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Abstract

We investigate the behaviour of the well-known HEGY (Hylleberg, Engle, Granger and Yoo, 1990,

Journal of Econometrics, vol.44, pp.215–238) regression-based seasonal unit root tests in cases where

the driving shocks can display periodic non-stationary volatility and conditional heteroskedasticity.

Our set up allows for periodic heteroskedasticity, non-stationary volatility and (seasonal) GARCH

as special cases. We show that the limiting null distributions of the HEGY tests depend, in

general, on nuisance parameters which derive from the underlying volatility process. Monte Carlo

simulations show that the standard HEGY tests can be substantially over-sized in the presence of

such effects. As a consequence, we propose wild bootstrap implementations of the HEGY tests.

Two possible wild bootstrap re-sampling schemes are discussed, both of which are shown to deliver

asymptotically pivotal inference under our general conditions on the shocks. Simulation evidence

is presented which suggests that our proposed bootstrap tests perform well in practice, largely

correcting the size problems seen with the standard HEGY tests even under extreme patterns of

heteroskedasticity, yet not losing finite sample relative to the standard HEGY tests.

Keywords: seasonal unit roots, (periodic) non-stationary volatility, conditional heteroskedasticity,

wild bootstrap.

JEL Codes: C12, C22.

1 Introduction

Over the last three decades, a debate has been conducted in the literature as to whether the within-

year variations in seasonally observed time series processes are deterministic or attributable to unit

∗We thank the Editor, Essie Massoumi, an Associate Editor and two anonymous referees for their helpful and construc-

tive comments on earlier versions of this paper. Cavaliere and Taylor thank the Danish Council for Independent Research,

Sapere Aude | DFF Advanced Grant (Grant nr: 12-124980) for financial support. Correspondence to: Robert Taylor,

Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK. Email: rtaylor@essex.ac.uk
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roots at the seasonal frequency components of the data. This question is important because incorrect

modelling of the seasonality has serious implications for the statistical validity of any subsequent

procedures. Moreover, most available seasonally adjusted data are based on filtering methods which

imply the application of seasonal differencing to the data. If the data do not contain seasonal unit

roots then the resulting seasonally adjusted data will contain moving average unit roots, rendering

standard autoregressive modelling methods invalid. In order to formally investigate this issue, in

the seminal paper in this literature, Hylleberg, Engle, Granger and Yoo (1990) [HEGY] propose a

seasonal generalisation of the augmented Dickey-Fuller [ADF] unit root test under the assumption of

homoskedastic innovations. This procedure allows the practitioner to test for unit root behaviour at

each of the zero and seasonal frequency components of the data, either separately or via a joint test.

A large body of recent applied work has grown suggesting that the assumption of constant uncon-

ditional volatility is at odds with what is observed in time series data for many macroeconomic and

financial series. In particular, a general decline in the unconditional volatility of the shocks driving

macroeconomic series in the twenty years or so leading up to the recent financial crisis has been a

relatively commonly observed phenomenon. This feature is known as the “great moderation”; see,

inter alia, Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Sensier and van Dijk (2004),

and references therein. In the non-seasonal case it is well documented that permanent changes in

volatility (so that the volatility process becomes non-stationary) of this form can considerably impact

upon unit root and co-integration tests. In particular, Cavaliere (2004), Cavaliere and Taylor (2007,

2008a,b) and Beare (2008), among others, show that the limiting distributions of widely used unit

root test statistics, such as ADF statistics, depend on a particular function, the so-called variance

profile, of the underlying volatility process which leads to tests which are incorrectly sized, even in the

limit. A number of possible solutions to this inference problem have been proposed. Arguably most

successfully, Cavaliere and Taylor (2008a) propose wild bootstrap implementations of standard unit

root tests which they show to correctly replicate the limiting null distribution of the original statistics,

thereby yielding asymptotically pivotal unit root inference under non-stationary volatility.

Since the seminal study of HEGY, seasonal unit root testing has received a large amount of atten-

tion in the literature. Recent contributions include del Barrio Castro et al. (2012, 2016), Rodrigues

and Taylor (2007), Rodrigues and Taylor (2004) and Smith et al. (2009). However, few studies have

considered the influence of heteroskedasticity on the HEGY tests. A leading exception is Burridge and

Taylor (2001a) who focus attention on the impact of periodic (or seasonal) heteroskedasticity [here-

after, PH] in the innovations on the HEGY tests. PH occurs where the unconditional variance of the

innovations in any given season is constant across years, but varies across seasons. Under the seasonal

unit root null hypothesis, Burridge and Taylor (2001a) demonstrate that the limiting distributions of

the tests for zero and Nyquist frequency unit roots are unaffected by PH. However, they show this

is not the case for tests for unit roots at the harmonic seasonal frequencies, or any joint frequency

tests which involve the harmonic frequency. In response to this problem, Burridge and Taylor (2004)

propose an i.i.d. bootstrap implementation of the HEGY seasonal unit root tests, based on i.i.d. re-

sampling (with replacement) separately for each season from the residuals from the estimated HEGY
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regression. While this approach delivers asymptotically valid tests under PH, it will not be valid under

the more non-stationary volatility framework discussed in the context of non-seasonal unit root testing

above. More recently, Zou and Politis (2016) have proposed further i.i.d. bootstrap implementations

of augmented HEGY tests as well as block bootstrap implementations of unaugmented HEGY tests

and shown their validity under PH (also allowing for conditional heteroskedasticity). They do not,

however, allow for periodic non-stationary volatility as considered here.

Our aim in this paper is to generalise the approach of Cavaliere and Taylor (2008a) to the seasonal

context. In particular, we will adopt a periodic non-stationary volatility set-up which includes both

the form of PH considered in Burridge and Taylor (2001a) and the non-stationary volatility set-up of,

inter alia, Cavaliere and Taylor (2008a) as special cases. Indeed, under our set-up both can occur,

such that the relative pattern of PH between the seasons could change across the sample. Our set-up

also allows for conditional heteroskedasticity in the innovations. Under our periodic non-stationary

volatility set-up we first derive the large sample behaviour of the HEGY seasonal unit root tests

demonstrating that these are not, in general, pivotal depending on nuisance parameters arising from

the heteroskedasticity present in the innovations. We show that asymptotically pivotal inference under

the periodic non-stationary volatility set-up we consider can however be attained using wild bootstrap

based implementations of the HEGY tests. We suggest two possible, asymptotically equivalent, wild

bootstrap re-sampling schemes, the first a conventional wild bootstrap device whereby each residual

from the fitted HEGY regression is multiplied by a different external random variable, and the second

a seasonal block wild device whereby within a given year each residual from the fitted HEGY regression

is multiplied by the same wild bootstrap shock. Monte Carlo simulations for a variety of (periodic)

non-constant volatility models suggest that the wild bootstrap HEGY tests perform very well in

practice with only small finite sample differences between the two wild bootstrap schemes. We also

outline how the re-scaled information-based lag length selection methods of Cavaliere et al. (2015)

can be adapted to the seasonal unit root testing case.

The outline of the remainder of the paper is as follows. In section 2 the heteroskedastic seasonal

model and the underlying assumptions we make concerning it are outlined. In section 3 the seasonal

unit root hypotheses of concern and the associated HEGY tests are detailed. Here we also detail the

limiting null distributions of the HEGY tests under the periodic non-constant volatility formulation

we adopt in this paper. The wild bootstrap algorithm (based on either of the two re-sampling devices

discussed above) and the limiting distributions of the associated wild bootstrap HEGY statistics

are detailed in section 4. Section 5 presents the results of our Monte Carlo study into the relative

finite sample size and power properties of the HEGY tests and our proposed wild bootstrap HEGY

tests. Results are presented in the main text for the conventional wild bootstrap re-sampling device,

with the corresponding results for the seasonal block wild re-sampling device reported in an on-line

supplementary appendix. Lag length selection in the context of the HEGY regression is also discussed

in section 5. Section 6 concludes. Mathematical proofs are reported in the supplementary appendix.
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2 The Heteroskedastic Seasonal Model

Consider the univariate seasonal time series {xSn+s}, which satisfies the data generating process [DGP]

α(L)xSn+s = uSn+s, s = 1− S, . . . , 0, n = 2, . . . , N, (1)

φ(L)uSn+s = εSn+s (2)

εSn+s = σSn+seSn+s (3)

where S denotes the number of seasons, α(L) = 1−
∑S

j=1 αjL
j is an S-order autoregressive polynomial,

φ(L) = 1 −
∑p

j=1 φjL
j is a pth order autoregressive polynomial, L is the lag operator such that

LSj+kySn+s = yS(n−j)+s−k. The total sample size is T := SN , N representing the total number of

seasonal cycles (eg years) completed. For simplicity we will refer to a complete seasonal cycle as a year

in what follows. For the present we follow Rodrigues and Taylor (2007) and assume that the initial

conditions, x1, ..., xS , are of op(N
1/2); relaxation of this condition is discussed in Remark 11, below.

Consider the vector-of-seasons innovation process {En} where En := (εSn−(S−1), εSn−(S−2), . . . , εSn)′,

n = 1, ..., N . We then assume that {En} satisfies the following assumption, which is a special case of

Assumption 2 of Boswijk et al. (2016).

Assumption 1 The innovation process {En} satisfies En := ΩnEn, where En := diag{eSn−(S−1), ..., eSn}
and Ωn := diag{σSn−(S−1), ..., σSn} is an S×S non-stochastic matrix which satisfies Ωn := Ω (n/N) :=

diag{σ1−S(n/N), ..., σ0(n/N)} for all n = 1, ..., N , where Ω (·) ∈DRS×S [0, 1], where DRm×n [0, 1] is used

to denote the space of m×n real matrices of càdlàg functions on [0, 1], and Υ(u) := Ω (u) Ω (u)′ is as-

sumed to be positive definite for all u ∈ [0, 1]; the innovations {eSn+s} form a martingale difference se-

quence [MDS] with respect to the filtration FSn+s = σ (ε1, ..., εSn+s) with conditional variance hSn+s :=

E(e2
Sn+s|FSn+s−1), satisfying supn,sE

(
e4r
Sn+s

)
<∞ for some r > 1, and N−1

∑N
n=1 hSn+s

p→ E (hSn+s) =

1, s = 1− S, ..., 0, where
p→ denotes convergence in probability as N →∞.

Remark 1 A consequence of Assumption 1 is that En is an S-dimensional vector MDS with respect

to FSn := FSn, with conditional variance matrix Υn|n−1 := E(EnE ′n|FSn−1) = ΩnhnΩ
′
n, where hn :=

E(EnE
′
n|FSn−1), and time-varying unconditional variance matrix Υn := E(EnE ′n) = ΩnΩ

′
n > 0.1

As such, Assumption 1 combines both stationary conditional heteroskedasticity and non-stationary

unconditional volatility. These are obtained in isolation of each other as special cases with Ω (u) = Ω

(constant unconditional variance, and hence only conditional heteroskedasticity) and hn = IS (so

that Υn|n−1 = Υn = Υ(n/N), allowing only unconditional non-stationary volatility). As discussed

in Cavaliere et al. (2010), the latter implies that the elements of Υn are only required to be non-

stochastic, bounded and to display a countable number of jumps, therefore allowing for an extremely

1The condition imposed by Assumption 1 that E (hSn+s) = 1, implies that E(EnE′n) = IS , where Ik denotes the

k × k identity matrix. This restriction entails no loss of generality, however, because the leading diagonal elements of

Ωn are unrestricted, and is made only to simplify notation. In particular, any En = ΩnEn satisfying Assumption 1 with

E(EnE′n) = Ξ, where Ξ is diagonal, can also be expressed as En = Ω̃nẼn with E(ẼnẼ′n) = IS and Ω̃n := ΩnΞ−1/2,

where both Ẽn and Ω̃n satisfy Assumption 1.
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wide class of potential models for the behaviour of the variance matrix of En including single or multiple

variance shifts, variances which follow a broken trend, and smooth transition variance shifts. The

former allows for a wide range of conditionally heteroskedastic processes including stochastic volatility

and generalised autoregressive-conditional heteroskedasticity (GARCH) processes; see Boswijk et al.

(2016) for further discussion. �

Remark 2 Assumption 1 allows for the case where time-varying behaviour occurs in either some or

all of the seasons; for example the innovation variance in the first season might display a single break

at some point in the sample, but the innovation variance in the remaining seasons need not display

a break. The pattern of PH across seasons is also permitted to change through the sample under

Assumption 1, allowing for example the case where PH is absent in some parts of the sample but

present in others. Notice the case where Ωn := diag{σ(1−S), . . . , σ0} and hn = IS , corresponds to

the particular PH case considered in Burridge and Taylor (2001a), while Ωn := σIS and hn = IS ,

n = 1, ..., N , corresponds to the (conditionally and, hence, unconditionally) homoskedastic case. �

To complete the assumptions needed on ut, we place the following conditions on φ(L) in (2).

Assumption 2 The pth order lag polynomial φ(z) satisfies: (a) 0 ≤ p <∞, and (b) φ(z) 6= 0 for all

|z| ≤ 1.

Remark 3 Assumption 2, which imposes that φ(z) is a stationary finite-order polynomial, is standard

in this literature and coincides with Assumption 3.1(c) of Burridge and Taylor (2001a). Assumption

2 guarantees that φ(z) has the unique inverse ψ(z) := 1 +
∑∞

j=1 ψjz
j . �

Remark 4 Our focus in this paper is on developing wild bootstrap implementations of parametric

lag-augmented HEGY tests which are asymptotically valid under Assumption 1. Accordingly, weak

dependence in {uSn+s} is specified parametrically. An alternative approach is considered in Zou

and Politis (2016) for the case where {En} is instead formulated as a strong mixing process. For

this case, Zou and Politis (2016) develop seasonal block bootstrap implementations of the HEGY

tests which obtain from an un-augmented HEGY regression, corresponding to equation (9) below but

with the lagged dependent variables, {∆SxSn+s−j}pj=1, omitted from the set of regressors. Under the

usual condition that the block length increases with the sample size, they demonstrate the asymptotic

validity of these block bootstrap tests under conditions which crucially do not allow for non-stationary

volatility; that is, Ωn must be time-invariant for the asymptotic validity of the block bootstrap HEGY

tests of Zou and Politis (2016) to hold. �

3 Seasonal Unit Root Testing

3.1 Seasonal Unit Root Hypotheses

Our aim in this paper is to test for seasonal unit roots in α(L) polynomial in (1). That is, the null

hypothesis of interest is

H0 : α(z) = 1− zS =: ∆S . (4)
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As detailed in Smith et al. (2009), the Sth order polynomial a(L) can be factorised as α(L) =∏bS/2c
k=0 ωk(L), b·c denoting the integer part of its argument, where: ω0(L) := (1−α0L) associates the

parameter α0 with the zero frequency ω0 := 0, ωk(L) := [1− 2(αk cosωk − βk sinωk)L+ (α2
k + β2

k)L
2]

corresponds to the conjugate (harmonic) seasonal frequencies (ωk, 2π − ωk), ωk = 2πk/S, with the

associated parameters αk and βk, k = 1, . . . , S∗, S∗ := b(S − 1)/2c, and, for S even, ωS/2(L) :=

(1+αS/2L) associates the parameter αS/2 with the Nyquist frequency ωS/2 := π.2 The null hypothesis

in (4) can therefore be partitioned as H0 = ∩bS/2ck=0 H0,k, where

H0,0 : α0 = 1, H0,S/2 : αS/2 = 1, (5)

H0,k : αk = 1, βk = 0, k = 1, . . . , S∗. (6)

The hypothesis H0,0 corresponds to a unit root at the zero frequency, H0,S/2 corresponds to a unit

root at the Nyquist frequency, while H0,k corresponds to a pair of complex conjugate unit roots at the

k-th harmonic seasonal frequency pair. The alternative hypothesis of stationarity at one or more of

the zero or seasonal frequencies is given by H1 = ∪bS/2ck=0 H1,k, where

H1,0 : |α0| < 1, H1,S/2 : |αS/2| < 1, (7)

H1,k : α2
k + β2

k < 1, k = 1, . . . , S∗. (8)

Cf. Smith et al. (2009).

3.2 Augmented HEGY Tests

Expanding the composite AR(p + S) polynomial φ∗(z) := α(z)φ(z) around the zero and seasonal

frequency unit roots exp(±i2πk/S), k = 0, ..., bS/2c, we obtain the auxiliary HEGY regression,

∆SxSn+s = π0x0,Sn+s−1 + πS/2xS/2,Sn+s−1 +
S∗∑
k=1

(πα,kx
α
k,Sn+s−1 + πβ,kx

β
k,Sn+s−1)

+

p∑
j=1

φ∗j∆SxSn+s−j + εSn+s, (9)

where the regressors are defined as, x0,Sn+s :=
∑S−1

j=0 xSn+s−j , xS/2,Sn+s :=
∑S−1

j=0 cos[(j + 1)π]xSn+s−j ,

and xαk,Sn+s :=
∑S−1

j=0 cos[(j + 1)ωk]xSn+s−j , and xβk,Sn+s := −
∑S−1

j=0 sin[(j + 1)ωk]xSn+s−j , in each

case for k = 1, . . . , S∗; cf. Proposition 1 of Smith et al. (2009, p.533). Notice that (9) is an unre-

stricted re-parameterisation of (1)-(2). In what follows we assume that the practitioner has available

the sample observations {x1, ....xT } so that (9) may be treated as being estimated along the single

index t = S + 1 + p, ..., T .

Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that π0 = 0, πS/2 = 0 and

πα,k = πβ,k = 0, k = 1, . . . , S∗, respectively, in (9); see Smith et al. (2009). Consequently, tests for

2In what follows, it is understood that terms relating to frequency π are to be omitted when S is odd and that where

reference is made to the Nyquist frequency this is understood only to apply where S is even.
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the presence or otherwise of a unit root at the zero and Nyquist frequencies are conventional lower-tail

t-tests, denoted by t0 and tS/2 for the exclusion of x0,Sn+s−1 and xS/2,Sn+s−1, respectively, from (9).

Similarly, the hypothesis of a pair of complex unit roots at the kth harmonic seasonal frequency may

be tested by the (upper-tailed) regression F -test, denoted Fk, for the exclusion of both xαk,Sn+s−1 and

xβk,Sn+s−1 from (9). Ghysels et al. (1994) also consider the joint frequency (upper-tail) regression

F -tests from (9), F1...bS/2c for the exclusion of xS/2,Sn+s−1, {xαj,Sn+s−1}S
∗

j=1 and {xβj,Sn+s−1}S
∗

j=1, and

F0...bS/2c for the exclusion of x0,Sn+s−1, xS/2,Sn+s−1, {xαj,Sn+s−1}S
∗

j=1 and {xβj,Sn+s−1}S
∗

j=1. The former

tests the null hypothesis of unit roots at all of the seasonal frequencies, ∩bS/2ck=1 H0,k, whereas the latter

tests the overall null hypothesis, H0 of (4). Implementation of these tests, including relevant critical

values, has been considered in, inter alia, HEGY, Smith et al. (2009) and Ghysels et al. (1994).

In order to obtain representations for the asymptotic null distributions of the HEGY tests outlined

above from (9) when the volatility process satisfies Assumption 3 we first rewrite the xSn+s in vector-

of-seasons form, as is done in, inter alia, Burridge and Taylor (2001a,b), Smith et al. (2009), and del

Barrio Castro et al. (2012) [hereafter, BCOT]. Under H0 of (4), the vector-of-seasons representation

for xSn+s is given by

Xn = Xn−1 + Un, n = 2, . . . , N, (10)

where we have defined Xn := [xSn−(S−1), xSn−(S−2), . . . , xSn]′ and Un := [uSn−(S−1), uSn−(S−2), . . . , uSn]′,

n = 1, . . . , N , and where the vector error process Un satisfies the vector MA(∞) representation

Un =
∞∑
j=0

ΨjEn−j , (11)

where the (S × S) matrices Ψj are defined as

Ψ0 :=



1 0 0 0 . . . 0

ψ1 1 0 0 . . . 0

ψ2 ψ1 1 0 . . . 0

ψ3 ψ2 ψ1 1 . . . 0
...

...
...

...
. . .

...

ψS−1 ψS−2 ψS−3 ψS−4 . . . 1


and

Ψj :=



ψjS ψjS−1 ψjS−2 ψjS−3 . . . ψjS−(S−1)

ψjS+1 ψjS ψjS−1 ψjS−2 . . . ψjS−(S−2)

ψjS+2 ψjS+1 ψjS ψjS−1 . . . ψjS−(S−3)

ψjS+3 ψjS+2 ψjS+1 ψjS . . . ψjS−(S−4)
...

...
...

...
. . .

...

ψjS+S−1 ψjS+S−2 ψjS+S−3 ψjS+S−4 . . . ψjS


, j = 1, 2, ....

where ψj , j = 1, 2, . . . , are the MA coefficients from the inverse of ψ(z); see Remark 3.

