, age, and wealth.
Farmers’ age ranged from 22 to 46 years in Geregera and from 26
to 70 years in Hagreselam. Farmer groups were divided by gender
to account for potential differences in wheat evaluation, and
were involved in focus group discussions (FGD) at each location.
At the FGDs onset, we collected demographic information on
the participants. All participants provided written informed
consent to participate in the research. Ethics approval was not
required as per institutional and national guidelines. Researchers
speaking the local language (Amharic in Geregera and Tigrinya
in Hagreselam) moderated FGDs. Farmers were asked to list
the traits they used to evaluate wheat varieties, hereafter termed
farmer traits (FT), and these were ranked by importance. Among
the most important and recurring traits indicated by farmers, we
chose traits that could also be evaluated in the experimental fields
running at the time of the evaluation. Processing traits such as
cooking and baking quality could not be assessed in the field,
thus were excluded from the downstream evaluation. Three FTs
were selected: (i) earliness, as the maturation stage at the time
of the field evaluation, (ii) tillering capacity, as the capacity to
produce secondary stems and spikes, and (iii) spike morphology,
as the overall appearance of the spike. Additionally, the overall
appreciation, i.e., the overall evaluation of the desirability of a
specific genotype, was added to FTs as synthetic criterion of
farmers’ preferences.

Plant Material and Field Design
The genetic material here analyzed is a diversity panel comprising
400 Ethiopian wheat accessions conserved ex situ at the Ethiopian
Biodiversity Institute (EBI; http://www.ebi.gov.et/). The farmer
communities did not have prior access to such genotypes,
and were oblivious of the material to be tested. All the
accessions included in the diversity panel had at least partial
passport data. Twenty-eight accessions among them were so-
called “improved varieties,” i.e., MVs released for cultivation in
Ethiopia. The remaining were Ethiopian wheat landraces. The
year prior to the field experiment, each accession was grown
and inspected for variability. In order to exclude heterogeneity
within landraces, a reference spike for each accession was
selected as the standard genotype, and was used to amplify
the seeds required for the subsequent field experiments and for
the DNA extraction. The diversity panel was sown in Geregera
and Hagreselam following a replicated 20 × 20 partial lattice
design at a seed rate of 100 kg ha−1. Both sites are test fields
commonly used for cereals relevant for Amhara and Tigray

regions of Ethiopia, respectively. Crops frequently cultivated in
both locations include barley, chickpea, faba bean, field pea,
lentil, and teff. Rainfall in Geregera is annually 1,300mm, yet
typically erratic, and soil is mainly lithosol. In Hagreselam the
annual rainfall is 680mm, and soils are mainly clay loam.
The experimental fields were designed to provide standardized
conditions to evaluate genotypes’ performance. Planting date was
July the 5th, 2012 in Geregera, July the 7th, 2012 in Hagreselam.
In both locations land was prepared by oxen plowing, and
planting was performed manually by drilling. The plot size was
2.5× 0.8 m, each plot having four rows of plants. The middle two
rows were used for data collection. Spacing between rows and
replications was 0.5 and 1.5 m, respectively. Field management,
in rain-fed conditions, was uniform at the two locations. Doses
of 46 kg P2O5 ha−1 fertilizer in the form of DAP and 41 Kg N
ha−1 in the form of Urea and DAP were applied during sowing.
Additional 23 Kg N ha−1 were applied in the form of Urea at
the beginning of tillering in both sites. Weeds were controlled
manually. Field management in the experimental sites differed
from that traditionally used by smallholder farmers especially in
regards of fertilizers and intensity of manual weeding (lower in
farmer fields), and seed rate (higher in farmer fields). For further
details on material selection and field design, see Mengistu et al.
(2016).

