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We report some recent advances in kinematics and singular-

ity analysis of the mirror-symmetric N-UU parallel wrists

using symmetric space theory. We show that both the fi-

nite displacement and infinitesimal singularity kinematics of

a N-UU wrist are governed by the mirror-symmetry prop-

erty and half-angle property of the underlying motion man-

ifold, which is a symmetric submanifold of the special Eu-

clidean group SE(3). Our result is stronger than and may be

considered a closure of Hunt’s argument for instantaneous

mirror-symmetry in his pioneering exposition of constant ve-

locity shaft couplings. Moreover, we show that the wrist can

to some extent be treated as a spherical mechanism, even

though dependent translation exists, and the singularity-free

workspace of a N-UU wrist may be analytically derived.

This leads to a straightforward optimal design for maximal

singularity-free workspace.

Nomenclature

R revolute joint

U universal joint formed by two concurrent R joints

o-xyz reference coordinate frame

x,y,z (1,0,0)T ,(0,1,0)T ,(0,0,1)T

u,v,w,s, t,0, . . . 3-d vectors / points

s+ proximal center in the base

s− distal center in the end-effector

ξ,ζ,η, . . . unit screws

ŵ 3×3 skew symmetric matrix s.t. ŵv = w×v, ∀v ∈R
3

ξ̂ 4×4 homogeneous matrix form of a screw ξ [1]

c(·), s(·) cos(·), sin(·)

∗A preliminary version of this paper has been accepted for presentation

at the ASME 2017 Int. Design Engineering Technical Conferences, Cleve-

land, Ohio (Paper No. MR-67020).
†Address all correspondence to this author.

SO(3) spatial rotation group

SO(3) :=
{

R ∈R
3×3

∣∣ RRT = 13×3,detR = 1
}

SE(3) special Euclidean group (homogeneous rep.)

SE(3) :=

{(
R t

0T 1

)
∈R

4×4

∣∣∣∣ R ∈ SO(3), t ∈R
3

}

(R)H homogeneous embedding of R ∈ SO(3)

(R)H :=

(
R 0

0T 1

)

(t)H homogeneous embedding of t ∈R
3

(t)H :=

(
13×3 t

0T 1

)

eθŵ ∈ SO(3) rotation matrix with unit axis w and magni-

tude θ
eθξ̂ ∈ SE(3) rigid transformation matrix with unit screw

axis ξ and magnitude θ
(φ,ψ,σ) tilt-torsion angle parameters for rotation matrix R

R = eψ(cφx̂+sφŷ)eσẑ

ξ+
i j (i = 1, . . . ,N, j = 1,2) revolute axes (unit screws) of

the proximal U joint in leg i

ξ−
i j (i = 1, . . . ,N, j = 1,2) revolute axes of the distal U

joint in leg i (ξ+
i j and ξ−

i j, j = 1,2 are mirror-symmetric

about a common plane)

w±
i j (i = 1, . . . ,N, j = 1,2) unit direction vector of ξ±i j

si j (i = 1, . . . ,N, j = 1,2) intersection point of ξ+
i j and ξ−

i j

(may be located at infinity)

θ±i j (i = 1, . . . ,N, j = 1,2) joint variable of ξ±i j

wEE angular velocity vector of the end-effector

d distance between o and s+ (or s−)

α angle formed by the two planes containing ξ±i1 and ξ±i2,

respectively (at the initial configuration)

β angle formed by ξ+
i1 (or ξ−

i1) and the xy-plane (at the ini-

tial configuration)

γ half the angle formed by ξ+
i2 and ξ−

i2

µ angle formed by ξ+
i1 and ξ+

i2 (or ξ−
i1 and ξ−

i2)



s1s2, s1s2s3 (si, i = 1,2,3 being 3-d points) extensor of

step 2 and 3 (Grassmann-Cayley algebra), i.e. a line

through s1,s2 and a plane through s1,s2,s3 respectively

∧ meet operator (Grassmann-Cayley algebra), i.e. inter-

section of two operands

ψL/ψA/ψP maximal half-tilt angle free of leg/ active/ pas-

sive singularities

1 INTRODUCTION

We report in this paper some recent advances in synthe-

sis and analysis of parallel mechanisms (PMs) comprising

N (N ≥ 3) UU legs using tools from symmetric space the-

ory [2]. It is well known from theory of homokinetic cou-

plings [3, 4] that the N-UU PM has two rotational degrees-

of-freedom (DoF) and is overconstrained (by a degree of

(2N − 4)). The synthesis condition of N-UU PM is stud-

ied in [3, 4] and may be summarized as follows: (i) the two

U joints in each UU leg must be identical and remain in a

mirror-symmetric configuration during full-cycle motion; (ii)

all UU legs share the same plane of symmetry and the revo-

lute axes of the proximal (or distal) U joints of all legs inter-

sect at one point (see Fig. 1 for the schematic of a 3-UU PM).