The following Lemma extends the multivariate invariance principle from Burridge and Taylor

(2001a) to the case where the innovations display non-stationary volatility.
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Lemma 1 Let Xn be generated by (10)-(11). Then, under Assumptions 1 and 2, in DRm×n [0, 1]

N−1/2Xb·Nc ⇒ Ψ(1)M(·), (12)

where “⇒” denotes weak convergence as N → ∞, Ψ(1) :=
∑∞

j=0 Ψj, and M(·) :=
∫ ·

0 Ω(u)dW(u)

is an S-variate continuous martingale, with W(·) := (W1−S(·), ...,W0(·))′ an S-dimensional standard

Brownian motion process.

Remark 5 The result in Lemma 1 shows that in contrast to the form of PH considered in Burridge

and Taylor (2001a) - where the seasonal variances can vary across seasons, but not across years -

the scaled vector-of-seasons data does not converge in the limit under the seasonal unit root null

hypothesis to a vector Brownian motion; rather, it converges to a process with increments which,

although still independent, are no longer identically distributed through time. More specifically, the

limiting process M(·) is a continuous martingale with spot volatility Ω(·) and integrated covariation

equal to Σ(·) :=
∫ ·

0 Ω(u)Ω(u)′du; cf. Shephard (2005). �

Remark 6 Following the discussion in Cavaliere et al. (2010, Remark 2.6), the diagonality of Ωn

implies that the limiting process M(·) can be written as a vector variance-transformed Brownian

motion on [0, 1] with independent elements; see Davidson (1994, pp.486-492). In particular, in this case

we have that M(·) =
[
σ̄1−SWη1−S ,1−S(·)), . . . , σ̄0Wη0,0(·)

]′
, where Wηs,s(·) = Ws(ηs(·)), with ηs(·) :=

σ̄−2
s

∫ ·
0 σs(r)

2dr, σ̄s := (
∫ 1

0 σs(r)
2dr)1/2, s = 1−S, ..., 0, and where {Ws(·)}0s=1−S , are the independent

standard Brownian motions defined in Lemma 1. The limiting processes {Ws(ηs(·))}0s=1−S are a

set of S (seasonally indexed) independent scalar variance-transformed Brownian motions (Brownian

motions under a modification of the time domain) with directing processes ηs(·); see, inter alia,

Cavaliere and Taylor (2007, p.924) for further discussion on variance transformed Brownian motions.

For the form of PH considered in Burridge and Taylor (2001a), this simplifies further to M(·) =

[σ1−SW1−S(·), . . . , σ0W0(·)]′. �

Using Lemma 1 we are now in a position to detail the asymptotic null distributions of the HEGY

test statistics from (9) under the very general form of heteroskedasticity allowed under Assumption 1.

These results are collected together in Proposition 1.

Proposition 1 Let the conditions of Lemma 1 hold. The statistics t0, tS/2, Fk, k = 1, . . . , S∗,

F1...bS/2c and F0...bS/2c then satisfy, as N →∞, the following weak convergence results:

ti ⇒ ς i(ϕi{c′0Σ(1)c0}/S)−1/2 =: ξη,i, i = 0, S/2,

Fk ⇒
S

2ϕk{c′0Σ(1)c0}

[
(ςαk )2 + (ςβk)2

]
=: ξη,k, k = 1, . . . , S∗,

F1...bS/2c ⇒
1

S − 1

(
ξ2
η,S/2 + 2

S∗∑
k=1

ξη,k

)
=: ξη,1...bS/2c,
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F0...bS/2c ⇒
1

S

(
ξ2
η,0 + ξ2

η,S/2 + 2
S∗∑
k=1

ξη,k

)
=: ξη,0...bS/2c,

where

ς i :=
1

S
c′iQ

∗
1ci, i = 0, S/2,

ςαk :=
1

S

[
c′kQ

∗
1ck + c̃′kQ

∗
1c̃k
]
, ςβk :=

1

S

[
c′kQ

∗
1c̃k − c̃′kQ∗1ck

]
, k = 1, . . . , S∗,

ϕi :=
1

S
c′iQ

∗
2ci, i = 0, S/2, ϕk :=

1

2S

[
c′kQ

∗
2ck + c̃′kQ

∗
2c̃k
]
, k = 1, . . . , S∗,

Q∗1 :=

∫ 1

0
M(r)dM(r)′, Q∗2 :=

∫ 1

0
M(r)M(r)′dr

and the (mutually orthogonal) selection vectors are defined as c0 := [1, 1, 1, . . . , 1]′, cS/2 := [1,−1, 1,−1 . . . , 1]′,

ck := [cos(ωk[1− S]), cos(ωk[2− S]), . . . , cos(0)]′ and c̃k := [sin(ωk[1− S]), sin(ωk[2− S]), . . . , sin(0)]′,

k = 1, . . . , S∗.

The following corollary of Proposition 1 gives alternative representations for the limiting null

distributions of the HEGY statistics which appear therein. These representations are useful in that

they can be naturally related back to existing large sample results in this literature. Some remarks

about these limiting null distributions follow the corollary.

Corollary 1 Let the conditions of Lemma 1 hold. The statistics t0, tS/2, Fk, k = 1, . . . , S∗, F1...bS/2c

and F0...bS/2c then have the following asymptotic distributions:

ti ⇒
∫ 1

0 Bη,i(r)dBη,i(r)√∫ 1
0 B

2
η,i(r)dr

=: ξη,i, i = 0, S/2, Fk ⇒
1

2

[
(ξαk )2 + (ξβk)2

]
=: ξη,k, k = 1, . . . , S∗,

F1...bS/2c ⇒
1

S − 1

(
ξ2
η,S/2 + 2

S∗∑
k=1

ξη,k

)
=: ξη,1...bS/2c, F0...bS/2c ⇒

1

S

(
ξ2
η,0 + ξ2

η,S/2 + 2
S∗∑
k=1

ξη,k

)
=: ξη,0...bS/2c,

where

ξαk :=
1
S {c

′
kΣ(1)ck}

∫ 1
0 Bη,k(r)dBη,k(r) + 1

S {c̃
′
kΣ(1)c̃k}

∫ 1
0 B

∗
η,k(r)dB

∗
η,k(r)[

1
2S {c

′
kΣ(1)ck}

∫ 1
0 B

2
η,k(r)dr + 1

2S {c̃
′
kΣ(1)c̃k}

∫ 1
0 B

∗2
η,k(r)dr

]1/2
[{c′0Σ(1)c0}/S]1/2

, k = 1, . . . , S∗,

ξβk :=

1
S {c

′
kΣ(1)ck}1/2{c̃′kΣ(1)c̃k}1/2

[∫ 1
0 Bη,k(r)dB

∗
η,k(r)−

∫ 1
0 B

∗
η,k(r)dBη,k(r)

]
[

1
2S {c

′
kΣ(1)ck}

∫ 1
0 B

2
η,k(r)dr + 1

2S {c̃
′
kΣ(1)c̃k}

∫ 1
0 B

∗2
η,k(r)dr

]1/2
[{c′0Σ(1)c0}/S]1/2

, k = 1, . . . , S∗,

and where

Bη,i(·) :=
(
c′iΣ(1)ci

)−1/2
c′iM(·), i = 0, S/2,

Bη,k(·) :=
(
c′kΣ(1)ck

)−1/2
c′kM(·), B∗η,k(·) :=

(
c̃′kΣ(1)c̃k

)−1/2
c̃′kM(·), k = 1, . . . , S∗

are a set of S mutually independent (normalised) variance-transformed Brownian motion processes ob-

tained via the (mutually orthogonal) selection vectors c0 := [1, 1, 1, . . . , 1]′, cS/2 := [1,−1, 1,−1 . . . , 1]′,

ck := [cos(ωk[1− S]), cos(ωk[2− S]), . . . , cos(0)]′ and c̃k := [sin(ωk[1− S]), sin(ωk[2− S]), . . . , sin(0)]′,

k = 1, . . . , S∗.
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Remark 7 The representations given in Proposition 1 for the limiting null distributions of the t0

and tS/2 statistics are mutually independent and independent of those for Fk, k = 1, ..., S∗, which are

also mutually independent across k = 1, ..., S∗. For given variance profiles, the representations for

the t0 and tS/2 statistics have the same functional form as those for the limiting null distribution of

the non-seasonal MZt statistic (which coincides with that of the familiar augmented Dickey-Fuller

statistic) in Theorem 1 of Cavaliere and Taylor (2007, p.924) for the case where no detrending is

performed. This equivalence also holds when detrending is performed; see Remark 11. The limiting

null distributions of the t0, tS/2, Fk, k = 1, ..., S∗, F1...bS/2c and F0...bS/2c statistics are also seen to be

free of any weak dependence nuisance parameters arising from the stationary lag polynomial φ(z). �

Remark 8 The variance profile, η0(r) say, which characterises the zero frequency variance trans-

formed Brownian motion Bη,0(r) in the representation for the limiting null distribution of the t0

statistic in Proposition 1 can be seen to constitute the average limit taken across s = 1 − S, ..., 0 of

the finite sample analogues, say ηN,s(r) := (N−1
∑brNc

n=1 σ2
Sn+s)/(N

−1
∑N

n=1 σ
2
Sn+s), of the seasonal

variance profiles, ηs(r), s = 1 − S, ..., 0, which characterise the seasonally identified variance trans-

formed Brownian motions Wηs,s(r) = Ws(ηs(r)), s = 1−S, . . . , 0, defined in Remark 6. Consequently,

changes in the seasonal variances which are smoothed out in large samples by taking the average over

S consecutive observations will not affect the limiting null distributions of the t0 statistic vis-à-vis the

homoskedastic case. An example of this occurs where σSn+s = as, s = 1−S, ..., 0 for n = 1, ..., bτNc−1,

τ ∈ (0, 1), but then undergoes a one-time break in each season at n = bτNc, switching to σSn+s = bs,

s = 1− S, ..., 0, n = bτNc, ..., N , but does so such that
∑0

s=1−S(a2
s − b2s) = 0. The same holds for the

tS/2 statistic, but not for the Fk, k = 1, . . . , S∗, F1...bS/2c and F0...bS/2c statistics. �

Remark 9 For the form of PH where Ωn = diag{σ1−S , ..., σ0}, the limiting distributions given in

Proposition 1 reduce, for the quarterly case S = 4, to those given in Corollary 3.1 of Burridge and

Taylor (2001a). Under this form of PH the average of the variances of the innovations when taken over

any S consecutive observations is constant through the sample. It therefore follows from the discussion

in Remark 8 that t0 and tS/2 have standard Dickey-Fuller limiting null distributions in this case; that

is, ti ⇒ (
∫ 1

0 BidBi)/(
∫ 1

0 B
2
i dr)

1/2, i = 0, S/2, with Bi(r), i = 0, S/2, mutually independent standard

Brownian motions. In the unconditionally homoskedastic case, where Ωn = σIS , the representations

given in Proposition 1 simplify to those given in Theorem 1 of Smith et al. (2009). Neither Burridge

and Taylor (2001a) nor Smith et al. (2009) allow for conditional heteroskedasticity in εt. �

Remark 10 The results stated in Proposition 1 pertain to the seasonal unit root null hypothesis, H0

of (4). Corresponding results under local alternatives of the form considered in Rodrigues and Taylor

(2007), where the parameters in the decomposition of a(L) given in section 3.1 are such that a0 =

(1+ν0/T ), aS/2 = (1+νS/2/T ), ak = (1+νk/T ) and βk = 0, k = 1, . . . , S∗, with ν0, ν1, . . . , νbS/2c finite

constants, can be obtained in similar fashion. In this case, the result in Lemma 1 holds on replacing the

elements of the vector process M(r), Wηs,s(r), s = 1−S, . . . , 0, by the corresponding diffusion process

Wηs,cs,s(r) :=
∫ r

0 exp(−cs(r − λ))dWηs,s(λ), s = 1− S, . . . , 0, where the season specific non-centrality
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parameters, cs, s = 1 − S, ..., 0, are derived from the νk, k = 0, ..., bS/2c frequency specific non-

centrality parameters. The representations given for the HEGY statistics in Theorem 5.1 of Rodrigues

and Taylor (2007) can then be shown to hold on replacing the standard Ornstein-Uhlenbeck processes

which feature there with the corresponding variance-transformed Ornstein-Uhlenbeck processes (which

are characterised by the same variance profiles as under H0) with non-centrality parameters c0, cS/2

and ck, k = 1, ..., S∗. As a consequence, both the asymptotic size and local power functions of the

HEGY tests are in general affected by non-constant volatility of the form considered in this paper (an

exception being the t0 and tS/2 tests in the PH case considered in Burridge and Taylor, 2001a). �

Remark 11 Thus far we have considered the case where the process {xSn+s} admits no deterministic

component. It is straightforward to extend the foregoing results to the case where the series contains

deterministic elements. To that end, consider the following generalisation of the DGP in (1)-(3):

ySn+s = µSn+s + xSn+s, s = 1− S, ..., 0, n = 1, . . . , N, (13)

with xSn+s in (13) as previously defined in (1)-(3) and where µSn+s := γ′ZSn+s where ZSn+s is purely

deterministic. Smith et al. (2009) present a typology of six cases of interest for µSn+s, namely: no

deterministic component (as considered above); non-seasonal intercept; non-seasonal intercept and

non-seasonal trend; seasonal intercepts; seasonal intercepts and non-seasonal trend, and seasonal

intercepts and seasonal trends. In order to yield tests which will be exact invariant (assuming µSn+s

is not under-specified) to the elements of γ which characterise the deterministic component µSn+s,

the HEGY regression in (9) must be constructed from appropriately de-trended data. This can either

be done using OLS de-trending, as in, for example, HEGY and Smith et al. (2009), or by local GLS

de-trending as in Rodrigues and Taylor (2007). Where a deterministic component is allowed for, define

the resulting de-trended data series as x̂Sn+s := xSn+s − γ̂′ZSn+s, the HEGY regression variables in

(9) are then constructed as before but from x̂Sn+s rather than xSn+s. It is important to notice, as

shown in Smith et al. (2009), that allowing for seasonal intercepts renders the resulting unit root

tests exact similar with respect to the initial conditions, x1, ..., xS . Where (9) is based on de-trended

data, the results given in this section still hold provided the variance transformed standard Brownian

motions, Bη,0(·), Bη,S/2(·), and Bη,k(·) and B∗η,k(·), k = 1, ..., S∗, are re-defined as appropriate to

the deterministic scenario of interest; cf. Sections 4.1-4.5 of Smith and Taylor (1998) for OLS de-

trending and Theorem 5.1 of Rodrigues and Taylor (2007, pp.559-560) for local GLS de-trending. As

an example, if de-trending is performed with respect to seasonal intercepts only then the variance

transformed standard Brownian motions above are all replaced by their demeaned analogues, so that

(for instance) Bη,0(r) is replaced by the process Bη,0−
∫ 1

0 Bη,0(u)du. The results discussed in Remarks

7-10 also remain apposite, mutatis mutandis. �

4 Wild Bootstrap HEGY Tests

As demonstrated in Proposition 1, heteroskedasticity of the form given under Assumption introduces

a time deformation aspect to the limiting distributions of the HEGY unit root statistics which alters
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their form vis-à-vis the homoskedastic case. Consequently, inference based on these statistics will

not be correctly sized (even asymptotically) if standard (homoskedastic) critical values are used. In

this section we propose wild bootstrap implementations of the HEGY tests and demonstrate that this

allows us to retrieve (asymptotically) correct p-values in the presence of both heteroskedasticity of

the form given in Assumption 1 and weak dependence in the shocks. Two possible, asymptotically

equivalent, wild bootstrap re-sampling devices are proposed.

4.1 The Seasonal Wild Bootstrap Algorithm

We first outline our proposed algorithm which draws on the wild bootstrap principle; see, inter alia,

Wu (1986).

Algorithm 1 (Wild Bootstrap HEGY Tests)

Step 1: Obtain the standard HEGY test statistics, t0, tS/2, Fj, j = 1, ..., S∗, F1...bS/2c

and F0...bS/2c, along with the corresponding OLS residuals, ε̂Sn+s, Sn + s = S + p +

1, . . . , T , from estimating the HEGY regression (9), constructed from either xSn+s

in the case where no deterministic component is allowed for, or x̂Sn+s where either

OLS or local GLS de-trending is employed to allow for the deterministic component

µSn+s := γ′ZSn+s; see Remark 11. Set ε̂Sn+s = 0 for Sn+s = 1, . . . , S+p, and define

the annual residual vectors Ên := [ε̂Sn−(S−1), ε̂Sn−(S−2), . . . , ε̂Sn]′, n = 1, . . . , N .

Either

Step 2a: Generate the vectors of wild bootstrap errors E∗n := [ε∗Sn−(S−1), ε
∗
Sn−(S−2), . . . , ε

∗
Sn]′,

whose elements are formed using a randomisation device of the form ε∗Sn+s := ε̂Sn+swSn+s,

Sn+ s = 1, . . . , T , where {wSn+s}TSn+s=1 denotes an i.i.d. sequence with E(wSn+s) =

0, E(w2
Sn+s) = 1 and E(w4

Sn+s) <∞.

Or

Step 2b: Generate E∗n according to the device E∗n = Ênwn, where {wn}Nn=1 denotes an i.i.d.

sequence with E(wn) = 0, E(w2
n) = 1 and E(w4

n) <∞.

Step 3: Construct the bootstrap sample data through the recursion

∆Sx
∗
Sn+s = ε∗Sn+s, n = 2, . . . , N, s = 1− S, . . . , 0,

initialized at y∗1 = · · · = y∗S = 0.

Step 4: Using the bootstrap sample, {x∗Sn+s}, compute the bootstrap HEGY statistics, denoted

t∗0, t∗S/2, F ∗j , j = 1, ..., S∗, F ∗1...bS/2c and F ∗0...bS/2c with an obvious notation, exactly as

was done for the original data in Step 1 (including any de-trending), for some fixed

lag length p∗ ≥ 0 in (9).

Step 5: Bootstrap p-values are then defined as: P ∗j,T := G∗j,T (tj), j = 0, S/2, P ∗j,T := 1 −
G∗j,T (Fj), j = 1, . . . , S∗, P ∗1...bS/2c,T := 1−G∗1...bS/2c,T (F1...bS/2c) and P ∗0...bS/2c,T := 1−
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G∗0...bS/2c,T (F0...bS/2c), where G∗k,T (·), k = 0, . . . , bS/2c, G∗1...bS/2c,T (·) and G∗0...bS/2c,T (·)
denote the conditional (on the original sample data) cumulative distribution functions

(cdf’s) of t∗0, F ∗j , j = 1, . . . , S∗, t∗S/2, F ∗1...bS/2c and F ∗0...bS/2c, respectively. In practice,

the cdf’s required here will be unknown, but can be approximated in the usual way

through numerical simulation.

Remark 12 Step 2a of Algorithm 1 employs a standard wild bootstrap re-sampling scheme, whereby

each residual from the estimated HEGY regression is multiplied by a different external random variable

wSn+s. In contrast, Step 2b employs a seasonal block wild bootstrap, whereby the same randomisation

device is employed for each season within a given year; that is, all of the residuals within year n are

multiplied by the same external scalar random variable, wn.3 As we will show below these two schemes

are asymptotically equivalent. Their finite sample properties will be explored in section 5. �

Remark 13 In Step 2 of Algorithm 1 it is the multiplicative factor, either wSn+s in Step 2a or wn in

Step 2b, that distinguishes the wild bootstrap HEGY tests we propose here from the corresponding

i.i.d. bootstrap HEGY tests of Burridge and Taylor (2014) and Zuo and Politis (2016), and from the

block bootstrap HEGY tests of Zuo and Politis (2016). This multiplicative factor serves to replicate

the pattern of heteroskedasticity present in the seasonal innovations in the bootstrap errors because,

conditionally on the original data, ε∗Sn+s has zero mean and variance ε̂2
Sn+s. This would not be

achieved by using either the i.i.d. or block bootstrap approaches mentioned above. �

4.2 Asymptotic Properties

In this section we discuss the asymptotic properties of the wild bootstrap HEGY unit root tests.

We show that under H0 of (4), and for any error process ut satisfying Assumptions 1 and 2, the

bootstrap HEGY statistics converge to the same asymptotic distributions as their counterpart test

statistics computed on the original data; i.e. our proposed wild bootstrap allows us to replicate the

correct first-order asymptotic null distributions of each of the HEGY statistics. This holds regardless

of whether Step 2a or Step 2b of Algorithm 1 is used. We also discuss the asymptotic properties of

the bootstrap HEGY statistics under both near-integrated and stable autoregressive alternatives.

The usefulness of the wild bootstrap in the present framework is given in the following result,

which shows that it allows us to retrieve the correct asymptotic null distributions of the HEGY tests

and, hence, that the p-values from Step 5 of Algorithm 1 are all asymptotically pivotal.

Proposition 2 Let the conditions of Lemma 1 hold. Then t∗i ⇒p ξη,i, i = 0, S/2, F ∗k ⇒p ξη,k,

k = 1, . . . , S∗, F ∗1...bS/2c ⇒p ξη,1...bS/2c, and F ∗0...bS/2c ⇒p ξη,0...bS/2c, where ⇒p is used to denote weak

convergence in probability in the sense of Giné and Zinn (1990). Moreover, P ∗T
w→ U [0, 1], where P ∗T is

3It should be noted that the idea of a block wild bootstrap is not new. Shao (2011) proposes a block wild bootstrap

in the context of bootstrap tests for white noise. However, the block wild bootstrap scheme in Step 2b differs from that

in Shao (2011) in the important regard that while our block length is fixed and equal to the number of seasons, in Shao

(2011) the block length is an increasing function of the sample size.
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again used generically to denote any of the HEGY p-values defined in Algorithm 1, and U [0, 1] denotes

a uniform distribution on [0, 1].