Genotyping
DNA extraction was conducted in Ethiopia, at the Mekelle
University Molecular and Biotechnology Laboratory (Mekelle,
Tigray). Five seedlings were germinated and pooled for each
accession. Genomic DNA was extracted from green tissues with
the GenElute Plant Genomic DNAMiniprep Kit (Sigma-Aldrich,
St Louis,MO) according to themanufacturer’s directions. Quality
was checked on Nanodrop 2000 (Thermo Fisher Scientific Inc.,
Waltham, MA) and by electrophoresis on 1% agarose gel.
Genotyping was performed on the Infinium 90K wheat chip
(Wang S. et al., 2014) at TraitGenetics GmbH (Gatersleben,
Germany). The molecular markers thus produced were filtered
for minor allele frequencies above 5% and failure rate below 20%
with custom scripts in R (R Development Core Team, 2017).
Detailed molecular diversity analyses conducted on the diversity
panel are reported in Mengistu et al. (2016).

Metric Traits Collection
Technicians measured 10 metric traits (MT) in each location.
Days to 50% booting (DB), days to 50% flowering (DF), and days
to 75%maturity (DM)weremeasured for whole plots. Number of
effective tillers per plant (NET), plant height (PH, in cm), spike
length (SPL, in cm), the number of seeds per spike (SPS) were
measured on three randomly selected plants per plot. Grain yield
(GY; grams of grain produced per plot, converted in t ha−1),
above ground biomass or biological yield (BY; dry weight of
the above ground harvested biomass grams per plot, in t ha−1)
and thousand grain weight (TGW; weight of 1,000 kernels, in
grams) were measured on full plots. For further details on metric
phenotypes collection, see Mengistu et al. (2016).
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Farmer Traits Collection
The procedure for FTs collection was identical at the two
locations. At early seed maturation, when flowering time
differences were still visible, the 30 farmers were organized into
smaller groups of five members of the same gender. A rapporteur,
a local technician with agronomic training, accompanied each
group. Groups were led into the field from random access points
and were taken to one plot at a time following a different path.
The average maturing stage in Geregera on Zadoks scale was 75
(mediummilk), inHagreselamwas 85 (soft dough). For each plot,
the group had to score the four FTs from 1 to 5, where 1 was
poor and 5 excellent. The scoring was conceived as the answer
to the following question: “what is your evaluation of [the FT] of
this plot?” Plots were labeled anonymously. In order to prevent
farmers from influencing each other, each farmer was given five
seeds (each representing a scoring unit) and asked to hold them
in her/his closed hand. At each plot, and for each FT, the farmer
had to pick a number of seeds equivalent to their score of the trait
without letting others see her/his choice. Immediately, farmers
were instructed to open their hands and show their score, which
was individually noted by the rapporteur.

Statistical Analyses
An ANOVA was conducted on phenotypic data collected in
each location. A mixed model was used, including genotype,
replication, incomplete block within replication effects, and
the residual error. The ANOVA combined over locations was
performed including also location, and genotype by location
interaction as fixed factors. For the calculation of genotypes
adjusted means, best linear unbiased estimates (BLUEs) were
computed by considering all effects as random except the
expected mean and the genotypic effect. Computations were
performed using PROC MIXED, expected mean square method
(Type3), in SAS (SAS Institute, Cary, NC). Heritability (h2)
for each trait in each location was calculated on a genotype-
mean basis across the two replications (r), as σ

2
g/(σ

2
g + σ

2
e /r),

where σ
2
g, and σ

2
e are the genotype and the residual error

variances, respectively. The phenotypic correlation (rp)was
calculated among all FTs and MTs traits collected in Hagreselam
and Geregera and for each trait between locations. Pearson’s
correlations were calculated with SAS (SAS Institute, Cary,
NC). Correlation plots were produced with the R package
R/corrplot (Wei, 2013). A principal component analysis (PCA)
was performed on location-specific and across-location MTs to
extract the most variable axes of phenotypic variation as principal
components (MT-PCs). The MT-PCs explaining the highest
variance were correlated back to MTs. Phenotypic MT-PCs were
retained and sided to metric phenotypes for further analyses.
All plots were produced with R custom scripts available upon
request.