However, the deduction of such conditions in [3] or [4] relies

on instantaneous screw theory, which must be accompanied

with full-cycle (finite instead of instantaneous) motion val-

idation in the case of structural design. Wu et al. [5] gave

an explicit expression for the (finite full-cycle) motion man-

ifold of N-UU PMs using tilt-torsion angle parameters [6].

Indeed, the N-UU PM is shown to be a zero-torsion PM,

a concept often associated with 2- or 3-DoF homokinetic-

coupling-equivalent PMs [7]. N-UU PMs have been discov-

ered [8] and and rediscovered [9–11] as homokinetic cou-

plings or robotic wrists in several occasions.

Recently, we sharpened our previous results [4,5] to pro-

vide a deeper understanding of the synthesis and analysis of

homokinetic couplings [2, 12, 13]. This recent advance in-

volves recognizing the motion manifolds of the homokinetic

couplings, including the N-UU PMs, as members of a special

class of submanifolds of the special Euclidean group SE(3),
called symmetric submanifolds. For example, the collection

of all zero-torsion rotation matrices [6, 7]

M :=
{

eψŵ
∣∣∣ w = xcφ +ysφ, φ ∈ [0,2π), ψ ∈ [0,π]

}
(1)

is in fact one of the seven symmetric submanifolds of SE(3)
[2]. The general theory is rather sophisticated, and shall not

be re-introduced here. A more accessible treatment of the 2-

d symmetric submanifold M may be found in [14]. Instead,

we show in this paper that two important consequences of

the symmetric space theory, namely a full-cycle version of

the mirror-symmetry property [3] and the half-angle property

(see Sec. 2), lead to a rigorous treatment of the synthesis

and analysis of N-UU PMs. Moreover, we show that a N-

UU PM, although not a purely spherical mechanism (in the

sense that its motion manifold is not exactly M as defined in

Eqn. (1)), may in fact be synthesized and analyzed as one.

A particular example of the latter can be found in our earlier

presentation [15].

The following references are also relevant to our work.

Sofka et al. [16] are probably the first to study the displace-

ment kinematics of a 4-UU parallel wrist. Since mirror sym-

metry is not utilized, a genetic algorithm has to be imple-

mented to solve the problem. Yu et al. [17, 18] studied the

mobility, singularity and synthesis of N-UU parallel wrists

using reciprocal screw theory and structural symmetry. Their

work is essentially an extension to Hunt’s instantaneous ap-

proach [3], where the underlying full-cycle motion mani-

fold is not revealed; nor did they address the singularity-free

workspace characterization and optimization problem. Kong

et al. [11, 19] studied the synthesis and reconfiguration of

multi-mode N-UU PMs resulting from imposing plane sym-

metric conditions on a 2-DoF 3-UU PM obtained by lock-

ing three joints of a 5-DoF parallel mechanism. A mode

change occurs when mirror-symmetry is broken. Bonev et

al. [20, 21] used tilt-torsion angle parameters to characterize

the singularity loci of 2- to 3-DoF spherical manipulators.

This paper is organized as follows. In Sec. 2, we revisit

the synthesis condition of N-UU PMs by using symmetric

space theory. We show that many subtle conclusions may be

immediately drawn without pounding on the particular ge-

ometry of the N-UU PM. In Sec. 3, we perform a full singu-

larity analysis of the N-UU PM treated as a spatial mecha-

nism, using Grassmann-Cayley algebra (GCA) [22, 23]. The

results are then compared with those concerning its pure ro-

tational counterpart [15] to illustrate our claim that the N-UU
PM can be essentially treated as a purely rotational mecha-

nism. In Sec. 4, we derive the singularity loci of N-UU PMs

and identify maximal singularity-free tilt angle for a particu-

lar choice of design constants. Finally, in Sec. 5 we conduct

optimal design of N-UU PMs for maximal singularity-free

workspace.