Remark 14 An immediate implication of Proposition 2 is that the wild bootstrap HEGY tests will all

be asymptotically correctly sized under Assumption 1, with this result holding regardless of whether

Step 2a or Step 2b of Algorithm 1 is used. This follows on noting that the stated results imply that for

each of the bootstrap HEGY tests, with u ∈ (0, 1) denoting the chosen nominal level, under the null

hypothesis and as T →∞ it holds that P (P ∗T ≤ u) = u, implying that the tests are asymptotically size

controlled. Notice that the results in Proposition 2 are trivially also seen to be true under conditional

homoskedasticity because that special case is contained within Assumption 1. �

Remark 15 Because the HEGY regression in (9) is an unrestricted re-parameterisation of (1)-(2)

it is straightforward to show that the limiting distributions given for the wild bootstrap HEGY t∗i ,

i = 0, S/2, F ∗k , k = 1, . . . , S∗, F ∗1...bS/2c, and F ∗0...bS/2c statistics in Proposition 2 also hold under both

local alternatives of the form given in Remark 10 and also under fixed alternatives of the form given

in (7)-(8). An immediate consequence of the first of these results is that under Assumption 1, the wild

bootstrap HEGY tests will attain the same asymptotic local power function as the size-adjusted HEGY

tests. The second result implies that the bootstrap HEGY tests share the same consistency properties

as the original HEGY tests. In particular, under the fixed alternative H1,j in (7), tj diverges to minus

infinity at rate Op(N
1/2), j = 0, S/2, while under H1,k in (8), Fj , j = 1, ..., S∗, diverges to positive

infinity at rate Op(N). Finally, under ∪bS/2ck=j H1,k, Fj...bS/2c, j = 0, 1, diverges to positive infinity at

rate Op(N). These rates are unaltered under Assumption 1 vis-à-vis the usual homoskedastic case.

The asymptotic theory therefore predicts that the bootstrap HEGY tests should have finite sample

power approximately equal to the size-adjusted power of the standard HEGY tests. �

5 Finite Sample Simulations

We now investigate the finite sample size and power properties of the HEGY tests from section 3.2

and the corresponding wild bootstrap HEGY tests from section 4 when the shocks display a variety

of forms of heteroskedasticity permitted under Assumption 1. Results are reported and discussed

in the main text for wild bootstrap HEGY tests based on using Step 2a of Algorithm 1.4 All of

the reported results pertain to the case where the data are de-trended (results are reported for both

OLS and local GLS de-trended data) as outlined in Remark 11 allowing for seasonal intercepts and

a non-seasonal trend. All experiments were based on 10,000 Monte Carlo replications. For the wild

bootstrap HEGY tests, B = 499 bootstrap replications were used with the wSn+s variables used in

step 2 set as independent standard normal variables (independent across both the sample data points

and across bootstrap replications). For the standard HEGY tests, conventional asymptotic critical

4Corresponding results for the wild bootstrap HEGY tests using the seasonal block wild re-sampling device in Step

2b of Algorithm 1 can be found in the accompanying on-line supplementary appendix. A comparison of these results

suggests that overall the two wild bootstrap schemes give qualitatively very similar finite sample behaviour.
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values (based on the assumption of homoskedasticity) were used. All simulations were programmed

in Ox 7.0 using the rann random number generator.

The Monte Carlo simulations reported in this section are based on data generated by the quarterly

(S = 4) DGP:

α(L)x4n+s = u4n+s, s = −3, . . . , 0, n = 2, . . . , N, (14)

φ(L)u4n+s = θ(L)ε4n+s (15)

ε4n+s = σ4n+se4n+s, e4n+s ∼ NIID(0, 1) (16)

with x1 = · · · = x4 = 0 and ε4n+s = 0 for n ≤ 0. Data were generated from this DGP5 for samples of

N = 50 and N = 100 years of data, with the volatility process σ4n+s satisfying one of the following

Models, where we define the notation Σi := (σi,−3, σi,−2, σi,−1, σi,0), i = 0, 1:

• Model 1. Constant Unconditional Volatility : σ2
Sn+s = σ2

0, σ0 = 1.

• Model 2. Periodic Heteroskedasticity : σ2
4n+s = σ2

0,s, with either: Case 1, Σ0 = (3, 1, 3, 1); or

Case 2, Σ0 = (30, 1, 1, 1).

• Model 3. Single Volatility Shift : σ2
4n+s = σ2

0 + (σ2
1 − σ2

0)I(4n + s ≥ bτT c), with δ := σ0/σ1,

σ0 = 1.

• Model 4. Single Periodic Volatility Shift : σ2
4n+s = σ2

0,s + (σ2
1,s − σ2

0,s)I(4n + s ≥ bτT c), with

either: Case 1, {Σ0 = (3, 1, 3, 1),Σ1 = Σ0/δ}; Case 2, {Σ0 = (30, 1, 1, 1),Σ1 = Σ0/δ}; Case 3:

{Σ0 = (1, 1, 1, 1),Σ1 = (1, 1/δ, 1, 1/δ)}; or Case 4, {Σ0 = (3, 1, 3, 1),Σ1 = (1, 3, 1, 3)}.

In the case of Models 3 and 4 results are reported for δ ∈ {1/3, 3} and τ ∈ {0.2, 0.8}. Notice that

Model 4 combines the single volatility shift of Model 3, used in the non-seasonal case by Cavaliere

and Taylor (2008a)), with the PH of Model 2, used in Burridge and Taylor (2001a), such that the

relative pattern of PH between the seasons changes at the break-fraction τ .6 Notice that under Case

3 of Model 4 the innovations do not display PH before the break but do afterwards. In Cases 1 and

2 of Model 4 the relative magnitude of the PH changes at the breakpoint, while in Cases 3 and 4 the

pattern of PH changes at the breakpoint; for example, under Case 3 the innovations do not display

PH before the break but do afterwards. Model 1, the homoskedastic case, provides a benchmark to

compare the finite sample size and properties of the original HEGY tests and their wild bootstrap

counterparts when no heteroskedasticity is in fact present. Notice finally that there is no seasonal

aspect to the volatility process under Models 1 and 3.

In practice the lag order p in (9) is unknown. Consequently, all of the results which we report

pertain to the case where a data-based method to estimate p is used. Denoting this estimated lag

5We also considered a variety of conditionally heteroskedastic specifications for e4n+s, including stationary GARCH

and autoregressive stochastic volatility models. Consistent with the findings of Cavaliere and Taylor (2009), the results

for the wild bootstrap HEGY tests were little different to those reported here for the case of e4n+s IID standard normal.
6We also considered the cases of a double volatility shift and trending volatility but found the results to be qualitatively

similar for the results reported for Model 3.
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length by p̂, we also then set p∗ = p̂ in Step 4 of Algorithm 1 for all of the simulation results we report

here. To obtain our estimate p̂ we propose a seasonal generalisation of the heteroskedasticity-robust

re-scaled modified information criterion [MIC] based method of Cavaliere et al. (2015), designed to

account for non-stationary volatility in the shocks by using re-scaled data. Our suggested approach

consists of applying their re-scaling approach to each of the seasons separately. To that end, first

partition the time series into S separate series, one for each of the seasons; that is, define the N × 1

vectors, x̆s,n := xSn+s, n = 1, ..., N , for each of s = 1 − S, ..., 0. Then, for each of these S series, we

separately apply the re-scaling approach outlined in equations (6) and (7) of section 3.3 of Cavaliere

et al. (2015), which is based on the approach of Beare (2008), to yield the resulting re-scaled series,

say x̆rs,n. Specifically, for each of s = 1− S, ..., 0, define

x̆rs,n :=
n∑
j=1

(x̆ds,n − x̆ds,n−1)

ω̂N (j/N)
, n = 2, . . . , N, x̆rs,1 = 0 (17)

where x̆ds,n denotes the OLS de-trended version (allowing for a constant and trend) of x̆s,n, and

ω̂N (r) :=

∑N
n=1 k

(
n/N−r
bN

)
(ep†,n)2∑N

n=1 k
(
n/N−r
bN

)
1/2

, (18)

where ep†,n are residuals from the ADF regression applied to x̆ds,n, for each of s = 1− S, . . . , 0 in each

case with a lag length p† (we follow Cavaliere et al. (2015) and set p† = 0), k(·) is a kernel function

and bN a bandwidth satisfying the conditions given in Assumption 4 of Cavaliere et al. (2015). In the

results reported in this paper we follow Cavaliere et al. (2015) and use the Gaussian kernel for k(·)
and set the bandwidth to be bN = 0.1. The filtered series are then merged back into a single filtered

series; viz., xrSn+s := x̆rs,n, s = 1− S, ..., 0, n = 1, ..., N .

The MIC approach of Ng and Perron (2001) originally developed for the non-seasonal ADF test

and generalised to the seasonal case by del Barrio Castro et al. (2016) can then be applied to the

re-scaled data, xrSn+s. That is, the lag length p̂ in (9) is chosen such that

p̂ := argmin
0≤p≤pmax

MIC(p), MIC(p) := ln(σ̂2
p,r) +

CT [τT (p) + p]

T − pmax
. (19)

In the context of (19), σ̂2
p,r := SSRp,r/(T − pmax), with SSRp,r the sum of squared residuals from

applying the HEGY regression in (9) to x̂rSn+s, the OLS de-trended analogue of xrSn+s (following the

arguments given in Perron and Qu (2007) only OLS de-trending is used in the lag selection element),

with p lagged differences. The penalty term τT (p) is given by

τT (p) := (1/σ̂2
p,r)

[
π̂2

0,r

∑
n

∑
s

(x̂r0,Sn+s−1)2 + π̂2
S/2,r

∑
n

∑
s

(x̂rS/2,Sn+s−1)2

+

S∗∑
k=1

(
π̂2
α,k,r

∑
n

∑
s

(x̂α,rk,Sn+s−1)
2

+ π̂2
β,k,r

∑
n

∑
s

(x̂β,rk,Sn+s−1)
2

)]
(20)
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using obvious notation for the fitted parameters and HEGY transforms from (9) applied to x̂rSn+s.

The associated penalty function parameter, CT , depends on the specific criterion adopted; in all of

the results reported in this paper we use CT = 2, yielding a re-scaled modified AIC [MAIC] criterion,

and using pmax = b12(T/100)1/4c throughout. We compared the re-scaled MAIC lag selection method

outlined above with the MAIC method of del Barrio Castro et al. (2016) (which is calculated as above

but using xSn+s in place of xrSn+s) and, like Cavaliere et al. (2015) for the non-seasonal case, found

the former to perform considerably better. These results are available on request.

5.1 Empirical Size

Heteroskedasticity but no Serial Correlation

We first investigate the empirical size properties of the standard HEGY t0, t2, F1, F12 and F012 tests

together with their wild bootstrap counterparts t∗0, t∗2, F ∗1 , F ∗12 and F ∗012 in the case where the shocks

are heteroskedastic but do not contain any weak dependence. To that end, the results reported in

Tables 1 and 2 for OLS and local GLS de-trending, respectively, relate to data generated according to

(14)-(16) under H0 of (4), so that α(L) = (1− L4), for each of Models 1-4 with φ(L) = θ(L) = 1.

Consider first the results in Tables 1 and 2 for the homoskedastic case of Model 1. Here there are

mostly no significant differences between the empirical rejection frequencies [ERFs] of the standard

HEGY tests and their wild bootstrap counterparts, particularly so for N = 100. However, for N = 50

the OLS de-trended t∗0 and t∗2 wild bootstrap tests are seen to avoid the significant under-sizing seen

with their standard HEGY counterparts, while the local GLS de-trended t∗2, F ∗1 , F ∗12 and F ∗012 tests

avoid the over-sizing seen with their standard HEGY counterparts.

Consider next the results For Model 2 where standard PH is present in the errors. Here we observe

results for the standard HEGY tests which are qualitatively similar to those reported in Burridge

and Taylor (2001a). As discussed in Burridge and Taylor (2001a), the asymptotic sizes of the HEGY

F1 test (and, hence, also of the HEGY F12 and F012 tests) increase as the ratio of (σ2
0,−3 + σ2

0,−1)

to (σ2
0,−2 + σ2

0,0) increases, while the asymptotic sizes of the t0 and t2 tests are unaffected regardless

of the value of this ratio. The results in Tables 1 and 2 bear out these asymptotic predictions; in

particular, while the standard t0 and t2 HEGY tests display ERFs close to the nominal level (albeit

less so for the local GLS de-trended implementations of these tests), the F1, F12 and F012 tests all

display ERFs well in excess of the nominal level, with these size distortions increasing as the degree

of PH increases. These size distortions are also seen not to ameliorate as the sample size is increased,

again as predicted by the asymptotic theory. In contrast the bootstrap HEGY tests display ERFs

close to the nominal level throughout.

Consider next Model 3, a single volatility shift. Here, the potential for significant size distortions

in the standard HEGY tests is clearly seen in the results. Consistent with the findings of Cavaliere

and Taylor (2008a) for non-seasonal unit root tests, the most pronounced examples of over-sizing are

seen for the case of early negative (δ = 3 and τ = 0.2) breaks for the OLS de-trended HEGY tests,

and late positive (δ = 1/3 and τ = 0.8) breaks for the local GLS de-trended tests. In the former case
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the observed ERFs are seen to exceed 50% for some of the tests. Additionally, it is seen that the OLS

de-trended tests can be very conservative for early positive (δ = 1/3 and τ = 0.2) breaks. In contrast

the wild bootstrap HEGY tests, particularly those based on local GLS de-trending, display very good

size control throughout Tables 1 and 2 under Model 3. Some over-sizing remains for N = 50 in the

OLS de-trended HEGY tests under early negative breaks, but this is largely eliminated by N = 100.

Consider finally the results in Tables 1 and 2 relating to Model 4. The results reported here

are largely consistent with those given for the pure PH and single volatility shift cases considered

above in Models 2 and 3, respectively, again bearing in mind the discussion from Burridge and Taylor

(2001a) regarding the dependence of the asymptotic size of the HEGY tests on the ratio of the periodic

variances. So we again see that early negative periodic volatility shifts have the greatest impact on

the OLS de-trended HEGY tests while late positive shifts have the greatest impact on the local GLS

de-trended tests. Under Case 3 the volatility shift only affects the second and fourth quarters and it

appears that this serves to ameliorate the size distortions relative to Cases 1 and 2 where the volatility

break affects all of the seasons. Notice also that the size distortions seen for the t0 and t2 tests under

Case 4 are relatively small, as would be expected given that here the annual average of the variances of

the innovations is constant across the sample; cf. Remark 8. The wild bootstrap HEGY tests again do

a very good job of controlling size under Model 4. As in the single volatility shift case, although some

size distortions are still seen for N = 50 these are considerably lower than the size distortions seen in

the corresponding standard HEGY tests and are ameliorated for N = 100. Once again the local GLS

de-trended wild bootstrap HEGY tests would appear to deliver superior finite sample size control to

their OLS de-trended counterparts. It is worth noting that some of the cases considered here display

enormous PH, whose form undergoes a break, that would never be seen in practice. Even for these

pathological cases the wild bootstrap HEGY tests deliver decent size control in finite samples.

Heteroskedasticity and Serial Correlation

We next investigate the empirical size properties of the standard and wild bootstrap HEGY tests in

the case where the shocks can display both heteroskedastic and parametric weak dependence. To

that end, the results reported in Tables 3 and 4, for OLS and local GLS de-trending, respectively,

relate to data generated according to (14)-(16) with α(L) = (1 − L4) and for both the case of first-

order seasonal AR shocks, φ(L) = (1 − ΦL4), θ(L) = 1, and where the shocks follow an MA(2)

process, viz., θ(L) = (1 − ΘL2), φ(L) = 1, in each case initialised at zero. Results are reported for

Φ = {−0.8,−0.5, 0.5, 0.8} in the seasonal AR case, and for Θ = {−0.5, 0.5} in the MA case. In terms

of heteroskedasticity, we report results for a selection of the Models considered above, namely: Model

1; Model 2, Case 2; Model 3 for (i) δ = 3, τ = 0.8, and (ii) δ = 3, τ = 0.2; Model 4, Case 3 for δ = 3,

τ = 0.2.

The results in Tables 3 and 4 provide a similar message to those seen in Tables 1 and 2. Significant

finite sample size distortions are again seen in the standard HEGY tests for many of the heteroskedastic

models considered with the wild bootstrap implementations of the HEGY tests again delivering good

finite sample size control. In those cases where heteroskedasticity has a pronounced impact on the
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ERFs of the standard HEGY tests, the impact of weak dependence on the tests is seen to be rather

small in comparison in most cases. In the homoskedastic case weak dependence appears to have

relatively little impact on the OLS de-trended HEGY tests but can lead to some finite sample over-

sizing in the local GLS de-trended HEGY tests, most notably in the MA(2) case with Θ = −0.5.

Even here the wild corresponding wild bootstrap tests are seen to deliver some improvements in finite

sample size relative to the standard HEGY tests.

5.2 Empirical Power

We now turn to a consideration of the relative finite sample power properties of the standard and

wild bootstrap HEGY tests. In order to take account of the differing empirical size properties of

the standard HEGY tests and their wild bootstrap analogues that we have seen can occur under

heteroskedasticity, we report size-adjusted powers for the standard HEGY tests. The size-adjustment

is done such that the resulting ERFs of a given HEGY test and its wild bootstrap counterpart coincide

under the null hypothesis, thereby enabling a meaningful power comparison. Tables 5 and 6 for OLS

and local GLS de-trended data, respectively, report the ERFs for the bootstrap HEGY tests and the

size-adjusted powers of the standard HEGY tests for data generated by (14)-(16) for each of Models

1-4 under the near-seasonally integrated alternative α(L) = (1− (1 + c/N)L4) whereby x4n+s is near-

integrated at each of the zero, Nyquist and harmonic seasonal frequencies; see Rodrigues and Taylor

(2004, pp.648-649) for further details. Results are reported for c ∈ {−3.75,−7,−13.5}. Notice that,

under homoskedasticity, the t0 test when based on local GLS de-trending has power that will approach

50% for c = −13.5 as N →∞, while the t2 test based on GLS de-trended data will have power which

approaches 50% for c = −7; see, for example, Rodrigues and Taylor (2007). The reported results

pertain to the serially uncorrelated case, φ(L) = θ(L) = 1.

The main conclusions that can be drawn from the results in Tables 5 and 6 can be easily sum-

marised. First, and as predicted by the asymptotic distribution theory (see Remark 15), the finite

sample power of the wild bootstrap HEGY tests is very similar to the size-adjusted power of the

corresponding standard HEGY tests throughout. This coincidence holds both when OLS de-trending

is used and when local GLS de-trending is used. In the homoskedastic case (Model 1) in particular

this observation implies that there is no significant loss in finite sample power incurred from using the

wild bootstrap, yet at the same time the wild bootstrap was seen to largely correct the size distortions

that can be incurred by the standard HEGY tests under heteroskedasticity. Second, the power of both

the standard and wild bootstrap HEGY tests depends on the pattern of heteroskedasticity present in

the shocks. In some cases power can be rendered very low indeed, most notably in the single volatility

shift case with δ = 3 and τ = 0.2 when OLS de-trending is employed. This was, of course, exactly the

case where the most significant size distortions were seen in the standard HEGY tests under the null;

cf. Tables 1 and 2. Interestingly, the finite sample powers of the local GLS de-trended tests appear

overall to be considerably less affected by heteroskedasticity than their OLS de-trended counterparts,

although counterexamples to this general rule can be seen in the results.
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6 Conclusions

In this paper we have investigated the behaviour of the so-called HEGY regression-based seasonal unit

root tests of Hylleberg et al. (1990) when the driving shocks can display both periodic non-stationary

volatility and conditional heteroskedasticity. The general set-up we have considered for the volatility

process of the shocks includes the familiar examples of periodic heteroskedasticity, non-stationary

volatility and GARCH as special cases. We have shown that such patterns of non-constant volatility

lead, in general, to the presence of nuisance parameters in the limiting null distributions of the HEGY

tests. Monte Carlo simulation methods presented for a number of non-constant volatility processes

have been used to demonstrate that this can lead to serious size distortions in the HEGY tests when

based on conventional critical values designed for the homoskedastic case. We have shown that this

inference problem can be solved, at least asymptotically, by using bootstrap implementations of the

HEGY tests, based around wild bootstrap re-sampling schemes. Simulations have shown that the

resulting wild bootstrap HEGY tests control size well in finite samples and have power close to that

of the size-adjusted power of the standard HEGY tests.
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Table 1. Empirical sizes of conventional and wild bootstrap HEGY tests using Step 2a of Algorithm 1. OLS

de-trending.