Upon the molecular analysis reported in Mengistu et al.
(2016), 312 samples were classified as durum wheat. These
samples, further filtered for missing data, were the sole used for
the GWA study. The filtered set of polymorphic, high-quality
molecular markers scored on these samples was input in the
R package Genome Association and Prediction Integrated Tool
(GAPIT) (Lipka et al., 2012). Only polymorphic markers with a

genetic position on the durum wheat genetic map (MacCaferri
et al., 2015) were retained. The GWA scan was run on FTs and
MTs, and for the most important MT-PCs. R/GAPIT was run
under the SUPER method (Wang Q. et al., 2014). Population
structure was corrected using a kinshipmatrix calculated with the
VanRaden method (VanRaden, 2008) and principal components
deriving from molecular marker data (SNP-PC) as covariates.
The GWA scan was iteratively run with 1–10 SNP-PCs as
covariates, and quantile-quantile plots were visually evaluated to
choose the best fit of the model, that is the sole reported. Multiple
test correction was performed according to the Bonferroni
method on a nominal test p-value of 0.05. Tests surpassing this
significant threshold denote significant marker trait associations
(MTA). A regression model was fitted for each MTA between
marker allele scores (arbitrarily set to −1 for homozygous for
the highest frequency allele, 0 for heterozygous, and 1 for
homozygous for the lowest frequency allele) and the phenotypic
values to estimate the MTA effect and its R2. Significant MTAs
were grouped on the basis of LD decay information calculated
on the same set of markers on the same genotypes panel
(Mengistu et al., 2016). When multiple MTAs were falling within
chromosome-specific LD halving distance from each other, they
were assigned to the same putative QTL. Custom R script were
used to analyze the overlap and distribution of FT and MT
putative QTL. GWA plots in the main text were created with
custom R scripts available upon request. Manhattan plots where
produced with R/qqman (Turner, 2014), quantile-quantile plots
where produced with modified R/GAPIT functions. Correlation
plots were produced with R/corrplot (Wei, 2013).

RESULTS

The 400 wheat genotypes were evaluated for four FTs and 10MTs.
In each location, genotype variance was significant formost of the
traits, except for NET (Table S1). Since in the combined analysis
location by genotype interactions were significant for the large
majority of FTs and for several MTs (Table 1), the locations were
kept separated in the subsequent analyses. Still, measures of the
same trait collected in the two locations were always significantly
correlated (Table 1), with the highest values of rP for Earliness
and Spike FTs, and for DB and PH among the MTs. Overall
evaluation, a composite measure, reached an rP of 0.585 for men.
For comparison, the rP for GY in the two locations was just 0.424
(Table 1). Correlations among FTs and MTs within locations
(Table S2) showed that the overall appreciation, arguably the
most composite trait provided by farmers, was highly correlated
with spike morphology FT, and with plant height, biomass, grain
yield and yield components such as thousand grain weight and
number of seeds per spike (Figure S1). In each location, the
proportion of phenotypic variation due to genetic variation,
estimated as heritability (h2), was for FTs comparable to those of
MTs. Among FTs, h2 was lower for tillering capacity and higher
for earliness. Earliness is expectedly the FT with the highest h2

(Table S1): this trait is easy to measure in open fields, and highly
correlated with the metric measurement of DB, DF, and DM
(Figure S1).
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TABLE 1 | Significance of variance for genotype (G), location (L), and location by genotype (LxG) interactions for farmer traits (FT) and metric traits (MT) combined across

locations. Error is given for L. For each trait are given the mean (Grand Mean), the minimum value (Min), the maximum value (Max), and the phenotypic correlation among

locations (rp).