Σ δ τ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Model 1: Homoskedasticity

50 3.1 4.6 3.7 4.6 4.4 4.1 5.3 4.7 4.9 4.8

100 3.9 4.7 4.2 4.6 4.7 4.5 5.2 4.6 4.6 4.8

Model 2: Periodic heteroskedasticity

Case 1 50 4.0 4.7 6.0 6.3 6.6 4.9 5.4 5.8 5.9 5.8

100 4.5 5.1 6.5 6.4 6.9 5.1 5.4 5.5 5.5 5.5

Case 2 50 3.7 4.4 9.1 13.2 13.0 5.1 5.8 6.2 6.4 6.1

100 4.2 4.9 9.4 13.3 13.0 5.0 5.3 5.7 5.8 5.4

Model 3: Single volatility shift

0.33 0.2 50 1.9 2.1 1.4 1.4 1.4 3.6 4.5 4.1 4.3 4.0

100 2.6 2.3 1.6 1.5 1.3 4.2 4.8 4.3 4.4 4.0

0.8 50 5.0 5.0 6.5 6.9 6.4 4.1 4.9 5.3 5.4 4.9

100 6.1 5.9 7.6 7.9 7.4 4.4 4.9 5.3 5.2 5.1

3 0.2 50 20.1 27.5 42.6 54.6 61.5 7.4 8.5 9.6 10.9 11.3

100 21.6 29.0 44.4 56.8 62.3 6.0 6.5 7.4 8.0 8.0

0.8 50 4.7 6.3 6.6 7.7 8.4 4.2 5.4 5.3 5.2 4.9

100 5.6 6.4 6.8 7.7 8.6 4.6 4.6 4.8 4.6 4.7

Model 4: Single periodic volatility shift

Case 1 0.33 0.2 50 2.5 2.1 1.8 1.6 1.8 4.3 4.6 4.4 4.3 4.3

100 2.8 2.3 2.2 1.6 1.9 4.6 4.8 4.4 4.5 4.4

0.8 50 5.4 5.3 6.9 7.0 7.7 4.6 5.0 5.4 5.5 5.5

100 6.7 6.1 7.8 7.8 8.3 5.0 5.0 5.3 5.2 5.0

3 0.2 50 19.8 27.5 40.0 51.5 56.9 7.6 8.8 9.4 10.8 11.3

100 21.5 28.6 40.7 53.3 57.8 6.7 7.1 7.4 8.0 8.3

0.8 50 4.9 6.5 8.3 9.2 10.4 4.6 5.5 5.8 5.8 5.5

100 5.7 6.8 8.6 9.2 10.7 4.7 5.0 5.0 5.2 5.2

Case 2 0.33 0.2 50 2.5 2.3 4.6 6.5 6.9 5.2 4.9 5.2 5.0 5.1

100 2.8 2.4 4.4 6.5 6.8 4.9 4.8 4.9 4.9 4.9

0.8 50 5.8 6.3 10.8 14.2 14.6 6.0 6.3 6.6 6.7 6.7

100 6.2 6.0 11.0 14.6 15.1 5.4 5.5 6.1 6.1 5.7

3 0.2 50 18.3 27.1 38.1 44.8 47.4 9.3 11.6 12.4 12.5 12.8

100 20.7 27.9 38.3 45.0 47.3 7.2 7.8 8.3 8.4 8.4

0.8 50 5.0 6.3 12.0 16.5 16.6 5.7 6.1 6.6 6.7 6.5

100 6.0 7.6 12.7 17.5 17.5 5.5 6.1 6.2 6.4 6.0

Case 3 0.33 0.2 50 2.4 2.1 2.2 1.8 2.2 4.4 4.9 4.6 4.9 4.6

100 2.9 2.2 2.5 2.2 2.3 4.3 4.4 4.6 4.5 4.3

0.8 50 3.7 4.4 4.2 4.4 4.7 4.1 5.2 5.1 5.3 4.9

100 4.6 4.9 4.7 4.8 5.0 4.8 5.0 4.9 4.8 4.8

3 0.2 50 5.7 7.4 10.5 11.5 12.4 5.4 5.6 6.1 5.9 5.6

100 5.8 8.2 11.3 12.4 12.5 5.0 5.2 5.4 5.4 5.3

0.8 50 3.7 5.0 5.0 5.4 5.8 4.3 5.4 5.1 4.9 4.6

100 4.4 5.3 5.3 5.7 5.9 4.7 4.7 4.9 4.5 4.4

Case 4 0.2 50 3.4 4.5 6.0 6.1 6.8 4.3 5.1 5.4 5.2 4.7

100 4.0 4.7 6.3 6.1 6.6 4.5 5.3 5.4 5.2 4.8

0.8 50 3.8 4.2 5.3 5.4 6.1 4.2 5.1 5.4 5.2 4.9

100 4.0 4.6 5.7 5.8 6.2 4.6 5.5 5.5 5.5 5.3
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Table 2. Empirical sizes of conventional and wild bootstrap HEGY tests using Step 2a of Algorithm 1. Local

GLS de-trending.

Σ δ τ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Model 1: Homoskedasticity

50 5.9 8.7 6.6 8.1 8.7 4.1 4.7 4.9 5.1 4.6

100 5.2 7.2 5.8 5.8 6.7 4.3 4.9 4.7 4.6 4.8

Model 2: Periodic heteroskedasticity

Case 1 50 6.5 9.6 6.5 7.5 9.6 4.7 5.5 4.9 5.2 4.8

100 6.1 7.1 5.7 6.3 7.9 5.0 5.0 4.9 5.1 5.2

Case 2 50 6.1 9.1 10.1 13.3 13.6 5.2 5.1 5.6 5.7 5.8

100 5.2 7.5 9.7 12.5 12.2 4.6 5.2 5.5 5.5 5.4

Model 3: Single volatility shift

0.33 0.2 50 6.7 10.1 9.3 10.9 11.4 4.1 4.6 4.9 5.1 4.5

100 6.3 8.7 9.0 9.5 9.9 4.2 4.9 4.9 4.8 4.7

0.8 50 10.2 14.6 19.7 24.5 24.2 4.3 5.2 6.0 6.0 5.8

100 10.7 12.6 19.7 23.7 23.3 4.6 4.9 5.6 5.6 5.6

3 0.2 50 11.6 13.5 6.6 9.9 14.0 5.4 5.8 5.6 6.1 5.8

100 9.2 10.2 5.7 7.4 9.6 5.0 5.2 5.5 5.6 5.1

0.8 50 6.7 9.3 5.6 6.9 9.0 4.1 4.7 4.8 4.6 4.4

100 6.1 7.3 4.7 5.2 6.2 4.3 4.6 4.6 4.5 4.5

Model 4: Single periodic volatility shift

Case 1 0.33 0.2 50 7.3 10.5 9.3 10.6 12.3 4.6 4.9 5.2 5.3 4.9

100 6.8 9.0 8.4 9.5 10.7 4.7 4.8 5.2 4.9 4.9

0.8 50 10.8 14.8 17.7 21.6 23.5 5.0 5.2 6.0 6.0 5.7

100 10.8 12.6 17.2 21.2 22.5 5.0 5.4 5.7 5.9 5.5

3 0.2 50 11.4 12.9 7.1 10.0 15.2 5.7 5.6 5.7 6.1 6.5

100 9.4 9.8 6.0 7.3 10.7 5.0 5.0 5.3 5.2 5.0

0.8 50 7.2 9.6 5.9 6.9 10.0 4.5 4.7 5.2 4.7 4.7

100 6.7 7.3 4.7 5.3 7.4 5.1 4.7 4.8 4.8 5.0

Case 2 0.33 0.2 50 7.0 10.5 12.8 16.1 16.1 5.2 5.3 5.9 5.7 5.8

100 6.8 8.6 11.9 14.9 14.8 4.8 4.7 5.0 5.1 5.0

0.8 50 11.2 15.4 20.2 24.3 24.4 6.4 6.3 7.8 7.7 7.3

100 10.5 12.7 20.1 23.7 23.2 5.5 5.3 6.8 6.6 6.4

3 0.2 50 11.2 13.3 12.0 15.7 19.0 6.9 6.9 7.1 7.1 7.4

100 8.8 9.8 10.1 13.7 15.2 5.6 5.5 5.6 5.6 5.7

0.8 50 7.0 10.2 9.9 13.7 14.5 5.4 5.5 6.0 5.8 5.6

100 6.6 8.1 9.1 12.0 12.5 5.3 5.4 5.3 5.6 5.3

Case 3 0.33 0.2 50 7.0 10.0 7.7 9.8 11.7 4.5 5.3 5.1 5.0 4.9

100 6.6 8.5 7.5 8.1 9.5 4.6 4.7 5.1 4.9 4.9

0.8 50 8.0 11.8 12.5 15.3 16.5 4.2 5.2 5.8 5.7 5.3

100 7.9 9.2 12.5 14.2 14.5 4.9 4.7 5.2 5.6 5.2

3 0.2 50 6.4 8.7 4.9 6.3 8.4 4.5 4.3 4.8 4.9 4.6

100 5.5 7.1 4.6 5.1 6.2 4.7 5.0 4.9 4.7 4.8

0.8 50 6.2 8.8 5.5 6.5 8.2 4.3 4.7 4.3 4.3 4.4

100 5.5 6.9 5.1 5.3 6.2 4.3 4.6 4.8 4.8 4.9

Case 4 0.2 50 5.8 8.8 6.1 7.3 9.0 4.2 4.6 5.0 4.8 4.4

100 5.5 6.8 5.3 5.7 6.8 4.2 5.1 5.1 5.1 4.9

0.8 50 6.4 8.5 6.1 7.1 9.5 4.0 4.7 4.7 4.6 4.5

100 5.6 7.7 5.7 5.9 7.0 4.7 5.1 4.8 4.7 4.6
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Table 3. Empirical size of conventional and wild bootstrap HEGY tests using Step 2a of Algorithm 1. OLS

de-trending. Weakly dependent shocks.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

AR(4) -0.8 50 1.7 3.5 3.1 3.5 3.4 3.5 4.6 4.9 4.7 4.2

100 3.1 4.4 3.9 4.2 4.0 4.1 4.7 4.9 4.8 4.8

-0.5 50 2.5 3.7 3.5 3.8 3.5 3.4 4.8 4.7 4.8 4.5

100 3.5 4.1 4.0 4.3 3.9 4.3 5.0 4.9 4.9 4.9

0.5 50 1.9 3.6 3.7 3.5 2.7 2.4 4.2 4.7 4.4 3.4

100 3.6 4.4 4.3 4.5 4.3 4.7 5.0 4.8 4.5 4.5

0.8 50 3.5 4.1 3.5 3.5 3.8 4.7 5.2 4.4 4.3 4.5

100 3.7 4.6 3.7 4.0 4.0 4.5 4.9 4.2 4.4 4.7

MA(2) -0.5 50 6.7 7.6 3.2 5.4 8.3 9.4 8.9 5.0 7.0 9.8

100 6.5 6.7 3.7 5.4 6.5 7.8 7.4 4.5 6.0 7.6

0.5 50 2.8 3.7 6.2 6.2 6.0 3.6 4.7 8.3 7.3 6.7

100 2.6 4.0 5.9 5.2 4.5 3.5 4.7 6.5 6.1 5.4

Periodic heteroskedasticity, Case 2

AR(4) -0.8 50 2.9 4.1 8.1 11.6 11.4 4.6 5.6 6.0 6.1 5.9

100 3.9 4.5 9.0 12.8 12.6 4.4 5.4 5.3 5.4 5.2

-0.5 50 3.3 4.4 8.8 12.5 12.5 5.5 5.7 6.1 6.1 6.1

100 4.2 4.9 9.3 12.9 13.1 4.9 5.2 5.6 5.5 5.6

0.5 50 3.0 3.9 7.8 11.1 10.8 4.0 5.0 5.4 5.5 5.1

100 3.9 4.7 9.1 13.0 13.0 5.5 5.3 5.6 5.6 5.5

0.8 50 3.8 4.5 8.7 12.6 12.2 5.4 6.1 6.4 6.5 6.3

100 4.2 4.9 9.0 12.9 12.6 5.2 5.7 5.7 5.8 5.6

MA(2) -0.5 50 4.6 4.9 7.1 11.8 12.2 7.2 7.0 5.7 6.4 6.3

100 4.3 5.3 8.3 12.8 13.2 6.2 6.0 5.3 5.5 5.5

0.5 50 2.5 3.6 10.2 13.3 12.9 4.3 5.8 8.4 7.6 7.0

100 3.0 3.7 10.0 13.1 12.5 4.8 4.9 6.3 5.9 5.5

Single volatility shift, δ = 3, τ = 0.8

AR(4) -0.8 50 2.6 5.2 5.2 6.3 6.2 3.4 4.8 5.3 4.8 4.8

100 4.1 6.0 6.2 7.3 7.2 4.0 5.1 4.9 4.8 4.5

-0.5 50 3.3 5.4 5.5 6.5 6.4 3.8 5.1 5.2 5.3 5.0

100 4.7 6.4 6.4 7.5 7.6 4.1 5.3 4.9 5.3 4.7

0.5 50 2.8 4.8 5.0 5.7 5.6 3.4 4.7 4.6 4.5 3.9

100 4.8 5.9 6.4 7.2 7.7 4.5 4.7 4.5 4.7 4.5

0.8 50 4.2 5.1 4.6 5.0 5.2 4.4 4.9 4.2 4.2 4.0

100 4.8 5.7 5.3 6.2 6.5 4.9 4.5 4.6 4.2 4.0

MA(2) -0.5 50 8.1 9.3 5.3 8.5 12.4 9.1 9.0 4.7 6.8 9.3

100 7.3 8.4 5.7 8.4 11.0 8.0 7.1 4.6 5.7 7.2

0.5 50 3.3 5.3 8.3 8.7 8.8 4.2 5.1 8.1 7.5 6.8

100 3.7 5.5 8.2 8.7 8.2 3.8 4.5 6.3 6.0 5.2
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Table 3. Continued.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single volatility shift, δ = 3, τ = 0.2

AR(4) -0.8 50 13.6 24.4 37.4 48.3 52.1 6.4 9.4 11.8 13.3 13.3

100 18.6 26.7 41.8 53.0 57.9 6.0 6.8 8.4 9.2 8.8

-0.5 50 15.8 25.2 39.1 50.6 55.0 7.5 9.5 12.4 13.6 13.9

100 20.7 27.7 41.9 53.2 59.7 6.3 7.0 8.2 8.9 8.5

0.5 50 13.3 23.5 35.6 45.3 47.3 6.8 8.0 9.6 9.8 9.6

100 17.8 26.8 40.4 51.6 55.8 6.3 6.6 6.9 6.9 7.1

0.8 50 12.4 20.1 27.9 35.3 36.2 5.9 7.1 5.7 6.1 5.9

100 15.5 24.3 35.0 44.2 47.5 5.2 5.3 4.8 4.8 4.7

MA(2) -0.5 50 22.7 31.1 35.2 50.7 59.5 11.8 11.6 10.4 13.3 16.2

100 25.0 31.6 40.0 54.0 62.6 8.7 7.4 8.2 9.6 10.7

0.5 50 14.1 24.0 45.4 54.9 57.2 6.9 8.5 13.3 13.8 13.8

100 17.7 26.5 45.9 55.8 59.3 5.5 6.9 8.3 8.6 8.1

Single periodic volatility shift, δ = 3, τ = 0.2, Case 3

AR(4) -0.8 50 3.2 6.4 8.4 9.2 9.2 4.0 5.8 6.4 6.5 5.9

100 5.0 7.3 9.6 10.7 11.3 4.3 5.6 5.7 5.6 5.3

-0.5 50 4.1 6.9 9.5 10.1 10.6 4.5 5.9 6.7 6.4 5.9

100 5.5 7.7 10.8 11.6 11.8 4.9 5.5 5.6 5.5 5.2

0.5 50 3.7 6.2 8.7 9.0 8.8 4.1 5.4 5.9 5.7 5.0

100 5.5 7.4 10.1 11.4 11.2 5.2 5.2 5.4 5.3 4.9

0.8 50 5.0 6.8 7.9 8.7 9.1 5.1 5.7 4.8 5.0 4.9

100 5.2 7.4 9.2 10.0 10.0 4.8 5.5 4.8 5.1 5.0

MA(2) -0.5 50 9.5 11.2 8.7 12.2 16.8 10.2 9.7 6.6 8.4 10.9

100 9.3 10.1 9.7 12.6 15.7 8.2 7.5 5.7 6.7 7.9

0.5 50 4.1 5.9 14.4 14.5 13.6 4.5 5.5 10.4 9.5 8.5

100 4.4 6.8 14.1 14.1 13.0 4.1 5.0 8.2 7.3 6.1

26



Table 4. Empirical size of conventional and wild bootstrap HEGY tests using Step 2a of Algorithm 1. Local

GLS de-trending. Weakly dependent shocks.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

AR(4) -0.8 50 3.5 7.4 6.2 6.6 6.2 3.1 4.1 4.4 4.3 3.6

100 4.3 6.6 5.6 5.3 5.6 4.1 4.5 4.8 4.4 4.2

-0.5 50 4.4 8.2 5.7 6.7 7.0 3.5 4.1 4.6 4.0 4.1

100 4.9 6.5 5.3 5.1 5.4 4.6 5.2 4.9 4.7 4.6

0.5 50 3.8 6.8 9.0 9.1 7.6 2.3 3.5 7.2 6.1 4.0

100 5.2 6.9 5.8 5.8 6.3 5.0 4.6 4.6 4.4 4.7

0.8 50 6.5 8.7 6.9 8.1 9.6 5.1 5.1 5.6 5.3 5.5

100 5.4 7.0 5.7 6.1 6.6 4.9 5.1 5.3 5.3 5.0

MA(2) -0.5 50 12.1 15.0 6.6 11.0 16.3 9.8 9.9 5.0 7.4 10.7

100 9.5 10.2 5.2 7.1 10.1 8.1 7.7 4.8 6.0 7.8

0.5 50 5.1 8.2 8.3 8.8 9.2 3.9 4.5 6.4 6.3 5.5

100 4.0 5.9 6.3 6.0 5.5 3.7 4.5 5.5 5.1 4.3

Periodic heteroskedasticity, Case 2

AR(4) -0.8 50 5.1 8.8 9.9 13.4 12.9 4.5 5.3 5.7 5.6 5.5

100 4.8 7.3 9.5 12.3 12.1 4.4 5.5 5.2 5.4 5.4

-0.5 50 5.8 8.8 9.9 13.2 13.4 5.4 5.3 5.7 5.5 5.8

100 5.5 6.9 9.3 12.1 11.9 5.2 5.2 5.3 5.3 5.6

0.5 50 4.9 7.9 10.7 13.4 13.0 4.0 4.3 6.2 5.8 5.4

100 5.7 7.2 9.9 12.7 12.3 5.3 4.8 5.3 5.1 5.1

0.8 50 6.9 9.2 10.0 13.3 13.7 6.1 5.6 6.1 6.1 6.1

100 5.9 7.2 9.6 12.2 12.3 5.4 5.1 5.6 5.4 5.4

MA(2) -0.5 50 9.5 11.4 9.6 14.0 16.2 8.4 7.4 5.6 6.3 7.1

100 7.1 8.2 8.8 12.4 13.0 7.1 6.1 5.2 5.3 5.8

0.5 50 5.2 8.4 12.3 15.3 14.9 4.6 5.3 8.2 7.2 6.7

100 4.9 6.4 10.3 12.7 12.2 4.4 4.8 6.2 5.8 5.6

Single volatility shift, δ = 3, τ = 0.8

AR(4) -0.8 50 4.5 8.2 4.8 5.9 6.7 3.6 4.2 4.9 4.6 4.0

100 5.0 7.1 4.6 4.9 5.6 3.9 5.0 4.7 4.6 4.1

-0.5 50 5.1 8.7 4.9 6.2 7.3 3.8 4.6 5.0 4.8 4.2

100 5.6 7.3 4.4 5.0 5.8 4.2 4.7 4.7 4.6 4.6

0.5 50 4.9 7.9 5.3 6.1 6.4 3.5 3.6 4.9 4.2 3.6

100 5.8 7.2 4.2 4.8 5.8 4.6 5.0 4.5 4.5 4.4

0.8 50 6.7 8.5 4.3 5.6 7.4 4.5 4.4 4.3 4.0 4.3

100 5.8 7.0 3.5 4.5 5.6 5.0 4.4 4.1 4.1 4.5

MA(2) -0.5 50 13.3 15.4 4.9 9.6 16.5 10.2 9.6 4.4 7.1 10.8

100 9.6 11.0 4.2 6.6 10.3 8.5 7.2 4.4 5.7 7.9

0.5 50 5.8 8.5 7.3 8.4 9.6 4.2 4.6 7.5 6.7 5.8

100 4.6 6.5 5.6 5.2 5.6 3.5 4.4 5.9 5.5 4.4
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Table 4. Continued.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single volatility shift, δ = 3, τ = 0.2

AR(4) -0.8 50 9.0 12.6 6.7 9.0 11.8 6.1 7.1 7.2 7.9 7.7

100 8.5 10.3 5.3 7.4 8.8 5.1 5.8 6.5 6.6 6.0

-0.5 50 10.5 13.2 6.6 9.7 13.1 6.6 7.0 7.4 7.7 7.9

100 9.6 9.8 5.2 6.7 9.3 5.7 5.9 6.2 6.2 6.2

0.5 50 8.6 10.2 5.0 6.7 8.8 5.0 5.2 5.0 5.1 4.9

100 8.7 9.1 4.4 5.9 8.2 5.6 5.6 5.2 5.3 5.4

0.8 50 8.0 8.0 3.8 5.1 7.2 4.8 3.8 3.7 3.6 4.0

100 7.2 7.7 3.1 4.2 6.0 4.1 4.3 3.6 3.6 3.8

MA(2) -0.5 50 19.4 20.7 5.6 13.2 22.1 13.5 13.2 6.0 10.5 15.2

100 14.6 14.9 4.5 8.9 14.7 10.3 9.4 5.6 8.1 10.9

0.5 50 9.6 11.7 10.2 12.6 15.2 6.0 6.5 10.3 9.8 8.8

100 7.6 8.5 7.1 7.5 8.7 4.7 5.1 8.0 7.3 6.4

Single periodic volatility shift, δ = 3, τ = 0.2, Case 3

AR(4) -0.8 50 4.0 8.0 4.7 5.8 6.1 3.5 4.9 4.8 4.8 4.1

100 4.6 6.3 4.6 4.6 5.5 4.3 4.7 4.8 4.6 4.3

-0.5 50 5.0 8.6 4.5 5.9 7.0 3.9 5.0 5.2 4.7 4.6

100 5.8 6.5 4.3 4.8 5.8 4.7 5.0 5.5 5.5 5.1

0.5 50 4.5 7.3 6.0 6.5 7.0 3.5 3.9 5.8 5.5 4.3

100 5.4 6.9 4.2 4.8 5.8 5.1 4.7 4.8 5.0 5.0

0.8 50 6.6 8.6 4.3 5.7 8.3 5.3 5.0 4.8 4.8 5.2

100 5.2 6.3 4.4 4.9 5.8 4.5 4.7 5.2 5.2 4.9

MA(2) -0.5 50 13.0 15.8 4.4 9.4 16.4 10.8 10.8 4.8 8.3 11.8

100 9.8 10.5 4.0 6.2 10.3 8.8 7.6 4.8 6.3 8.2

0.5 50 5.4 7.9 8.0 8.7 9.7 4.3 4.8 8.6 7.4 6.3

100 4.2 6.2 6.1 5.8 5.8 4.0 4.5 7.1 6.7 5.3
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Table 5. Finite sample size-adjusted power of conventional and wild bootstrap HEGY tests using Step 2a of

Algorithm 1. OLS de-trending.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

3.75 50 6.2 14.0 21.2 27.8 24.4 6.0 13.6 21.7 27.9 24.4

100 6.4 14.6 22.1 29.6 25.3 6.4 14.5 21.5 29.3 25.6

7 50 12.4 30.7 48.1 63.2 60.2 12.1 29.9 48.5 63.2 60.0

100 12.2 29.8 48.8 64.5 61.5 12.1 29.8 48.7 63.9 61.2

13.5 50 39.3 72.0 90.7 96.1 96.0 38.3 71.3 91.2 96.4 96.4

100 36.1 69.6 92.3 98.0 98.1 35.9 69.0 92.1 98.0 98.2

Periodic heteroskedasticity

Case 1 3.75 50 6.9 15.2 22.3 28.2 24.5 6.8 14.9 22.1 27.9 23.9

100 7.8 15.3 22.2 29.1 24.9 7.6 15.4 22.2 28.9 25.0

7 50 12.8 31.5 45.6 59.0 55.3 13.0 31.1 44.4 58.9 54.1

100 13.5 30.6 45.7 60.2 54.8 13.2 30.7 45.0 59.6 54.5

13.5 50 39.8 71.5 85.3 94.5 93.6 39.6 71.1 85.2 94.5 93.5

100 37.1 69.6 86.0 95.7 94.9 36.6 69.7 85.6 95.8 94.9

Case 2 3.75 50 8.8 17.0 16.7 17.1 16.4 8.7 16.3 16.7 16.6 16.1

100 8.4 15.7 15.7 16.0 15.7 8.3 15.7 16.0 15.9 15.8

7 50 15.6 33.5 33.4 33.9 31.8 15.8 32.1 33.0 32.7 31.3

100 15.3 31.9 32.3 32.6 31.2 14.9 31.4 32.2 32.0 30.7

13.5 50 42.8 71.7 71.6 72.0 69.7 43.0 70.2 70.8 70.9 69.1

100 39.8 69.9 70.5 70.9 68.9 39.3 69.7 70.3 70.1 68.1

Single volatility shift

Case 1 0.33 0.2 3.75 50 6.2 14.0 21.2 27.8 24.4 6.0 13.6 21.7 27.9 24.4

100 6.4 14.6 22.1 29.6 25.3 6.4 14.5 21.5 29.3 25.6

7 50 12.4 30.7 48.1 63.2 60.2 12.1 29.9 48.5 63.2 60.0

100 12.2 29.8 48.8 64.5 61.5 12.1 29.8 48.7 63.9 61.2

13.5 50 39.3 72.0 90.7 96.1 96.0 38.3 71.3 91.2 96.4 96.4

100 36.1 69.6 92.3 98.0 98.1 35.9 69.0 92.1 98.0 98.2

0.8 3.75 50 7.2 11.4 14.7 17.6 16.7 7.0 11.1 14.6 17.1 17.1

100 7.7 11.8 14.2 17.0 17.4 7.8 11.5 14.2 16.7 16.8

7 50 13.1 21.3 29.3 37.3 38.6 13.2 21.3 28.9 36.2 38.7

100 12.9 21.0 28.0 36.2 39.6 13.4 20.8 28.0 35.5 38.1

13.5 50 32.4 47.8 63.9 75.8 79.0 32.6 48.1 64.1 75.8 79.7

100 30.7 47.0 63.1 77.5 83.1 31.4 46.3 63.3 77.3 82.4

3 0.2 3.75 50 7.9 2.4 2.3 1.8 2.6 6.8 1.9 1.8 1.5 2.3

100 6.2 1.5 1.4 0.8 1.4 5.4 1.5 1.4 0.9 1.5

7 50 8.5 4.5 4.7 4.9 6.7 7.1 3.5 3.8 3.8 4.8

100 6.4 2.9 2.8 2.6 3.6 5.4 2.5 2.6 2.5 3.3

13.5 50 19.7 17.3 26.1 34.8 42.5 16.3 14.0 20.2 25.3 29.4

100 14.3 11.2 16.3 21.7 29.1 12.0 9.8 13.8 18.5 23.1

0.8 3.75 50 5.4 7.7 11.4 14.5 13.6 5.2 8.0 11.0 13.6 12.5

100 5.2 8.2 10.9 13.3 12.2 5.2 7.7 10.5 13.1 12.1

7 50 9.3 15.4 27.1 37.8 37.7 9.1 15.4 25.9 34.5 34.4

100 8.8 15.1 25.2 35.5 35.1 8.7 14.6 24.4 33.8 33.5

13.5 50 30.3 50.3 80.4 91.5 92.2 29.0 48.9 77.1 88.8 89.4

100 26.6 46.5 77.2 91.1 92.2 25.5 44.8 74.8 89.2 90.7
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Table 5. Continued.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single periodic volatility shift

Case 3 0.33 0.2 3.75 50 6.2 14.0 21.2 27.8 24.4 6.0 13.6 21.7 27.9 24.4

100 6.4 14.6 22.1 29.6 25.3 6.4 14.5 21.5 29.3 25.6

7 50 12.4 30.7 48.1 63.2 60.2 12.1 29.9 48.5 63.2 60.0

100 12.2 29.8 48.8 64.5 61.5 12.1 29.8 48.7 63.9 61.2

13.5 50 39.3 72.0 90.7 96.1 96.0 38.3 71.3 91.2 96.4 96.4

100 36.1 69.6 92.3 98.0 98.1 35.9 69.0 92.1 98.0 98.2

0.8 3.75 50 7.2 11.4 14.7 17.6 16.7 7.0 11.1 14.6 17.1 17.1

100 7.7 11.8 14.2 17.0 17.4 7.8 11.5 14.2 16.7 16.8

7 50 13.1 21.3 29.3 37.3 38.6 13.2 21.3 28.9 36.2 38.7

100 12.9 21.0 28.0 36.2 39.6 13.4 20.8 28.0 35.5 38.1

13.5 50 32.4 47.8 63.9 75.8 79.0 32.6 48.1 64.1 75.8 79.7

100 30.7 47.0 63.1 77.5 83.1 31.4 46.3 63.3 77.3 82.4

3 0.2 3.75 50 7.9 2.4 2.3 1.8 2.6 6.8 1.9 1.8 1.5 2.3

100 6.2 1.5 1.4 0.8 1.4 5.4 1.5 1.4 0.9 1.5

7 50 8.5 4.5 4.7 4.9 6.7 7.1 3.5 3.8 3.8 4.8

100 6.4 2.9 2.8 2.6 3.6 5.4 2.5 2.6 2.5 3.3

13.5 50 19.7 17.3 26.1 34.8 42.5 16.3 14.0 20.2 25.3 29.4

100 14.3 11.2 16.3 21.7 29.1 12.0 9.8 13.8 18.5 23.1

0.8 3.75 50 5.4 7.7 11.4 14.5 13.6 5.2 8.0 11.0 13.6 12.5

100 5.2 8.2 10.9 13.3 12.2 5.2 7.7 10.5 13.1 12.1

7 50 9.3 15.4 27.1 37.8 37.7 9.1 15.4 25.9 34.5 34.4

100 8.8 15.1 25.2 35.5 35.1 8.7 14.6 24.4 33.8 33.5

13.5 50 30.3 50.3 80.4 91.5 92.2 29.0 48.9 77.1 88.8 89.4

100 26.6 46.5 77.2 91.1 92.2 25.5 44.8 74.8 89.2 90.7

Case 4 0.2 3.75 50 8.7 3.0 2.3 2.3 3.4 7.0 2.4 2.2 1.8 2.5

100 6.4 1.7 1.3 1.0 1.6 5.9 1.6 1.3 1.1 1.6

7 50 9.9 5.3 5.2 6.1 7.6 8.0 4.5 4.6 4.5 5.8

100 6.6 3.3 2.8 2.9 3.9 6.4 2.8 2.8 2.8 3.5

13.5 50 21.7 19.0 23.7 33.8 38.1 18.3 16.0 19.2 24.9 27.6

100 14.4 12.6 14.9 21.2 25.9 13.5 10.7 13.1 17.2 20.5

0.8 3.75 50 5.9 9.0 12.4 15.3 14.1 5.6 8.4 11.3 13.7 12.5

100 6.2 8.7 11.2 13.2 13.0 6.0 8.2 10.8 13.0 12.6

7 50 9.7 17.5 26.7 36.7 35.2 9.3 16.5 23.9 32.0 31.0

100 9.8 16.7 23.1 32.6 31.9 9.2 15.4 21.8 30.8 30.1

13.5 50 31.0 52.3 71.6 87.3 86.6 29.9 49.5 66.0 81.6 80.9

100 27.9 47.6 65.3 83.8 83.6 26.1 45.3 62.5 80.6 80.7
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Table 6. Finite sample size-adjusted power of conventional and wild bootstrap HEGY tests using Step 2a of

Algorithm 1. GLS de-trending.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

3.75 50 7.6 17.4 25.8 35.2 31.1 7.3 17.4 26.0 35.2 31.1

100 8.4 18.8 25.1 35.3 31.9 8.3 18.4 24.5 34.4 31.2

7 50 15.5 39.1 62.5 78.9 74.4 14.9 39.3 62.6 78.4 74.3

100 15.9 40.4 61.9 78.9 75.9 16.0 39.7 60.9 77.8 75.0

13.5 50 46.8 82.5 96.4 98.6 98.2 45.3 82.3 96.5 98.8 98.4

100 45.2 84.0 98.0 99.7 99.6 45.0 83.4 97.7 99.7 99.5

Periodic heteroskedasticity

Case 1 3.75 50 8.2 18.6 29.1 37.4 30.6 8.2 18.5 28.3 36.8 30.2

100 9.1 18.4 26.5 35.5 30.4 9.1 18.8 26.1 35.2 30.5

7 50 16.0 40.3 61.3 76.5 68.6 15.9 40.0 59.4 75.6 68.2

100 16.9 39.8 58.2 75.5 68.8 16.7 40.6 57.4 74.2 68.7

13.5 50 47.1 82.3 94.8 98.4 97.3 46.8 81.8 94.5 98.4 97.5

100 46.2 83.2 95.2 99.1 98.3 45.6 83.3 94.9 99.0 98.4

Case 2 3.75 50 10.2 20.5 20.6 20.8 21.0 10.3 19.6 19.7 20.3 19.8

100 10.2 19.4 18.6 19.3 19.8 10.3 19.1 17.8 18.3 18.9

7 50 19.3 42.3 44.7 44.1 43.1 19.2 40.8 42.8 43.1 40.9

100 18.9 41.4 41.1 42.0 41.4 18.7 40.6 39.6 40.2 39.9

13.5 50 50.3 82.3 85.1 84.3 83.1 50.2 80.8 83.7 83.2 81.2

100 48.9 83.8 84.4 84.8 83.6 48.3 83.3 83.2 83.4 82.1

Single volatility shift

Case 1 0.33 0.2 3.75 50 7.6 17.4 25.8 35.2 31.1 7.3 17.4 26.0 35.2 31.1

100 8.4 18.8 25.1 35.3 31.9 8.3 18.4 24.5 34.4 31.2

7 50 15.5 39.1 62.5 78.9 74.4 14.9 39.3 62.6 78.4 74.3

100 15.9 40.4 61.9 78.9 75.9 16.0 39.7 60.9 77.8 75.0

13.5 50 46.8 82.5 96.4 98.6 98.2 45.3 82.3 96.5 98.8 98.4

100 45.2 84.0 98.0 99.7 99.6 45.0 83.4 97.7 99.7 99.5

0.8 3.75 50 8.2 17.7 18.6 23.7 23.3 8.3 17.8 18.8 23.2 23.0

100 8.9 17.6 15.5 21.3 20.3 8.8 18.5 16.1 20.1 20.8

7 50 15.7 34.5 41.5 52.5 53.9 16.1 34.2 40.5 51.4 53.1

100 17.1 34.4 37.8 50.2 52.0 17.1 35.7 37.4 48.6 51.9

13.5 50 39.0 64.4 77.6 87.3 88.6 39.4 64.8 77.4 87.4 89.4

100 40.5 65.8 76.3 88.9 92.1 40.4 66.9 76.2 88.4 92.2

3 0.2 3.75 50 9.0 23.9 49.0 58.0 48.7 9.1 23.2 47.3 56.6 46.8

100 8.4 22.7 47.5 57.2 45.5 8.3 22.7 46.7 56.6 45.0

7 50 17.6 45.5 83.6 90.6 86.9 17.3 43.7 82.3 90.0 86.2

100 15.9 45.7 82.9 91.6 87.1 16.4 45.4 81.9 91.4 86.4

13.5 50 46.0 80.5 99.2 99.8 99.7 45.9 80.5 99.2 99.9 99.8

100 43.0 82.2 99.4 99.9 99.9 42.8 81.7 99.5 99.9 99.9

0.8 3.75 50 6.4 20.8 39.1 53.0 41.1 6.7 20.8 39.5 52.0 40.7

100 6.7 22.5 39.7 53.5 41.6 6.7 22.2 40.0 52.9 42.1

7 50 14.0 46.8 82.3 93.5 87.6 14.4 46.5 82.1 93.0 87.6

100 14.0 50.2 83.0 94.9 89.4 14.2 48.8 82.8 94.4 89.5

13.5 50 47.3 88.7 99.5 99.9 99.6 47.1 88.6 99.7 99.9 99.8

100 46.7 91.9 99.8 100.0 100.0 46.7 91.1 99.8 100.0 100.0
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Table 6. Continued.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single periodic volatility shift

Case 3 0.33 0.2 3.75 50 7.6 17.4 25.8 35.2 31.1 7.3 17.4 26.0 35.2 31.1

100 8.4 18.8 25.1 35.3 31.9 8.3 18.4 24.5 34.4 31.2

7 50 15.5 39.1 62.5 78.9 74.4 14.9 39.3 62.6 78.4 74.3

100 15.9 40.4 61.9 78.9 75.9 16.0 39.7 60.9 77.8 75.0

13.5 50 46.8 82.5 96.4 98.6 98.2 45.3 82.3 96.5 98.8 98.4

100 45.2 84.0 98.0 99.7 99.6 45.0 83.4 97.7 99.7 99.5

0.8 3.75 50 8.2 17.7 18.6 23.7 23.3 8.3 17.8 18.8 23.2 23.0

100 8.9 17.6 15.5 21.3 20.3 8.8 18.5 16.1 20.1 20.8

7 50 15.7 34.5 41.5 52.5 53.9 16.1 34.2 40.5 51.4 53.1

100 17.1 34.4 37.8 50.2 52.0 17.1 35.7 37.4 48.6 51.9

13.5 50 39.0 64.4 77.6 87.3 88.6 39.4 64.8 77.4 87.4 89.4

100 40.5 65.8 76.3 88.9 92.1 40.4 66.9 76.2 88.4 92.2

3 0.2 3.75 50 9.0 23.9 49.0 58.0 48.7 9.1 23.2 47.3 56.6 46.8

100 8.4 22.7 47.5 57.2 45.5 8.3 22.7 46.7 56.6 45.0

7 50 17.6 45.5 83.6 90.6 86.9 17.3 43.7 82.3 90.0 86.2

100 15.9 45.7 82.9 91.6 87.1 16.4 45.4 81.9 91.4 86.4

13.5 50 46.0 80.5 99.2 99.8 99.7 45.9 80.5 99.2 99.9 99.8

100 43.0 82.2 99.4 99.9 99.9 42.8 81.7 99.5 99.9 99.9

0.8 3.75 50 6.4 20.8 39.1 53.0 41.1 6.7 20.8 39.5 52.0 40.7

100 6.7 22.5 39.7 53.5 41.6 6.7 22.2 40.0 52.9 42.1

7 50 14.0 46.8 82.3 93.5 87.6 14.4 46.5 82.1 93.0 87.6

100 14.0 50.2 83.0 94.9 89.4 14.2 48.8 82.8 94.4 89.5

13.5 50 47.3 88.7 99.5 99.9 99.6 47.1 88.6 99.7 99.9 99.8

100 46.7 91.9 99.8 100.0 100.0 46.7 91.1 99.8 100.0 100.0

Case 4 0.2 3.75 50 9.6 24.3 42.3 53.3 42.6 9.5 23.2 42.5 52.7 41.9

100 8.8 23.3 42.1 52.8 40.6 8.7 22.6 42.3 52.0 40.7

7 50 18.7 45.5 73.9 86.0 78.2 18.6 44.5 73.9 85.4 77.1

100 17.3 46.3 73.8 87.1 77.6 17.0 45.3 73.8 86.7 77.1

13.5 50 47.6 80.3 96.9 99.4 98.6 47.9 80.3 97.1 99.6 98.7

100 45.1 82.5 97.1 99.7 98.8 44.1 81.8 97.0 99.6 99.0

0.8 3.75 50 6.9 21.7 39.3 52.1 39.8 7.0 21.9 38.9 50.6 38.9

100 7.4 22.7 39.2 51.1 39.3 7.5 22.4 39.0 50.8 38.7

7 50 15.0 46.4 76.1 90.0 79.6 14.8 46.4 75.3 88.9 78.6

100 15.3 49.7 75.8 90.9 81.5 15.5 49.1 75.8 90.5 80.9

13.5 50 48.8 88.3 98.9 99.7 99.3 48.4 88.3 99.0 99.8 99.3

100 47.0 91.4 99.3 99.9 99.8 46.6 90.8 99.1 100.0 99.7
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S.1 Contents

Section S.1 of this supplement contains mathematical proofs of Lemma 1, Propositions 1 and 2, and

Corollary 1. Section S.2 contains additional Monte Carlo results relating to the wild bootstrap HEGY

tests which use the seasonal block wild re-sampling scheme outlined in Step 2b of Algorithm 1.

S.2 Mathematical Proofs

Preliminaries:

In order to simplify the presentation we assume that the investigator has available sufficient pre-sample

values of the data such that (9) can be estimated along the index Sn+ s = S+ 1, ..., T . This does not

affect the results which follow and is simply a convenient re-basing of the sample index.