Farmer Traits (MT) Overall Earliness Spike morphology Tillering capacity

d.f. Women Men Women Men Women Men Women Men

SOURCE OF VARIATION

Location (L) 1 198.599* 87.119 334.743 117.840 297.778* 2.083 100.994* 4.794

Errora 2 5.569 10.610 40.083 7.933 3.487 10.462 4.866 14.963

Genotype (G) 399 0.437** 0.863** 1.509** 2.018** 0.498** 0.788** 0.344** 0.342**

L × G 399 0.213** 0.231** 0.396** 0.359** 0.162** 0.153 0.153 0.156*

Residual 715-722 0.136 0.148 0.209 0.240 0.132 0.134 0.152 0.133

Grand Mean 3.13 2.78 3.35 3.03 3.31 2.95 3.06 2.71

Min 1.98 1.68 1.25 0.99 2.19 1.79 1.90 1.68

Max 4.03 4.40 4.51 4.43 4.26 4.19 3.86 3.60

rP 0.434 0.585 0.600 0.699 0.550 0.681 0.406 0.402

Metric Traits (MT) d.f. DB DF DM GY BY NET PH SPL SPS TGW

SOURCE OF VARIATION

Location (L) 1 25721* 47012* 173373** 284.14* 88.03 8189.14** 11085 228.799* 8466.73** 2482.72*

Errora 2 451 569 73 3.260 97.58 2.80 1677 9.784 77.5 63.7

Genotype (G) 399 81.34** 73.34** 94.5** 0.68** 5.728** 2.19** 338.12** 2.458** 74.99** 52.57**

L × G 399 13.15** 15.18** 29.91** 0.29 2.696 1.65 56.88 0.642* 26.53 11.44

Residual 715-722 8.28 8.97 22.38 0.30 2.875 1.74 66.54 0.536 31.15 11.50

Grand Mean 71.24 83.31 128.97 2.12 6.72 4.81 97.40 7.47 31.48 35.25

Min 56.32 74.10 111.65 0.69 3.27 2.70 62.16 4.98 18.51 25.06

Max 88.59 100.33 144.35 3.43 10.52 7.24 119.76 9.68 50.97 45.04

rP 0.737 0.672 0.567 0.424 0.362 0.213 0.708 0.612 0.491 0.675

aError for testing Location. Significance of the F-test: *p < 0.05, **p < 0.01; d.f. range of residuals according to the number of missing values per phenotype. DB, days to booting; DF,

days to flowering; DM, days to maturity; GY, grain yield; BY, biological yield; NET, number of effective tillers; PH, plant height; SPL, spike length; SPS, seeds per spike; TGW, thousand

grain weight.

The evaluation of earliness was slightly different among
locations and among genders within the same location, with
the highest variability in Hagreselam (Figure 1A). The marker-
trait associations (MTA) identified for DB and DF in either or
both locations combined (Mengistu et al., 2016) were jointly
identified by earliness FT (Figure 1B; Table S3). An MTA on
chromosome (Chr) 1B was identified by earliness FT and related
MTs in both locations. Further MTAs specific to these traits
collected in the Hagreselam location emerged on Chr 4B and
6A. Several suggestive associations, although not surpassing the
stringent significance threshold, overlap these MTAs (Figure
S2). The GWA on spike morphology (Figure S3) revealed
several MTAs jointly identified by the two communities and
overlapping MTAs derived from spike-related MTs (Figure 2A;
Table S4). Although, quantile-quantile plots for spike traits
showed some inflation (Figure S4), the strongest MTAs were
consistent across traits and locations. These included two MTAs
on Chr 1A, and several MTAs on Chr 3B, 4A, and 5B (Figure S4).
The GWA scan on overall evaluation provided fewer MTAs
(Figure 2B; Table S5), possibly because of more diverse scores
across genders and communities (Figure S5). Four MTAs
for combined measures of GY were identified by farmers in
Geregera, and only one in Hagreselam. The most consistent