Throughout this appendix we will make use of the following definitions. Let c0, cS/2, ck and c̃k,

k = 1, . . . , S∗, denote the (mutually orthogonal) S×1 selection vectors defined as: c0 := [1, 1, 1, . . . , 1]′,

cS/2 := [1,−1, 1,−1 . . . , 1]′, ck := [cos(ωk[1 − S]), cos(ωk[2 − S]), . . . , cos(0)]′ and c̃k := [sin(ωk[1 −
S]), sin(ωk[2−S]), . . . , sin(0)]′. We also introduce the S×S circulant matrices: C0 := circ[1, 1, 1, . . . , 1],

CS/2 := circ[1,−1, 1, . . . ,−1] and for ωi = 2πi/S, Ci := circ[cos(0), cos(ωi), cos(2ωi), . . . , cos((S −
1)ωi)] and C̃i := circ[sin(0), sin(ωi), sin(2ωi), . . . , sin((S − 1)ωi)], i = 1, . . . , S∗. As discussed in Smith

et al. (2009, pp.555-556), these matrices are mutually orthogonal and have the following properties:

C0C0 = SC0, CS/2CS/2 = SCS/2, CjC̃j = (S/2)C̃j , C̃jC̃j = (S/2)Cj , j = 1, . . . , S∗. Notice that

C0 = c0c
′
0, CS/2 = cS/2c

′
S/2, Cj = cjc

′
j and C̃j = cj c̃

′
j , where

c′k :=

cos(ωk[1− S]), cos(ωk[2− S]), . . . , cos(0)

sin(ωk[1− S]), sin(ωk[2− S]), . . . , sin(0)

 , c̃′k :=

− sin(ωk[1− S]),− sin(ωk[2− S]), . . . ,− sin(0)

cos(ωk[1− S]), cos(ωk[2− S]), . . . , cos(0)

 .
Finally, define Xj,n := [xj,Sn−(S−1), xj,Sn−(S−2), . . . , xj,Sn]′, j = 0, S/2, Xα

j,n := [xαj,Sn−(S−1),

xαj,Sn−(S−2), . . . , x
α
j,Sn]′ and Xβ

j,n := [xβj,Sn−(S−1), x
β
j,Sn−(S−2), . . . , x

β
j,Sn]′, j = 1, . . . , S∗. With Xn de-

fined as in (10), the following identities hold: Xj,n = CjXn, j = 0, S/2, Xα
j,n = CjXn, j = 0, . . . , S∗

and Xβ
j,n = C̃jXn, j = 1, . . . , S∗.

Proof of Lemma 1:

Under Assumption 1, by Lemma 1 in Boswijk et al. (2016) it holds that

N−1/2

b·Nc∑
n=2

En ⇒M(·). (S.1)

Consider now the representation given in (11). By the (multivariate) Beveridge-Nelson decomposition,

we have that Un = Ψ(1)En + Ẽn−1 − Ẽn, where Ẽn = Ψ̃(L)En =
∑∞

j=0 Ψ̃jEn−j , Ψ̃j :=
∑∞

k=j+1 Ψk. By

summing over n and multiplying by N−1/2 we obtain, for any r ∈ [0, 1],

N−1/2

brNc∑
n=2

Un = Ψ(1)N−1/2

brNc∑
n=2

En +N−1/2(Ẽ0 − ẼbrNc). (S.2)
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Under Assumptions 1 and 2, the second term on the right hand side of (S.2) is of Op(N
−1) uniformly in

r ∈ [0, 1], provided the sequence {Ψ̃j} is absolutely summable, i.e. if
∑∞

j=0 ||Ψ̃j || <∞. But absolute

summability trivially holds since
∑∞

j=0 j||Ψj || <∞ is implied by
∑∞

j=0 j|ψj | <∞, which holds under

Assumption 2; see e.g. Burridge and Taylor (2001b, pp.374, 377). Finally, the result in (12) follows

from (S.1) and the continuous mapping theorem (CMT).

Proof of Proposition 1:

To prove Proposition 1 we initially proceed as in Burridge and Taylor (2001a) and re-write the

regression (9) in matrix form as y = [Y
...Zp]βββ + u, where y := [∆SxS+1, . . . ,∆SxSn]′, Y is the

matrix containing regressors x0,Sn+s−1, xαk,Sn+s−1 and xβk,Sn+s−1, k = 1, . . . , S∗, and xS/2,Sn+s−1,

i.e. Y := [y0,y
α
1 ,y

β
1 , . . . ,y

α
S∗ ,y

β
S∗ ,yS/2]; Zp is the matrix containing p lags of seasonal differences,

{∆SxSn+s−j}pj=1, βββ := [π0, πα,1, . . . , πα,S∗ , πβ,1, . . . , πβ,S∗ , πS/2,

φ1, . . . , φp]
′, and u : = [up+1, . . . , uSn]′. Then,

D−1
N [β̂ββ − βββ] =

 N−2Y′Y N−3/2Y′Zp

N−3/2Z′pY T−1Z′pZp

−1  N−1Y′u

N−1/2Z′pu

 (S.3)

where DN := diag[(SN)−1IS , (SN)−1/2Ip]. Because N−3/2Z′pY = op(1) (as implied by y′izj being

of Op(N), where yi is i-th vector of matrix Y and zj is j-th vector of matrix Zp, i = 1, . . . , S and

j = 1, . . . , p), the inverse matrix in (S.3) is asymptotically block diagonal. Moreover, N−2Y′Y weakly

converges to an S × S diagonal matrix (cf. Burridge and Taylor, 2001a, result (v) of Lemma 3.2(a)),

and so we can write the so-called normalised bias statistics as

Nπ̂j =
T−1y′ju

T−2y′jyj
+ op(1) =

T−1
∑N

n=2

∑0
s=1−S xj,Sn+sεSn+s

T−2
∑N

n=2

∑0
s=1−S x

2
j,Sn+s

+ op(1), j = 0, S/2 (S.4)

Nπ̂α,j =
T−1yα′j u

T−2yα′j yαj
+ op(1) =

T−1
∑N

n=2

∑0
s=1−S x

α
j,Sn+sεSn+s

T−2
∑N

n=2

∑0
s=1−S (xαj,Sn+s)

2
+ op(1), j = 1, . . . , S∗ (S.5)

Nπ̂β,j =
T−1yβ′j u

T−2yβ′j yβj
+ op(1) =

T−1
∑N

n=2

∑0
s=1−S x

β
j,Sn+sεSn+s

T−2
∑N

n=2

∑0
s=1−S (xβj,Sn+s)

2
+ op(1), j = 1, . . . , S∗. (S.6)

To find the limiting distribution of the normalised bias statistics, first notice that, using Lemma

1, the CMT and proceeding as in Boswijk et al. (2016, proof of Lemma 1), the following results hold:

N−1
N∑
n=2

Xn−1E ′n ⇒ Ψ(1)

∫ 1

0
M(r)dM(r)′ =: Q1

N−1
N∑
n=2

Xn−1X
′
n−1 ⇒ Ψ(1)

∫ 1

0
M(r)M(r)′drΨ(1)′ =: Q2.

Consider next the denominators of the normalised bias statistics in (S.4)-(S.6). By standard
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manipulations (see Smith et al., 2009, pp. 557-560)

T−2
N∑
n=2

0∑
s=1−S

x2
j,Sn+s = T−2

N∑
n=2

X′j,nXj,n = T−2
N∑
n=2

S
(
X′n−1CjXn−1

)
+ op(1) (S.7)

= T−2
N∑
n=2

S
(
X′n−1cjc

′
jXn−1

)
+ op(1)

= T−2
N∑
n=2

tr{S
(
c′jXn−1X

′
n−1cj

)
}+ op(1) = Sc′j

1

T 2

N∑
n=2

Xn−1X
′
n−1cj + op(1)

⇒ 1

S
c′jΨ(1)

∫ 1

0
M(r)M(r)′drΨ(1)′cj =

1

S
c′jQ2cj , j = 0, S/2,

where “tr” denotes the usual matrix trace operator. Furthermore,

T−2
N∑
n=2

0∑
1−S

(xαj,Sn+s)
2 = T−2

N∑
n=2

Xα′
j,nX

α
j,n = T−2

N∑
n=2

S

2

(
X′n−1CjXn−1

)
+ op(1) (S.8)

= T−2
N∑
n=2

S

2

(
X′n−1cjc

′
jXn−1

)
+ op(1) = T−2

N∑
n=2

S

2
tr{
(
c′jXn−1X

′
n−1cj

)
}+ op(1)

= T−2
N∑
n=2

S

2
tr

c′j
c̃′j

Xn−1X
′
n−1

[
cj c̃j

]+ op(1)

= T−2
N∑
n=2

S

2
tr

c′jXn−1X
′
n−1cj c′jXn−1X

′
n−1c̃j

c̃′jXn−1X
′
n−1cj c̃′jXn−1X

′
n−1c̃j

+ op(1)

=
S

2
T−2

N∑
n=2

(c′jXn−1X
′
n−1cj + c̃′jXn−1X

′
n−1c̃j) + op(1)

⇒ 1

2S

(
c′jΨ(1)

∫ 1

0
M(r)M(r)′drΨ(1)′cj + c̃′jΨ(1)

∫ 1

0
M(r)M(r)′drΨ(1)′c̃j

)
=

1

2S

[
c′jQ2cj + c̃′jQ2c̃j

]
, j = 1, . . . , S∗,

and

T−2
N∑
n=2

0∑
1−S

(xβj,Sn+s)
2 = T−2

N∑
n=2

Xβ′

j,nX
β
j,n = T−2

N∑
n=2

(
X′n−1C̃jC̃jXn−1

)
+ op(1) (S.9)

= T−2
N∑
n=2

S

2

(
X′n−1CjXn−1

)
+ op(1)⇒ 1

2S

[
c′jQ2cj + c̃′jQ2c̃j

]
, j = 1, . . . , S∗.

Next, consider the numerators of the zero and Nyquist frequency normalised bias statistics. By

similar arguments to those used above we obtain that

T−1
N∑
n=2

0∑
s=1−S

xj,Sn+sεSn+s = T−1
N∑
n=2

S
(
X′n−1cjc

′
jEn
)

+ op(1) (S.10)

⇒ 1

S
c′jΨ(1)

∫ 1

0
M(r)dM(r)′cj , j = 0, S/2,
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while, for the seasonal harmonic frequencies,

T−1
N∑
n=2

0∑
s=1−S

xαj,Sn+sεSn+s = T−1
N∑
n=2

S
(
X′n−1cjc

′
jEn
)

+ op(1) (S.11)

⇒ 1

S

(
c′jΨ(1)

∫ 1

0
M(r)dM(r)′cj + c̃′jΨ(1)

∫ 1

0
M(r)dM(r)′c̃j

)
=

1

S

[
c′jQ1cj + c̃′jQ1c̃j

]
, j = 1, . . . , S∗,

and

T−1
N∑
n=2

0∑
s=1−S

xβj,Sn+sεSn+s = T−1
N∑
n=2

S
(
X′n−1c̃jc

′
jEn
)

+ op(1) (S.12)

⇒ 1

2S

(
c′jΨ(1)

∫ 1

0
M(r)dM(r)′c̃j − c̃′jΨ(1)

∫ 1

0
M(r)dM(r)′cj

)
=

1

2S

[
c′jQ1c̃j − c̃′jQ1cj

]
, j = 1, . . . , S∗.

Finally, by noting, that σ̂2 := T−1
∑N

n=2

∑0
s=1−S(ε̂Sn+s)

2 →p
1
S c
′
0Σ(1)c0 and that the Ψ(1) matrix

drops out of the representations for the limiting distributions of the statistics (this result is demon-

strated in the proof of Corollary 1 below), the stated results obtain.

Proof of Corollary 1:

First we define the S (normalised) variance-transformed Brownian motion processes

Bη,i(·) :=
(
c′iΣ(1)ci

)−1/2
c′iM(·), i = 0, S/2,

Bη,k(·) :=
(
c′kΣ(1)ck

)−1/2
c′kM(·), B∗η,k(·) :=

(
c̃′kΣ(1)c̃k

)−1/2
c̃′kM(·), k = 1, . . . , S∗

which are seen to be mutually independent because of the mutual orthogonality of the selection

vectors ci, i = 0, S/2, ck and c̃k, k = 1, . . . , S∗. Consider first the t0 statistic and write its limiting

null distribution as

t0 ⇒
1
S c
′
0Q1c0√

1
S c
′
0Q2c0 · c′0Σ(1)c0

=
1
S c
′
0Ψ(1)Q∗1c0√

c′0Ψ(1)Q∗2Ψ(1)′c0 · c′0Σ(1)c0

=
ψ(1)c′0Q

∗
1c0√

ψ(1)c′0Q
∗
2c0ψ(1) · c′0Σ(1)c0

=
c′0

(∫ 1
0 M(r)dM(r)′

)
c0√

c′0

(∫ 1
0 M(r)M(r)′dr

)
c0 · c′0Σ(1)c0

=

∫ 1
0 Bη,0(r)dBη,0(r)√∫ 1

0 B
2
η,0(r)dr

where we have used the result that c′0Ψ(1) = ψ(1)c′0. The proof for the Nyquist frequency tS/2

statistic is similar except that we use the corresponding result that cS/2Ψ(1) = ψ(−1)cS/2 and that

c′S/2Σ(1)cS/2 = c′0Σ(1)c0. Next, consider the Fk, k = 1, ..., S∗, statistics. By using the results

that c′kΨ(1) = ak c̃
′
k + bkc

′
k and c̃′kΨ(1) = bk c̃

′
k − akc

′
k, where ak := Im(ψ[exp(iωk)]) and bk :=

Re(ψ[exp(iωk)]), k = 1, . . . , S∗, Re(·) and Im(·) denoting the real and imaginary parts of their
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arguments, respectively (see Smith et al., 2009), we have that, for k = 1, ..., S∗,

c′kQ1 = (bkc
′
k + ak c̃

′
k)

(∫ 1

0
M(r)dM(r)′

)
, c̃′kQ1 = (bk c̃

′
k − akc′k)

(∫ 1

0
M(r)dM(r)′

)
c′kQ2ck = (bkc

′
k + ak c̃

′
k)

(∫ 1

0
M(r)M(r)′dr

)
(bkc

′
k + ak c̃

′
k)

c̃′kQ2c̃k = (bk c̃
′
k − akc′k)

(∫ 1

0
M(r)M(r)′dr

)
(bk c̃

′
k − akc′k).

Consequently, for each of k = 1, ..., S∗, we have that

(c′kQ1ck + c̃′kQ1c̃k) =
S

2
ak{c′kΣ(1)ck}1/2{c̃′kΣ(1)c̃k}1/2

(∫ 1

0
B∗η,k(r)dBη,k(r)−

∫ 1

0
Bη,k(r)dB

∗
η,k(r)

)
+
S

2
bk

(
{c′kΣ(1)ck}

∫ 1

0
Bη,k(r)dBη,k(r) + {c̃′kΣ(1)c̃k}

∫ 1

0
B∗η,k(r)dB

∗
η,k(r)

)
(c′kQ1c̃k − c̃′kQ1ck) =

S

2
bk{c′kΣ(1)ck}1/2{c̃′kΣ(1)c̃k}1/2

(∫ 1

0
Bη,k(r)dB

∗
η,k(r)−

∫ 1

0
B∗η,k(r)dBη,k(r)

)
+
S

2
ak

(
{c′kΣ(1)ck}

∫ 1

0
Bη,k(r)dBη,k(r) + {c̃′kΣ(1)c̃k}

∫ 1

0
B∗η,k(r)dB

∗
η,k(r)

)
(c′kQ2ck + c̃′kQ2c̃k) =

S

2
(a2
k + b2k)

(
{c′kΣ(1)ck}

∫ 1

0
Bη,k(r)

2dr + {c̃′kΣ(1)c̃k}
∫ 1

0
B2∗
η,k(r)dr

)
and,

(
1
S (c′kQ1ck + c̃′kQ1c̃k)

)2
+
(

1
S (c′kQ1c̃k − c̃′kQ1ck)

)2
=
a2
k + b2k
S

[
{c′kΣ(1)ck}{c̃′kΣ(1)c̃k}

(∫ 1

0
B∗η,k(r)dBη,k(r)−

∫ 1

0
Bη,k(r)dB

∗
η,k(r)

)2

+

(
{c′kΣ(1)ck}

∫ 1

0
Bη,k(r)dBη,k(r) + {c̃′kΣ(1)c̃k}

∫ 1

0
B∗η,k(r)dB

∗
η,k(r)

)2
]
.

The stated results for the Fk, k = 1, ..., S∗, statistics then follow after some routine algebra; notice

in particular that that the nuisance parameter term (a2
k + b2k) arising from the weak dependence in

ut cancels from these expressions. The results for the joint frequency F statistics then follow directly

from the results given above coupled with the asymptotic orthogonality condition; again, see Burridge

and Taylor (2001a, result (v) of Lemma 3.2(a)).

Proof of Proposition 2:

The following proof holds regardless of whether Step 2a or Step 2b is used in Algorithm 1.

Let SbN (r) := N−1/2X∗brNc. Under Assumption 1 we have by Boswijk et al. (2016), Lemma 4, that

SbN (r) = N−1/2

brNc∑
n=2

E∗n ⇒p M(r), (S.13)

where E∗n = [ε∗Sn−(S−1), ε
∗
Sn−(S−2), . . . , ε

∗
Sn]′, because, conditionally on {Ên}Nn=2, SbN (·) is a Gaussian

process with independent increments and covariance kernel E∗(SbN (·)SbN (·)′−1
∑b·Nc

n=2 ÊnÊ
′
n (here E∗
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denotes expectation under bootstrap probability measure P ∗), where N−1
∑brNc

n=2 ÊnÊ
′
n → Σ(r) in

probability uniformly for all u ∈ [0, 1]; see Boswijk et al. (2016), Lemma 4. By the same Lemma,

N−1
N∑
n=2

X∗n−1E
∗′
n ⇒p

∫ 1

0
M(r)dM(r)′ =: Q∗1 and N−1

N∑
n=2

X∗n−1X
∗′
n−1 ⇒p

∫ 1

0
M(r)M(r)′dr =: Q∗2

jointly with (S.13). Therefore, as in the proof of (S.7)-(S.12), we obtain

T−2
N∑
n=2

0∑
s=1−S

x∗2j,Sn+s ⇒p
1

S
c′j

∫ 1

0
M(r)M(r)′drcj , j = 0, S/2,

T−2
N∑
n=2

0∑
1−S

(x∗αj,Sn+s)
2 ⇒p

1

2S

[
c′jQ

∗
2cj + c̃′jQ

∗
2c̃j
]
, j = 1, . . . , S∗,

T−2
N∑
n=2

0∑
1−S

(x∗βj,Sn+s)
2 ⇒p

1

2S

[
c′jQ

∗
2cj + c̃′jQ

∗
2c̃j
]
, j = 1, . . . , S∗,

T−1
N∑
n=2

0∑
s=1−S

x∗j,Sn+sε
∗
Sn+s ⇒p

1

S
c′j

∫ 1

0
M(r)dM(r)′cj , j = 0, S/2

T−1
N∑
n=2

0∑
s=1−S

x∗αj,Sn+sε
∗
Sn+s ⇒p

1

2S

[
c′jQ

∗
1cj + c̃′jQ

∗
1c̃j
]
, j = 1, . . . , S∗,

T−1
N∑
n=2

0∑
s=1−S

x∗βj,Sn+sε
∗
Sn+s ⇒p

1

2S

[
c′jQ

∗
1c̃j − c̃′jQ∗1cj

]
, j = 1, . . . , S∗.

Because the (asymptotic) orthogonality results also hold for the bootstrap series, all that remains

is to establish the limiting behaviour of σ̂∗2 := T−1
∑N

n=2

∑0
s=1−S(ε̂∗Sn+s)

2. To that end, observe

first that under the conditions of Proposition 2, σ̂∗2 = T−1
∑N

n=2

∑0
s=1−S (∆Sx

∗
Sn+s)

2 +o∗p(1) =

T−1
∑N

n=2

∑0
s=1−S (ε∗Sn+s)

2 + o∗p(1). Now T−1
∑N

n=2

∑0
s=1−S (ε∗Sn+s)

2 = T−1
∑N

n=2

∑0
s=1−S ε̂

2
Sn+sw

2
n

= T−1
∑N

n=2

∑0
s=1−S ε̂

2
Sn+s+ T−1

∑N
n=2

∑0
s=1−S ε̂

2
Sn+sξn =: f1 +f2, where ξn := w2

n−1 is an indepen-

dent sequence of centered χ2(1) random variables, and f1 and f2 are implicitly defined. The first term,

f1, converges to 1
S c
′
0Σ(1)c0, while, conditionally on the original sample, E∗(f2

2 ) is of Op(T
−1). The lat-

ter because E∗(T−1
∑N

n=2

∑0
s=1−S ε̂

2
Sn+sξn)2 = T−2E∗(

∑N
ñ=1

∑0
s̃=1−S

∑N
n=2

∑0
s=1−S ε̂

2
Sn+sε̂

2
Sñ+s̃ξnξñ)

= T−2E∗(
∑N

n=2

∑0
s=1−S ε̂

4
Sn+sE(ξ2

n))2 = 4T−1(T−1
∑N

n=2

∑0
s=1−S ε̂

4
Sn+s)

2 = Op(T
−1), by virtue

of the fact that T−1
∑N

n=2

∑0
s=1−S ε

4
Sn+s is of Op(1) under Assumption 1. Consequently, σ̂∗2

p∗→
1
S c
′
0Σ(1)c0.

The results stated in the first part of the proposition regarding the first-order limiting distributions

of the bootstrap HEGY statistics then follow straightforwardly. Turning to the second part of the

proposition, consider first the bootstrap t∗0 statistic. The result that t∗0 ⇒p ξη,0 implies that, uniformly

in probability, G∗0,T (·) → G0 (·), where G0 (·) denotes the cdf of ξη,0. As with the proof of Corollary

1 of Hansen (2000), establishing that P ∗T converges weakly to U [0, 1] under the conditions of the

proposition is then entirely straightforward and, hence, is omitted in the interests of brevity. The

corresponding results for the other HEGY statistics follow in similar fashion.
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S.3 Additional Monte Carlo Results

This section contains additional Monte Carlo results relating to the wild bootstrap HEGY tests which

use the seasonal block wild re-sampling scheme outlined in Step 2b of Algorithm 1. Tables S.1-S.6 give

complementary results to those given in Tables 1-6 respectively. The Monte Carlo DGP and set-up of

these experiments were otherwise exactly as detailed in Section 5.
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Table S.1. Empirical sizes of conventional and wild bootstrap HEGY tests using Step 2b of Algorithm 1. OLS

de-trending.

Σ δ τ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Model 1: Homoskedasticity

50 3.1 4.6 3.7 4.6 4.4 4.6 5.3 4.1 4.0 3.9

100 3.9 4.7 4.2 4.6 4.7 5.0 5.2 4.2 4.3 4.3

Model 2: Periodic heteroskedasticity

Case 1 50 4.0 4.7 6.0 6.3 6.6 6.2 5.5 5.4 4.9 4.8

100 4.5 5.1 6.5 6.4 6.9 5.9 5.3 5.3 5.0 5.0

Case 2 50 3.7 4.4 9.1 13.2 13.0 7.8 5.7 5.7 5.7 5.8

100 4.2 4.9 9.4 13.3 13.0 6.6 5.3 5.5 5.3 5.4

Model 3: Single volatility shift

0.33 0.2 50 1.9 2.1 1.4 1.4 1.4 4.1 4.6 3.6 3.5 3.5

100 2.6 2.3 1.6 1.5 1.3 4.7 4.8 4.0 4.1 4.0

0.8 50 5.0 5.0 6.5 6.9 6.4 5.3 5.2 4.6 4.4 4.2

100 6.1 5.9 7.6 7.9 7.4 5.2 5.0 5.2 4.5 4.4

3 0.2 50 20.1 27.5 42.6 54.6 61.5 9.8 10.5 9.8 9.8 9.0

100 21.6 29.0 44.4 56.8 62.3 7.2 7.9 7.8 7.5 6.8

0.8 50 4.7 6.3 6.6 7.7 8.4 5.1 5.5 4.8 4.1 4.0

100 5.6 6.4 6.8 7.7 8.6 4.9 4.9 4.5 4.0 4.1

Model 4: Single periodic volatility shift

Case 1 0.33 0.2 50 2.5 2.1 1.8 1.6 1.8 5.7 4.4 3.9 3.6 3.9

100 2.8 2.3 2.2 1.6 1.9 5.1 4.7 4.2 4.1 4.1

0.8 50 5.4 5.3 6.9 7.0 7.7 6.1 5.0 5.1 4.8 4.9

100 6.7 6.1 7.8 7.8 8.3 6.0 5.2 4.8 4.5 4.7

3 0.2 50 19.8 27.5 40.0 51.5 56.9 9.7 10.2 10.4 9.7 9.4

100 21.5 28.6 40.7 53.3 57.8 7.9 7.9 8.1 7.4 7.5

0.8 50 4.9 6.5 8.3 9.2 10.4 5.8 5.5 5.2 4.8 4.7

100 5.7 6.8 8.6 9.2 10.7 5.6 5.2 4.9 4.8 4.8

Case 2 0.33 0.2 50 2.5 2.3 4.6 6.5 6.9 7.7 4.7 4.6 4.8 4.9

100 2.8 2.4 4.4 6.5 6.8 6.5 4.6 4.6 4.6 4.8

0.8 50 5.8 6.3 10.8 14.2 14.6 8.8 6.1 6.1 6.2 6.6

100 6.2 6.0 11.0 14.6 15.1 6.9 5.3 5.8 5.7 5.6

3 0.2 50 18.3 27.1 38.1 44.8 47.4 11.7 11.4 11.5 11.5 12.1

100 20.7 27.9 38.3 45.0 47.3 8.4 8.0 8.0 8.0 8.2

0.8 50 5.0 6.3 12.0 16.5 16.6 8.2 6.0 6.2 6.3 6.4

100 6.0 7.6 12.7 17.5 17.5 7.1 6.0 5.9 6.0 5.9

Case 3 0.33 0.2 50 2.4 2.1 2.2 1.8 2.2 4.2 4.7 4.0 3.9 4.1

100 2.9 2.2 2.5 2.2 2.3 4.4 4.5 4.3 4.1 4.0

0.8 50 3.7 4.4 4.2 4.4 4.7 4.6 5.3 4.5 4.3 4.0

100 4.6 4.9 4.7 4.8 5.0 4.9 4.9 4.7 4.2 4.5

3 0.2 50 5.7 7.4 10.5 11.5 12.4 6.5 6.2 5.7 5.0 4.6

100 5.8 8.2 11.3 12.4 12.5 5.3 5.6 5.2 4.9 4.7

0.8 50 3.7 5.0 5.0 5.4 5.8 5.1 5.6 4.6 4.1 3.9

100 4.4 5.3 5.3 5.7 5.9 5.0 4.9 4.6 3.9 4.1

Case 4 0.2 50 3.4 4.5 6.0 6.1 6.8 4.3 5.1 4.9 4.5 4.0

100 4.0 4.7 6.3 6.1 6.6 4.7 5.1 5.1 4.9 4.4

0.8 50 3.8 4.2 5.3 5.4 6.1 5.2 5.6 5.1 4.4 4.2

100 4.0 4.6 5.7 5.8 6.2 5.3 5.5 5.2 4.9 4.8
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Table S.2. Empirical sizes of conventional and wild bootstrap HEGY tests using Step 2b of Algorithm 1.

Local GLS de-trending.

Σ δ τ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Model 1: Homoskedasticity

50 5.9 8.7 6.6 8.1 8.7 4.8 4.9 4.6 4.5 4.3

100 5.2 7.2 5.8 5.8 6.7 4.6 5.1 4.8 4.4 4.8

Model 2: Periodic heteroskedasticity

Case 1 50 6.5 9.6 6.5 7.5 9.6 5.8 5.4 4.7 4.6 4.8

100 6.1 7.1 5.7 6.3 7.9 5.9 4.9 4.7 4.7 5.1

Case 2 50 6.1 9.1 10.1 13.3 13.6 8.4 5.1 5.3 5.2 5.7

100 5.2 7.5 9.7 12.5 12.2 6.4 5.1 5.2 5.3 5.4

Model 3: Single volatility shift

0.33 0.2 50 6.7 10.1 9.3 10.9 11.4 4.6 5.1 4.6 4.7 4.2

100 6.3 8.7 9.0 9.5 9.9 4.4 4.9 4.7 4.6 4.4

0.8 50 10.2 14.6 19.7 24.5 24.2 5.4 5.7 6.3 6.0 5.8

100 10.7 12.6 19.7 23.7 23.3 5.5 5.4 5.4 5.5 5.5

3 0.2 50 11.6 13.5 6.6 9.9 14.0 6.1 5.8 5.6 5.6 5.5

100 9.2 10.2 5.7 7.4 9.6 5.4 5.4 5.3 5.3 5.2

0.8 50 6.7 9.3 5.6 6.9 9.0 4.7 4.6 4.3 4.2 4.2

100 6.1 7.3 4.7 5.2 6.2 4.7 4.8 4.4 4.1 4.2

Model 4: Single periodic volatility shift

Case 1 0.33 0.2 50 7.3 10.5 9.3 10.6 12.3 5.9 5.0 5.1 4.7 4.8

100 6.8 9.0 8.4 9.5 10.7 5.3 5.0 5.1 4.8 4.7

0.8 50 10.8 14.8 17.7 21.6 23.5 6.5 5.7 6.0 5.6 5.4

100 10.8 12.6 17.2 21.2 22.5 6.1 5.6 5.5 5.6 5.4

3 0.2 50 11.4 12.9 7.1 10.0 15.2 7.0 5.9 5.4 5.5 6.1

100 9.4 9.8 6.0 7.3 10.7 5.7 5.2 5.1 4.8 4.8

0.8 50 7.2 9.6 5.9 6.9 10.0 5.7 4.6 4.8 4.3 4.5

100 6.7 7.3 4.7 5.3 7.4 5.9 4.8 4.5 4.4 4.8

Case 2 0.33 0.2 50 7.0 10.5 12.8 16.1 16.1 8.1 5.1 5.4 5.3 5.6

100 6.8 8.6 11.9 14.9 14.8 6.7 4.6 4.7 4.6 4.8

0.8 50 11.2 15.4 20.2 24.3 24.4 9.1 6.1 7.1 6.9 7.0

100 10.5 12.7 20.1 23.7 23.2 7.3 5.3 6.4 6.4 6.2

3 0.2 50 11.2 13.3 12.0 15.7 19.0 10.3 6.5 6.3 6.4 7.1

100 8.8 9.8 10.1 13.7 15.2 7.3 5.3 5.2 5.1 5.6

0.8 50 7.0 10.2 9.9 13.7 14.5 8.2 5.5 5.4 5.4 5.4

100 6.6 8.1 9.1 12.0 12.5 7.1 5.3 4.8 4.9 5.3

Case 3 0.33 0.2 50 7.0 10.0 7.7 9.8 11.7 4.4 5.1 4.9 4.7 4.5

100 6.6 8.5 7.5 8.1 9.5 4.6 4.8 4.7 4.7 4.7

0.8 50 8.0 11.8 12.5 15.3 16.5 4.7 5.4 5.5 5.5 4.9

100 7.9 9.2 12.5 14.2 14.5 5.0 4.9 5.2 5.4 5.0

3 0.2 50 6.4 8.7 4.9 6.3 8.4 5.5 4.7 4.5 4.4 4.2

100 5.5 7.1 4.6 5.1 6.2 5.2 5.0 4.6 4.5 4.4

0.8 50 6.2 8.8 5.5 6.5 8.2 4.8 5.0 3.9 3.8 4.1

100 5.5 6.9 5.1 5.3 6.2 4.7 4.8 4.6 4.7 4.7

Case 4 0.2 50 5.8 8.8 6.1 7.3 9.0 4.0 4.7 4.8 4.2 4.0

100 5.5 6.8 5.3 5.7 6.8 4.4 5.1 4.8 4.9 4.5

0.8 50 6.4 8.5 6.1 7.1 9.5 5.1 4.7 4.4 4.3 4.2

100 5.6 7.7 5.7 5.9 7.0 5.3 5.0 4.7 4.5 4.6
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Table S.3. Empirical size of conventional and wild bootstrap HEGY tests using Step 2b of Algorithm 1. OLS

de-trending. Weakly dependent shocks.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

AR(4) -0.8 50 1.7 3.5 3.1 3.5 3.4 3.9 5.0 4.8 4.6 4.4

100 3.1 4.4 3.9 4.2 4.0 4.3 5.1 4.8 4.8 4.7

-0.5 50 2.5 3.7 3.5 3.8 3.5 3.9 5.3 4.8 4.7 4.4

100 3.5 4.1 4.0 4.3 3.9 4.6 5.3 4.7 5.0 4.6

0.5 50 1.9 3.6 3.7 3.5 2.7 2.6 4.6 4.6 4.0 3.2

100 3.6 4.4 4.3 4.5 4.3 4.9 5.2 4.8 4.6 4.4

0.8 50 3.5 4.1 3.5 3.5 3.8 5.3 5.6 4.8 4.2 4.4

100 3.7 4.6 3.7 4.0 4.0 4.6 5.2 4.3 4.3 4.3

MA(2) -0.5 50 6.7 7.6 3.2 5.4 8.3 9.9 9.1 5.1 6.9 9.2

100 6.5 6.7 3.7 5.4 6.5 8.3 7.7 4.7 5.9 7.5

0.5 50 2.8 3.7 6.2 6.2 6.0 4.0 5.2 8.2 7.2 6.3

100 2.6 4.0 5.9 5.2 4.5 3.8 4.9 6.7 5.9 5.4

Periodic heteroskedasticity, Case 2

AR(4) -0.8 50 2.9 4.1 8.1 11.6 11.4 4.6 5.6 5.6 5.6 5.7

100 3.9 4.5 9.0 12.8 12.6 4.4 5.3 5.2 5.4 5.1

-0.5 50 3.3 4.4 8.8 12.5 12.5 5.6 5.7 5.8 5.9 5.8

100 4.2 4.9 9.3 12.9 13.1 5.0 5.1 5.3 5.2 5.4

0.5 50 3.0 3.9 7.8 11.1 10.8 4.3 5.0 5.1 5.0 4.9

100 3.9 4.7 9.1 13.0 13.0 5.7 5.4 5.4 5.3 5.4

0.8 50 3.8 4.5 8.7 12.6 12.2 5.7 6.2 6.2 6.1 5.9

100 4.2 4.9 9.0 12.9 12.6 5.3 5.5 5.5 5.5 5.5

MA(2) -0.5 50 4.6 4.9 7.1 11.8 12.2 7.5 7.0 5.5 5.9 6.0

100 4.3 5.3 8.3 12.8 13.2 6.4 6.0 5.3 5.5 5.4

0.5 50 2.5 3.6 10.2 13.3 12.9 4.7 5.9 7.8 7.1 6.7

100 3.0 3.7 10.0 13.1 12.5 4.9 5.0 6.2 5.7 5.4

Single volatility shift, δ = 3, τ = 0.8

AR(4) -0.8 50 2.6 5.2 5.2 6.3 6.2 4.0 5.6 5.6 4.9 4.7

100 4.1 6.0 6.2 7.3 7.2 4.2 5.1 4.9 4.7 4.3

-0.5 50 3.3 5.4 5.5 6.5 6.4 4.4 5.9 5.6 5.3 4.8

100 4.7 6.4 6.4 7.5 7.6 4.4 5.5 5.0 5.1 4.5

0.5 50 2.8 4.8 5.0 5.7 5.6 3.9 5.1 4.6 4.2 3.7

100 4.8 5.9 6.4 7.2 7.7 4.7 5.1 4.7 4.7 4.3

0.8 50 4.2 5.1 4.6 5.0 5.2 5.0 5.4 4.3 4.0 4.0

100 4.8 5.7 5.3 6.2 6.5 5.0 5.0 4.6 4.3 4.1

MA(2) -0.5 50 8.1 9.3 5.3 8.5 12.4 9.9 9.4 4.8 6.6 8.8

100 7.3 8.4 5.7 8.4 11.0 8.2 7.4 4.8 5.6 7.0

0.5 50 3.3 5.3 8.3 8.7 8.8 4.9 5.6 8.3 7.3 6.4

100 3.7 5.5 8.2 8.7 8.2 4.3 4.8 6.2 6.0 5.1
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Table S.3. Continued.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single volatility shift, δ = 3, τ = 0.2

AR(4) -0.8 50 13.6 24.4 37.4 48.3 52.1 8.8 11.9 13.0 12.9 11.8

100 18.6 26.7 41.8 53.0 57.9 7.8 8.4 9.4 9.3 8.0

-0.5 50 15.8 25.2 39.1 50.6 55.0 10.0 12.6 13.4 13.2 12.3

100 20.7 27.7 41.9 53.2 59.7 7.9 8.6 9.0 8.7 8.1

0.5 50 13.3 23.5 35.6 45.3 47.3 8.0 10.5 10.6 9.6 8.5

100 17.8 26.8 40.4 51.6 55.8 7.4 8.2 7.7 7.2 6.4

0.8 50 12.4 20.1 27.9 35.3 36.2 7.2 9.2 6.7 6.0 5.3

100 15.5 24.3 35.0 44.2 47.5 6.4 6.7 5.7 4.9 4.3

MA(2) -0.5 50 22.7 31.1 35.2 50.7 59.5 14.6 14.3 11.9 13.1 14.2

100 25.0 31.6 40.0 54.0 62.6 10.5 9.1 9.1 9.7 9.6

0.5 50 14.1 24.0 45.4 54.9 57.2 8.7 11.1 13.9 13.2 11.9

100 17.7 26.5 45.9 55.8 59.3 6.9 8.4 8.7 8.4 7.5

Single periodic volatility shift, δ = 3, τ = 0.2, Case 3

AR(4) -0.8 50 3.2 6.4 8.4 9.2 9.2 4.7 6.6 7.1 6.2 5.4

100 5.0 7.3 9.6 10.7 11.3 4.9 5.8 5.8 5.6 5.0

-0.5 50 4.1 6.9 9.5 10.1 10.6 5.1 6.6 6.6 6.1 5.5

100 5.5 7.7 10.8 11.6 11.8 5.2 6.1 5.8 5.3 4.8

0.5 50 3.7 6.2 8.7 9.0 8.8 4.7 6.0 6.0 5.2 4.7

100 5.5 7.4 10.1 11.4 11.2 5.3 5.9 5.5 5.2 4.8

0.8 50 5.0 6.8 7.9 8.7 9.1 5.7 6.3 5.4 4.9 4.5

100 5.2 7.4 9.2 10.0 10.0 5.0 6.0 5.0 4.9 4.8

MA(2) -0.5 50 9.5 11.2 8.7 12.2 16.8 11.0 10.3 7.0 8.0 10.4

100 9.3 10.1 9.7 12.6 15.7 8.8 7.7 5.9 6.5 7.6

0.5 50 4.1 5.9 14.4 14.5 13.6 5.2 6.5 10.4 8.7 7.6

100 4.4 6.8 14.1 14.1 13.0 4.6 5.4 8.0 6.9 5.9
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Table S.4. Empirical size of conventional and wild bootstrap HEGY tests using Step 2b of Algorithm 1. Local

GLS de-trending. Weakly dependent shocks.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

AR(4) -0.8 50 3.5 7.4 6.2 6.6 6.2 3.5 4.3 4.8 4.6 3.9

100 4.3 6.6 5.6 5.3 5.6 4.3 4.7 4.8 4.6 4.3

-0.5 50 4.4 8.2 5.7 6.7 7.0 3.7 4.6 5.0 4.4 4.4

100 4.9 6.5 5.3 5.1 5.4 4.8 5.0 4.9 5.0 4.7

0.5 50 3.8 6.8 9.0 9.1 7.6 2.6 3.9 7.3 6.2 4.2

100 5.2 6.9 5.8 5.8 6.3 5.2 4.7 4.9 4.5 4.9

0.8 50 6.5 8.7 6.9 8.1 9.6 5.5 5.2 5.9 5.7 6.0

100 5.4 7.0 5.7 6.1 6.6 4.9 5.1 5.6 5.3 5.3

MA(2) -0.5 50 12.1 15.0 6.6 11.0 16.3 10.1 10.1 5.3 7.9 11.5

100 9.5 10.2 5.2 7.1 10.1 8.3 7.9 4.7 6.3 8.4

0.5 50 5.1 8.2 8.3 8.8 9.2 4.2 4.8 6.8 6.7 5.9

100 4.0 5.9 6.3 6.0 5.5 3.9 4.5 5.8 5.4 4.6

Periodic heteroskedasticity, Case 2

AR(4) -0.8 50 5.1 8.8 9.9 13.4 12.9 4.5 5.4 5.4 5.5 5.3

100 4.8 7.3 9.5 12.3 12.1 4.4 5.3 5.0 5.1 5.2

-0.5 50 5.8 8.8 9.9 13.2 13.4 5.2 5.4 5.4 5.4 5.4

100 5.5 6.9 9.3 12.1 11.9 5.1 5.2 5.1 5.2 5.2

0.5 50 4.9 7.9 10.7 13.4 13.0 4.0 4.2 5.9 5.4 5.1

100 5.7 7.2 9.9 12.7 12.3 5.2 4.9 4.9 5.0 5.0

0.8 50 6.9 9.2 10.0 13.3 13.7 6.0 5.7 5.9 5.8 6.0

100 5.9 7.2 9.6 12.2 12.3 5.3 5.0 5.2 5.1 5.2

MA(2) -0.5 50 9.5 11.4 9.6 14.0 16.2 8.7 7.6 5.3 5.9 6.7

100 7.1 8.2 8.8 12.4 13.0 6.9 6.1 4.9 5.1 5.7

0.5 50 5.2 8.4 12.3 15.3 14.9 4.8 5.2 7.5 6.7 6.5

100 4.9 6.4 10.3 12.7 12.2 4.5 4.8 6.0 5.5 5.5

Single volatility shift, δ = 3, τ = 0.8

AR(4) -0.8 50 4.5 8.2 4.8 5.9 6.7 4.0 4.3 5.3 5.1 4.4

100 5.0 7.1 4.6 4.9 5.6 4.1 5.0 4.8 4.7 4.3

-0.5 50 5.1 8.7 4.9 6.2 7.3 3.8 4.8 5.4 5.1 4.6

100 5.6 7.3 4.4 5.0 5.8 4.4 4.9 5.0 5.0 4.9

0.5 50 4.9 7.9 5.3 6.1 6.4 3.6 3.9 5.4 4.5 4.0

100 5.8 7.2 4.2 4.8 5.8 4.9 5.1 4.6 4.7 4.8

0.8 50 6.7 8.5 4.3 5.6 7.4 4.9 4.6 4.4 4.4 4.7

100 5.8 7.0 3.5 4.5 5.6 5.0 4.7 4.3 4.3 4.7

MA(2) -0.5 50 13.3 15.4 4.9 9.6 16.5 10.9 10.0 4.7 7.7 11.5

100 9.6 11.0 4.2 6.6 10.3 8.9 7.3 4.6 6.1 8.3

0.5 50 5.8 8.5 7.3 8.4 9.6 4.5 4.9 8.0 7.1 6.1

100 4.6 6.5 5.6 5.2 5.6 3.7 4.5 6.1 5.7 4.7
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Table S.4. Continued.