MTAs in Geregera emerged on Chr 3B and 5B (Figure S6),
the latter in common with spike FT (Figure 2A). A suggestive
peak overlapping the latter was also identified by women in
Hagreselam yet did not surpass the significance threshold (Figure
S6). Typically, women provided fewer MTAs than men. This is
matched by the consistently lower rp and h2 shown by women-
scored FT (Table 1, Table S1) and by more skewed and varied
evaluations (Figure S7). When detected, however, the position of
women’s MTAs matched that of men, as in the case of Chr 3B
and 5B. The tillering capacity FT (Figure S8) provided just one
MTA detected on Chr 2B by women in Hagreselam (Figure S9).
The measured NET did not report MTAs, although a suggestive
signal overlapping the MTA identified by tillering FT was present
in Hagreselam (Figure S10, Table S6). This is likely due to the low
h2 of the trait (Table S1). TheMTAs resulting from the GWA scan
of FTs and MTs were joined according to chromosome-specific
LD decay measures, yielding a total of 134 putative QTL (Table
S7). Of these, 124 were identified for FTs and 30 for MTs. Twenty
of such putative QTL (14.9%) were jointly identified for both FTs
and MTs. The traits providing more putative QTL where spike
and overall quality assessed by farmers (105 and 83, respectively).
In most of the cases, MTAs were identified by multiple traits.
This is the case of spike and overall FTs, which in 71 instances
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FIGURE 1 | GWA scan of earliness evaluated by farmers. (A) Comparison of earliness scores among genders and locations, scaled. The scatter plot reports the

covariance of men (x-axis) and women (y-axis) scores in each location, blue for Geregera and red for Hagreselam. The outer bar plots compare the earliness score

distribution within genders and among locations. The top plot compares men from Geregera (blue) and Hagreselam (red). The side plot similarly depicts women

scores. (B) GWA scan on earliness (EARLY), days to booting (DB), days to flowering (DF), and days to maturity (DM) in both locations. Each horizontal line represents a

GWA scan, next to the corresponding trait name. Men and women’s scores are kept separate, denoted by “M” and “F,” respectively. Ticks represent markers ordered

by genetic position as reported on the x-axis. Brighter, bigger ticks represent significant associations with a color code reported in the legend below. GWA for

Geregera (ger) traits are in shades of blue, GWA for Hagreselam traits (hs) are in shades of red.

identified the same putative QTL (Table S8). Most of the putative
QTL could be traced to just one MTA, and these in turn were
mainly derived from FTs. Two thirds of the MTs putative QTL
were identified for FTs as well (Figure S11). Putative QTL from
FTs explained as much as 19% of the phenotypic variation in case
of spike morphology, 15% in case of overall evaluation. Number
of seeds per spike provided the MTA with the highest R2, 22%
(Table S9).

To account for the farmers’ holistic evaluation process,
we summarized the phenotypic variance of our dataset in a
PCA on combined MT values across locations. The first three
MT-PCs explained 68.7, 20.1, and 9.4% of the phenotypic
variance, respectively, and MTA identified by them showed a
varied degree of overlap with those identified by the overall
evaluation of farmers (Figure 3A; Table S10). MT-PC1, mostly
accounting for PH and yield (Figure 3B), reported two MTAs
that were not identified for the FTs in either location. The
MTAs identified by MT-PC2, contributed by spike traits and
tillering, clearly overlapped with those for the overall evaluation
(Figure 3A). Although not always significant, signals on Chr
1A, 3B, and 5B were consistent across overall FT (Figure
S6) and MT-PCs (Figure S12). Farmers in the two locations
provided different MTAs. Their dissimilarities were clearer
when the PCA was performed for each location separately.
In this case, the overall measure of the Geregera community
identified most of the MTAs detected by local MT-PC1
(Figure S13, Table S11), mostly contributed by PH and yield
components (Figure S14). On the other hand, the overall
measure of the Hagreselam community, identified several MTAs
in common with MT-PC2 on local MTs (Figure S15; Table
S12), which was contributed mostly by TGW and spike features
(Figure S16).