Φ/Θ N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single volatility shift, δ = 3, τ = 0.2

AR(4) -0.8 50 9.0 12.6 6.7 9.0 11.8 6.8 7.9 7.6 8.9 8.7

100 8.5 10.3 5.3 7.4 8.8 5.9 6.1 6.8 6.9 6.4

-0.5 50 10.5 13.2 6.6 9.7 13.1 7.2 7.6 7.6 8.2 8.7

100 9.6 9.8 5.2 6.7 9.3 5.9 6.3 6.5 6.7 6.7

0.5 50 8.6 10.2 5.0 6.7 8.8 5.6 5.5 5.2 5.5 5.3

100 8.7 9.1 4.4 5.9 8.2 5.8 5.6 5.5 5.4 5.8

0.8 50 8.0 8.0 3.8 5.1 7.2 5.5 4.1 4.1 3.8 4.6

100 7.2 7.7 3.1 4.2 6.0 4.4 4.4 3.9 3.9 4.1

MA(2) -0.5 50 19.4 20.7 5.6 13.2 22.1 14.6 13.6 6.2 11.0 16.3

100 14.6 14.9 4.5 8.9 14.7 11.0 9.8 6.0 8.7 11.6

0.5 50 9.6 11.7 10.2 12.6 15.2 6.7 6.9 10.8 10.4 9.4

100 7.6 8.5 7.1 7.5 8.7 5.2 5.4 8.3 7.9 6.9

Single periodic volatility shift, δ = 3, τ = 0.2, Case 3

AR(4) -0.8 50 4.0 8.0 4.7 5.8 6.1 3.8 5.2 5.1 5.3 4.5

100 4.6 6.3 4.6 4.6 5.5 4.2 5.0 4.9 4.9 4.3

-0.5 50 5.0 8.6 4.5 5.9 7.0 4.4 5.1 5.6 4.9 5.0

100 5.8 6.5 4.3 4.8 5.8 4.8 5.2 5.7 5.6 5.2

0.5 50 4.5 7.3 6.0 6.5 7.0 3.8 4.1 6.1 5.6 4.5

100 5.4 6.9 4.2 4.8 5.8 5.3 4.8 5.1 5.0 5.2

0.8 50 6.6 8.6 4.3 5.7 8.3 5.4 5.3 5.2 5.2 5.6

100 5.2 6.3 4.4 4.9 5.8 4.8 5.0 5.0 5.3 5.0

MA(2) -0.5 50 13.0 15.8 4.4 9.4 16.4 11.7 10.8 5.0 8.7 12.2

100 9.8 10.5 4.0 6.2 10.3 8.9 8.0 4.9 6.6 8.4

0.5 50 5.4 7.9 8.0 8.7 9.7 4.9 5.2 9.0 7.6 7.0

100 4.2 6.2 6.1 5.8 5.8 4.0 4.8 7.4 6.8 5.6
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Table S.5. Finite sample size-adjusted power of conventional and wild bootstrap HEGY tests using Step 2b

of Algorithm 1. OLS de-trending.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

3.75 50 6.9 14.3 19.0 24.5 22.3 6.6 13.4 18.5 24.6 21.9

100 7.3 14.4 20.7 27.2 25.2 6.9 14.3 19.9 27.3 23.9

7 50 13.7 31.1 44.5 58.8 57.4 13.2 29.1 44.7 58.6 56.4

100 13.7 29.5 46.6 61.5 61.2 12.7 29.4 46.1 61.5 58.8

13.5 50 41.9 72.5 89.2 95.4 95.6 37.4 69.1 89.9 96.1 96.2

100 38.5 69.3 91.3 97.6 98.1 36.0 68.3 91.4 97.7 97.9

Periodic heteroskedasticity

Case 1 3.75 50 8.6 14.9 20.7 25.3 22.1 7.7 14.5 20.1 24.9 22.1

100 8.9 15.0 21.3 27.3 24.7 8.3 14.9 20.9 27.0 23.7

7 50 16.1 31.0 43.3 55.1 52.0 13.8 29.5 42.3 55.3 51.0

100 15.3 30.1 44.4 58.0 54.6 13.7 29.9 43.5 57.7 53.3

13.5 50 45.6 71.1 84.1 93.4 92.6 38.9 68.4 83.4 93.8 93.1

100 40.5 69.2 85.2 95.2 94.9 36.8 67.6 84.1 95.3 94.5

Case 2 3.75 50 12.5 16.1 15.7 15.8 16.2 10.8 15.8 15.5 15.6 15.8

100 11.2 15.5 15.3 15.2 15.7 9.7 15.4 15.4 15.5 15.8

7 50 21.9 31.9 31.5 31.9 31.6 17.8 31.5 31.7 31.3 31.1

100 19.7 31.4 31.5 31.1 31.1 16.6 31.1 31.8 31.5 30.7

13.5 50 53.2 70.2 69.6 69.8 69.3 44.7 69.6 69.8 69.5 68.3

100 47.5 69.3 69.7 69.2 68.9 40.2 69.5 69.9 69.7 67.9

Single volatility shift

Case 1 0.33 0.2 3.75 50 6.9 14.3 19.0 24.5 22.3 6.6 13.4 18.5 24.6 21.9

100 7.3 14.4 20.7 27.2 25.2 6.9 14.3 19.9 27.3 23.9

7 50 13.7 31.1 44.5 58.8 57.4 13.2 29.1 44.7 58.6 56.4

100 13.7 29.5 46.6 61.5 61.2 12.7 29.4 46.1 61.5 58.8

13.5 50 41.9 72.5 89.2 95.4 95.6 37.4 69.1 89.9 96.1 96.2

100 38.5 69.3 91.3 97.6 98.1 36.0 68.3 91.4 97.7 97.9

0.8 3.75 50 8.4 11.9 12.9 15.4 16.3 8.4 11.6 13.4 15.2 15.3

100 8.8 11.8 13.4 15.6 16.3 8.5 11.7 13.3 15.1 15.3

7 50 15.1 22.1 26.2 34.1 37.7 14.6 21.3 26.4 32.6 35.6

100 14.9 21.0 26.7 33.6 37.7 14.2 20.8 26.0 33.0 36.0

13.5 50 35.7 48.7 60.9 73.6 78.4 33.3 47.3 61.4 73.5 78.3

100 33.8 46.9 61.7 75.8 81.8 31.7 45.9 61.1 75.2 81.3

3 0.2 3.75 50 10.1 3.5 2.4 1.5 1.8 9.2 3.5 2.1 1.2 1.5

100 7.2 2.1 1.7 0.7 1.1 7.0 2.2 1.5 0.9 1.1

7 50 11.3 6.5 4.9 4.1 4.5 10.0 5.7 4.3 3.3 3.3

100 7.5 3.8 3.2 2.3 2.7 7.2 3.8 3.2 2.3 2.4

13.5 50 24.7 22.2 27.2 31.5 34.2 20.5 18.4 21.1 21.5 22.8

100 16.5 14.4 18.1 20.2 24.8 15.2 12.9 14.8 16.9 19.2

0.8 3.75 50 6.5 8.4 9.9 12.0 11.7 6.1 8.3 9.7 11.1 9.9

100 5.8 8.4 10.5 11.8 11.1 5.8 7.9 9.7 11.4 10.8

7 50 11.0 16.8 24.2 33.2 33.8 9.8 15.6 23.2 29.7 29.2

100 9.6 15.6 24.5 32.0 32.7 9.2 14.8 22.9 31.0 30.4

13.5 50 34.0 52.5 77.2 89.4 90.5 29.0 46.6 71.9 84.6 86.0

100 28.6 47.5 76.3 89.3 91.2 25.2 43.6 72.1 86.7 88.9
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Table S.5. Continued.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single periodic volatility shift

Case 3 0.33 0.2 3.75 50 6.9 14.3 19.0 24.5 22.3 6.6 13.4 18.5 24.6 21.9

100 7.3 14.4 20.7 27.2 25.2 6.9 14.3 19.9 27.3 23.9

7 50 13.7 31.1 44.5 58.8 57.4 13.2 29.1 44.7 58.6 56.4

100 13.7 29.5 46.6 61.5 61.2 12.7 29.4 46.1 61.5 58.8

13.5 50 41.9 72.5 89.2 95.4 95.6 37.4 69.1 89.9 96.1 96.2

100 38.5 69.3 91.3 97.6 98.1 36.0 68.3 91.4 97.7 97.9

0.8 3.75 50 8.4 11.9 12.9 15.4 16.3 8.4 11.6 13.4 15.2 15.3

100 8.8 11.8 13.4 15.6 16.3 8.5 11.7 13.3 15.1 15.3

7 50 15.1 22.1 26.2 34.1 37.7 14.6 21.3 26.4 32.6 35.6

100 14.9 21.0 26.7 33.6 37.7 14.2 20.8 26.0 33.0 36.0

13.5 50 35.7 48.7 60.9 73.6 78.4 33.3 47.3 61.4 73.5 78.3

100 33.8 46.9 61.7 75.8 81.8 31.7 45.9 61.1 75.2 81.3

3 0.2 3.75 50 10.1 3.5 2.4 1.5 1.8 9.2 3.5 2.1 1.2 1.5

100 7.2 2.1 1.7 0.7 1.1 7.0 2.2 1.5 0.9 1.1

7 50 11.3 6.5 4.9 4.1 4.5 10.0 5.7 4.3 3.3 3.3

100 7.5 3.8 3.2 2.3 2.7 7.2 3.8 3.2 2.3 2.4

13.5 50 24.7 22.2 27.2 31.5 34.2 20.5 18.4 21.1 21.5 22.8

100 16.5 14.4 18.1 20.2 24.8 15.2 12.9 14.8 16.9 19.2

0.8 3.75 50 6.5 8.4 9.9 12.0 11.7 6.1 8.3 9.7 11.1 9.9

100 5.8 8.4 10.5 11.8 11.1 5.8 7.9 9.7 11.4 10.8

7 50 11.0 16.8 24.2 33.2 33.8 9.8 15.6 23.2 29.7 29.2

100 9.6 15.6 24.5 32.0 32.7 9.2 14.8 22.9 31.0 30.4

13.5 50 34.0 52.5 77.2 89.4 90.5 29.0 46.6 71.9 84.6 86.0

100 28.6 47.5 76.3 89.3 91.2 25.2 43.6 72.1 86.7 88.9

Case 4 0.2 3.75 50 10.8 4.0 2.8 1.7 2.5 10.2 3.6 2.8 1.5 2.0

100 8.6 2.2 1.4 0.9 1.3 8.1 2.4 1.8 1.0 1.3

7 50 12.5 7.2 6.1 4.9 6.1 11.2 6.2 5.7 4.0 4.4

100 8.9 3.9 3.0 2.6 3.1 8.3 4.0 3.7 2.4 3.0

13.5 50 26.2 23.6 26.4 29.6 33.1 22.0 19.0 21.4 22.2 23.2

100 18.5 14.4 15.7 20.0 22.4 15.9 12.9 14.7 16.5 18.2

0.8 3.75 50 6.9 9.1 12.2 12.7 12.9 6.6 8.5 10.7 11.5 10.5

100 7.2 8.7 10.9 12.2 12.2 6.5 8.2 10.7 11.9 11.5

7 50 11.6 17.7 26.2 32.6 33.1 10.4 16.1 22.4 28.0 27.2

100 11.0 16.7 22.7 30.7 30.5 10.2 15.1 21.1 28.8 27.5

13.5 50 35.2 52.7 71.1 84.6 85.2 29.9 46.8 62.3 77.3 77.4

100 30.3 47.6 64.6 82.4 82.7 26.7 43.7 60.4 78.4 78.2
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Table S.6. Finite sample size-adjusted power of conventional and wild bootstrap HEGY tests using Step 2b

of Algorithm 1. Local GLS de-trending.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Homoskedasticity

3.75 50 8.3 19.0 24.5 33.2 30.0 8.4 17.7 24.1 32.8 29.0

100 8.8 18.8 23.9 34.1 31.0 8.7 18.6 23.8 33.0 29.8

7 50 16.5 41.9 60.8 76.9 73.2 16.0 38.8 59.8 76.2 71.4

100 17.0 40.4 60.0 77.7 74.8 16.4 39.4 59.5 76.6 73.6

13.5 50 48.4 84.2 96.2 98.4 98.1 44.3 80.0 96.5 98.8 98.5

100 47.1 84.0 97.6 99.6 99.5 44.5 81.9 97.6 99.6 99.6

Periodic heteroskedasticity

Case 1 3.75 50 9.9 18.1 26.8 34.5 28.8 9.2 18.3 26.6 33.4 28.7

100 10.6 19.2 26.5 34.2 30.4 9.8 18.6 25.6 33.2 29.4

7 50 19.1 39.3 58.5 73.9 66.8 16.7 38.6 57.3 72.6 65.7

100 19.2 41.8 58.2 74.3 68.7 17.5 39.9 56.3 73.0 66.7

13.5 50 52.5 81.7 94.0 98.1 97.0 46.1 79.4 93.7 98.3 97.3

100 50.4 84.5 95.2 99.0 98.3 45.4 82.1 94.3 98.9 98.2

Case 2 3.75 50 14.6 19.0 18.6 19.5 19.9 12.7 19.2 18.9 19.3 19.6

100 13.1 19.0 17.5 17.6 19.4 11.9 18.9 17.4 17.9 19.0

7 50 26.1 40.1 40.9 42.2 41.4 21.3 39.8 41.3 41.7 40.8

100 23.3 40.9 39.1 39.1 40.8 20.6 40.5 38.6 39.4 39.8

13.5 50 61.0 80.5 82.8 83.1 82.1 51.8 80.1 82.6 82.4 80.8

100 55.8 83.4 82.9 82.7 83.0 49.4 82.9 82.3 82.6 81.7

Single volatility shift

Case 1 0.33 0.2 3.75 50 8.3 19.0 24.5 33.2 30.0 8.4 17.7 24.1 32.8 29.0

100 8.8 18.8 23.9 34.1 31.0 8.7 18.6 23.8 33.0 29.8

7 50 16.5 41.9 60.8 76.9 73.2 16.0 38.8 59.8 76.2 71.4

100 17.0 40.4 60.0 77.7 74.8 16.4 39.4 59.5 76.6 73.6

13.5 50 48.4 84.2 96.2 98.4 98.1 44.3 80.0 96.5 98.8 98.5

100 47.1 84.0 97.6 99.6 99.5 44.5 81.9 97.6 99.6 99.6

0.8 3.75 50 9.8 19.5 19.9 23.0 22.9 9.8 18.1 18.8 22.4 22.1

100 10.2 18.8 16.5 20.5 20.1 9.9 19.1 16.5 19.5 19.9

7 50 18.7 37.0 42.8 51.6 53.4 17.9 34.2 40.6 49.9 51.3

100 19.2 36.3 39.0 48.9 51.6 17.9 36.1 37.6 47.2 50.8

13.5 50 43.0 67.1 78.6 86.8 88.5 40.3 63.5 76.3 86.3 88.9

100 43.8 67.4 77.6 88.3 92.0 41.2 66.3 75.6 87.9 91.8

3 0.2 3.75 50 10.2 24.3 47.7 55.2 47.2 9.8 22.8 45.4 54.4 44.6

100 9.7 23.3 47.0 56.6 44.5 8.9 22.8 45.8 55.3 43.9

7 50 19.6 46.1 82.6 89.4 86.2 18.5 42.7 80.5 88.6 84.4

100 18.1 46.3 82.4 91.3 86.5 16.9 44.7 81.0 90.3 85.4

13.5 50 48.9 81.0 99.1 99.7 99.6 46.3 78.9 99.1 99.8 99.8

100 47.4 82.6 99.3 99.9 99.8 43.5 81.0 99.4 99.9 99.8

0.8 3.75 50 7.5 21.6 37.5 48.5 40.7 7.3 20.9 37.2 49.2 38.7

100 7.6 22.2 39.6 51.3 41.6 7.2 22.1 38.8 51.4 40.6

7 50 15.9 48.0 80.7 91.6 87.2 14.9 45.5 80.6 91.5 85.4

100 15.5 49.6 82.9 94.0 89.4 14.4 47.9 81.9 93.6 88.4

13.5 50 50.8 89.4 99.4 99.8 99.6 46.0 86.9 99.8 99.9 99.8

100 49.7 91.7 99.8 100.0 100.0 45.8 89.9 99.8 100.0 100.0
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Table S.6. Continued.

Σ δ τ −c N t0 t2 F1 F12 F012 t∗0 t∗2 F ∗1 F ∗12 F ∗012

Single periodic volatility shift

Case 3 0.33 0.2 3.75 50 8.3 19.0 24.5 33.2 30.0 8.4 17.7 24.1 32.8 29.0

100 8.8 18.8 23.9 34.1 31.0 8.7 18.6 23.8 33.0 29.8

7 50 16.5 41.9 60.8 76.9 73.2 16.0 38.8 59.8 76.2 71.4

100 17.0 40.4 60.0 77.7 74.8 16.4 39.4 59.5 76.6 73.6

13.5 50 48.4 84.2 96.2 98.4 98.1 44.3 80.0 96.5 98.8 98.5

100 47.1 84.0 97.6 99.6 99.5 44.5 81.9 97.6 99.6 99.6

0.8 3.75 50 9.8 19.5 19.9 23.0 22.9 9.8 18.1 18.8 22.4 22.1

100 10.2 18.8 16.5 20.5 20.1 9.9 19.1 16.5 19.5 19.9

7 50 18.7 37.0 42.8 51.6 53.4 17.9 34.2 40.6 49.9 51.3

100 19.2 36.3 39.0 48.9 51.6 17.9 36.1 37.6 47.2 50.8

13.5 50 43.0 67.1 78.6 86.8 88.5 40.3 63.5 76.3 86.3 88.9

100 43.8 67.4 77.6 88.3 92.0 41.2 66.3 75.6 87.9 91.8

3 0.2 3.75 50 10.2 24.3 47.7 55.2 47.2 9.8 22.8 45.4 54.4 44.6

100 9.7 23.3 47.0 56.6 44.5 8.9 22.8 45.8 55.3 43.9

7 50 19.6 46.1 82.6 89.4 86.2 18.5 42.7 80.5 88.6 84.4

100 18.1 46.3 82.4 91.3 86.5 16.9 44.7 81.0 90.3 85.4

13.5 50 48.9 81.0 99.1 99.7 99.6 46.3 78.9 99.1 99.8 99.8

100 47.4 82.6 99.3 99.9 99.8 43.5 81.0 99.4 99.9 99.8

0.8 3.75 50 7.5 21.6 37.5 48.5 40.7 7.3 20.9 37.2 49.2 38.7

100 7.6 22.2 39.6 51.3 41.6 7.2 22.1 38.8 51.4 40.6

7 50 15.9 48.0 80.7 91.6 87.2 14.9 45.5 80.6 91.5 85.4

100 15.5 49.6 82.9 94.0 89.4 14.4 47.9 81.9 93.6 88.4

13.5 50 50.8 89.4 99.4 99.8 99.6 46.0 86.9 99.8 99.9 99.8

100 49.7 91.7 99.8 100.0 100.0 45.8 89.9 99.8 100.0 100.0

Case 4 0.2 3.75 50 11.6 23.7 41.5 50.5 41.5 11.2 22.5 40.4 49.3 40.5

100 10.1 21.9 41.2 50.5 40.4 9.4 22.3 40.9 49.9 39.4

7 50 22.2 44.7 73.1 84.2 77.2 20.7 42.3 71.9 83.2 76.0

100 19.5 44.1 72.8 85.8 77.4 18.0 43.9 72.4 85.0 76.0

13.5 50 53.0 79.6 96.8 99.2 98.5 48.7 77.3 96.4 99.5 98.8

100 48.9 80.9 96.8 99.6 98.8 44.5 79.9 96.4 99.5 98.8

0.8 3.75 50 7.9 22.5 38.3 47.6 37.9 7.9 21.2 36.7 47.2 37.0

100 8.7 22.9 38.3 50.3 38.3 8.1 22.3 37.9 48.7 37.5

7 50 17.2 47.6 75.4 87.3 78.3 15.8 44.7 73.0 86.9 76.6

100 18.0 49.9 75.1 90.5 80.7 15.8 47.4 74.2 89.4 79.6

13.5 50 52.6 89.0 98.8 99.6 99.2 47.7 86.3 98.7 99.8 99.3

100 51.9 91.5 99.2 99.9 99.7 46.7 89.6 99.1 99.9 99.7
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