DISCUSSION

Farmer scores were independent in Geregera and Hagreselam,
as farmers only evaluated their own environment. However,
over-locations correlations for combined FTs were high and
comparable to those for MTs (Table 1). Farmers were not
familiar with the wheat genotypes tested: they were evaluating
landraces conserved ex situ in unlabeled plots. Therefore, the
high correlations detected strongly support the notion that
the FTs have a genetic basis. Notably, the overall evaluation
provided by farmers scored correlations across environments
similar if not higher than that of yield traits in durum wheat
(Table 1) and bread wheat alike (Bennett et al., 2012). The high
heritability scored by FTs, and particularly by overall, suggests
that smallholder farmers’ traditional knowledge may indeed
be used to guide genetic gain through quantitative methods
such as QTL mapping, marker assisted selection, and genomic
selection.

Yield and yield components are arguably among the traits
most sought after inmodern breeding. However, when evaluating
varieties in the field, smallholder farmers may prioritize different
aspects of the crops (Ceccarelli, 2015). Correlations among
FTs and MTs provided the means to break down farmers’
appreciation onto quantifiable phenotypes (Table S2). The overall
appreciation, the FT more representative of the holistic approach
of smallholder farmers in evaluating wheat material, is correlated
with a number of metric traits measured in this study, but it
cannot be effectively summarized by any of those (Figure S1). The
spike morphology FT is also correlated with several MTs, notably
thousand grain weight, but similarly to overall it is not collinear
with any of those individually (Figure S1). The correlation ofMTs
with spike and overall may however be used as a proxy of the
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FIGURE 2 | GWA scans for spike and overall farmer traits. (A) The GWA scan for spike morphology (SPIKE), the number of seeds per spike (SPS), spike length (SPL),

and thousand grain weight (TGW). GWA for Geregera traits (ger) are shown in shades of blue. GWA scans on metric values derived from the combination of traits

collected in each location are shown in shades of green. GWA for Hagreselam traits (hs) are shown in shades of red. Brighter, bigger ticks represent significant

associations with a color code reported in the legend below. (B) The GWA scan for overall evaluation (OVE), grain yield (GY), and plant height (PH), represented as

in (A).

most valued traits in farmers’ opinion among those measured. If
one considers overall score as the single most important indicator
of farmers’ preference, landraces are more frequent than MVs in
the top five durumwheat varieties identified in each location (Tab
S13). For men in Geregera and Hagreselam, respectively four
and three of the top five durum wheat varieties are landraces.
Women list four landraces among the top five durum wheat
varieties in Geregera, and five landraces out of five inHagreselam.
Women in Geregera and men in Hagreselam list the MV Bichena
as fourth and second best. Men give the MV Tossa the highest
overall score among durum wheat varieties in Geregera, and the
fifth best in Hagreselem. In all the other cases, landraces are top
ranking. Several landraces are jointly identified in the four top-
five durum wheat varieties resulting from evaluations given by
different genders in different locations. The landrace DP-228753
is listed among the top five in all cases, but is only 31th for GY
and 30th for SPS (Table S3).

The value given to FTs, however, is different across genders
and across locations (Figure S1). This results in partially
overlapping MTAs identified when operating different data
groupings. Earliness is a remarkable example. This FT is inversely
related to phenology measures (Figure S1), indicating that
farmers consistently prefer early genotypes. Although highly
heritable (Table S1) and collinear among genders and locations
(Figure 1A), earliness reports two MTAs unique to Hagreselam
on Chr 4A and 6A, the latter supported by suggestive peaks in
several MTs (Figure S2). The FT scores distribution is different in
the two locations (Figure S7), possibly because of the different
wheat developmental stage at which the evaluation took place
in the two locations. Local pedoclimatic differences may also
contribute to contrasting MTA discovered. The length of the
wheat life cycle is more important in areas subjected to terminal
drought (Kazan and Lyons, 2016), an occurrence more typical of
Hagreselam.
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FIGURE 3 | Comparing overall evaluation with principal components of metric traits. (A) GWA scan for overall evaluation (OVE) in the two locations, compared to

MT-PC 1-3 of combined metric measure of phenotypes. Color code as in Figure 2, the significance of tests as in legend. (B) Correlation between the original

combined metric values and the derived MT-PC values 1 to 3. Strength and direction of the correlation is represented by circle size and color, respectively. The overall

score given by farmers provides a synthetic evaluation of the manifold features of a wheat genotype.

Even though tillering capacity was highly correlated with yield
traits in both locations (Figure S1, Table S2), this FT was not
consistently scored across genders and across locations (Table 1).
The corresponding MT, NET, was also scarcely heritable (Table
S1), possibly because of marked environmental effects on the
expression of the trait. The low h2 of NET possibly contributed
to the fact that we were unable to identify MTAs for farmers
preference of tillering capacity. It is also possible that farmers
groups provided contrasting evaluations of NET, considering the
trait at times positive, at times neutral or even negative.

Spike morphology was perhaps the most important FT in
determining the farmers’ choice of wheat varieties (Ceccarelli
et al., 2000). Spike shape is a good predictor of a number
of yield traits in wheat (Gaju et al., 2009), and its evaluation
was higly concordant among genders and locations (Figure S3).
Although extremely valuable to farmers, yield could not be
scored during the open field evaluation: spike was the FT most
closely matching it, as shown by its high correlation with yield
(Figure S1, Table S2). Whilst seeds per spike (SPS) and spike
length (SPL) have clear visual clues on the spike, thousand
grain weight (TGW) does not. However, farmers proved to be
knowledgeable in identifying several MTAs overlapping TGW
putative QTL (Figure 2A). Although some of the spike related
traits showed some inflation (Figure S4), a few clear MTAs
are consistent in the spike FT and MTs alike. The genotype
by environment interaction can alter QTL effects (Boer et al.,
2007) and hamper their identification through MTAs even
though traits are segregating in single locations, as it is in
our case (Table S1). In some cases, a combined analysis over
the two locations was necessary to detect MTAs that could
not be identified with location-specific MT values. Strikingly,
local farmer scores were able to pick up some of these MTAs
(Figure 2A). This is the case, for example, of the MTA on
Chr 1A for Geregera spike morphology FT and for combined

measures of TGW. Farmers were able to detect similar MTAs
on Chr 2A and Chr 4A for TGW and SPS, respectively
(Figure 2A). Farmers’ traditional knowledge, elicited through
FTs, is the result of their past field experiences: unlike metric
values, it builds on the time dimension, considering altogether
the field conditions over time under which genotypes were
grown.

Although tightly linked to overall evaluation (Figure S1), spike
morphology is not the sole trait contributing to it, thus the
two traits provide only partially overlapping MTAs (Figure 2).
The measure of grain yield combined over locations identify an
MTA on Chr 5B with clear overlap to overall FT signals in both
locations. This MTA co-maps with an MTA for SPS and spike
FT, and confirms the importance of production in determining
the desirability of a genotype. The overall score summarizes the
farmer’s view of the value of the variety and potentially his or
her willingness to invest resources in growing it. When providing
an overall evaluation of the plot, farmers were simultaneously
scoring and weighting a multitude of traits, probably exceeding
those measured in MTs. This possibly contributes to the poor
overlap between MTAs deriving from the overall evaluation and
those deriving from the PCA conducted on MTs (Figure 3).
When compared within locations, however, MTAs deriving from
MT-PCs were clearly overlapping with the overall FT. This is
especially true in Geregera, where all but four MTAs identified by
the farmers were also detected by theMT-PC1 deriving fromMTs
(Figure S13). This suggests that farmers’ overall evaluation, that
is independent from the metric measures collected, can indeed
provide a synthetic evaluation of the many traits that make up a
wheat ideotype according to farmers. The combination of traits
inducing farmers’ appreciation is determined by their traditional
knowledge, and it is hardly ascribable to categorical metric
phenotypes: smallholder farmers’ overall evaluation depends at
all times on their environmental and cultural background, and
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is likely influenced by metric as well as qualitative traits beyond
those measured in this study.

Although both men and women farmers were chosen because
they were wheat growers, we found that different genders
may evaluate FTs differently. The women groups provided
more skewed and varied evaluations for all FT, especially in
Hagreselam (Figure S7), possibly lowering their MTA detection
power (Table S1) and resulting in less putative QTL identified
as compared with male farmers. It is likely that women and
men differently evaluate wheat traits, especially in regards to
quality vs. productivity (Defoer et al., 1997; Assefa et al., 2014).
This may contribute to the discrepancy we observed in FTs
evaluated between genders. In fact, even though farmers cannot
evaluate quality traits while in the field, they may select for
spikes and plants resembling those that in their past experience
provided good flour for specific food and drink preparations.
Further studies extending the spectrum ofmeasured FTs andMTs
beyond field traits are needed to explore genetic basis of farmers’
perception of quality traits and its relation to farmers’ choice of
materials.

In the present study each farming community evaluated only
one field for one year, hence we could not perform a detailed
study over genotype by environment interactions. However, the
high correlation among traits across locations (Table S2) and the
overlap of putative QTL deriving from MTs and FTs collected
across locations (Table S8) support the relevance of the MTAs we
identified. As the number of MTA per putative QTL increases,
so does the overlap of putative QTL identified by MTs and
FTs (Figure S11). This is likely contributed by local regions
of higher LD extent increasing the span of the significance
interval identified by MTAs. Interestingly, most of putative QTL
identified by MTs are also detected by FTs. This finding, joined
with the high phenotyping variance explained by some of the FT
MTAs (Table S9), further supports the use of smallholder farmers
evaluations as mean to identify genomic loci relevant for marker
assisted breeding.

The detailed discussion of the putative QTL we identified is
beyond the aims of this study. Several reasons prevent us from
doing so. Although a gold standard for wheat genotyping, the
genomic coverage provided by the 90,000 markers employed
(Wang S. et al., 2014) is still sparse on the vast wheat genome.
At the same time, the uniqueness of Ethiopian wheat (Mengistu
et al., 2016) puts the panel employed aside the literature already
existing on the topic. After the release of draft genome sequences
(Brenchley et al., 2012; Mayer et al., 2014), more advanced
genomic tools are being developed for durum and bread wheat
alike, and will allow the finer dissection of putative QTL and
guide the identification of candidate regions. In particular, the
study of genotype by environment interaction of FT evaluations
will allow to better characterize the relevance of the putative
QTL we identified in a breeding perspective. It should be
noted that smallholder farmers typically grow mixtures of
genotypes to better cope with unpredictable adverse growing
conditions. Indeed landraces are typically heterogeneous. Further
studies exploring the variability of germplasm maintained
in situ are needed to better understand the relationship of
farmers’ choice and genetic diversity in their fields, so to

better exploit the functional diversity found within traditional
materials.

Our survey highlights that smallholder farmers’ evaluations
are consistent and target measurable quantities. Because of this,
farmers are capable of identifyingMTAs for traits of their interest
through FTs, in some cases in a gender and locality-dependent
way. In many other cases, trans-location farmers’ MTAs are
independently targeted, and elude our classical phenotyping. Our
results show that it is feasible to involve farming communities
to directly evaluate broad collections of genotypes using a
selected set of summary traits previously agreed. In fact, during
the 2016 growing season, with an effort requiring 2 weeks of
field work, smallholder farmers from a third community in the
Amhara region of Ethiopia evaluated 1,200 recombinant inbred
lines we produced from the diversity panel here employed.
By scaling up the approaches here introduced, we aim to
speed up the genetic gain in breeding targeting smallholder
farming systems. We advocate the employment of our method
in different genotypes and crops, agro-ecologies, and smallholder
farming communities to connect participatory variety selection
to modern plant breeding, ultimately allowing the production of
MVs more closely addressing smallholder farmers’ needs. The
current and upcoming genomic tools enable breeding to take
advantage of the unique knowledge that smallholder farmers have
gathered in thousands of years of cropping of available genetic
resources: traditional knowledge coming from the past could
propel the breeding of the future.
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