2 Geometry and Synthesis Condition of N-UU PM

2.1 Geometry of UU Leg

In its most general form (Fig. 1(c)), the i-th UU leg of

a N-UU PM comprises two pairs of R joints, (ξ+
i1,ξ

−
i1) and

(ξ+
i2,ξ

−
i2), which are both mirror-symmetric about the xy-

plane. We denote their intersection with the xy-plane by si1

and si2 respectively. We denote the centers of the proximal

and distal U joints, respectively, by s+ and s−, which are also

mirror-symmetric about the xy-plane. Assume, without loss

of generality, that the N-UU PM has N identical UU legs

forming an N-fold axial symmetry about the z axis. It is not

difficult to see that the length parameter d (measuring the

distance between o and s+ or s−) and three angular constants

(α,β,γ) completely determine the kinematic geometry of the

UU leg:

ξ+
i1 = ((w+

i1)
T ,(s+×w+

i1)
T )T

ξ−
i1 = ((w−

i1)
T ,(s−×w−

i1)
T )T

ξ+
i2 = ((w+

i2)
T ,(s+×w+

i2)
T )T

ξ−
i2 = ((w−

i2)
T ,(s−×w−

i2)
T )T

(2)



(a) (b)

(c) (d)

Fig. 1. Schematic of a general 3-UU PM: (a) components of the PM; (b) synthesis condition of the PM: the two U joints in each leg are

mirror-symmetric about the xy-plane, and the revolute axes of all proximal (or distal) U joints in all legs intersect at a point s+ (or s−); (c)

geometry of the first leg; (d) geometry of the U joints in the first leg.

with

w+
i1 = e(2π(i−1)/N)ẑe−βŷ ·x

w−
i1 = e(2π(i−1)/N)ẑeβŷ ·x

w+
i2 = e(α+2π(i−1)/N)ẑe−γŷ ·x

w−
i2 = e(α+2π(i−1)/N)ẑeγŷ ·x

s+ =−dz

s− = dz
(3)

The explanation for these constants can be found in the

Nomenclature and Fig. 1(c). The two R joints in each U
joint form the angle µ (Fig. 1(d)), which can be easily com-

puted as

cµ = cαcβcγ + sβsγ (4)

For the study of the orientation workspace, the length param-

eter d is not essential and can be simply set to 1.

2.2 Symmetric Submanifold Properties of a Collapsed

UU Leg

Consider the spherical chain resulting from collapsing

s± to o (or by letting d = 0), as shown in Fig. 2(a). If sym-

metric motion is enforced within the R joints of symmetric

pairs, the collapsed chain is known as a symmetric chain of

the 2-d screw system m := span(x̂, ŷ) (named m2B in [2]),

characterized by a pencil of lines passing through o and ly-

ing in the xy-plane (Hunt’s first special two-system with zero

principal pitches [24]; see Fig. 2(c)). We summarize from [2]

the following results for m and M given in Eqn. (1) without

a complete proof:

P1. The submanifold M in Eqn. (1) is the exponential image

of the two-system m, M = expm. M remains invariant

under rotation about the z-axis, i.e. ∀φ0 ∈ [0,2π):

eφ0 ẑMe−φ0 ẑ = eφ0 ẑ(expm)e−φ0 ẑ = exp(eφ0 ẑ
me−φ0 ẑ)

= exp(span(eφ0 ẑx̂e−φ0 ẑ,eφ0 ẑŷe−φ0 ẑ))

= exp(span(êφ0 ẑx, êφ0 ẑy))

= exp(span(x̂cφ0
+ ŷsφ0

, ŷcφ0
− x̂sφ0

))

= exp(span(x̂, ŷ)) = M

(5)

We say that M has an axial symmetry.

P2. For any leg i, so long as the projection of w±
i1 and w±

i2

onto the xy-plane are linearly independent (for example,

in the configuration shown in Fig. 2(b)), the symmetric

chain (w+
i1,w

+
i2,w

−
i2,w

−
i1) generates M under the symmet-

ric movement condition θ+
i j = θ−

i j = θi j, j = 1,2, i.e., for



(a) (b) (c)

Fig. 2. Collapsing of a UU leg to a symmetric spherical chain: (a) schematic; (b) instantaneous symmetric movement (θ̇+
1 j = θ̇−

1 j =

θ̇1 j, j = 1,2); (c) screw system of the corresponding LTS m: a planar pencil of zero-pitch screws.

any tilt axis w = xcφ +ysφ, φ ∈ [0,2π), and half-tilt an-

gle ψ (within a singularity-free workspace; see Sec. 3),

we may find a unique pair (θi1,θi2) ∈ [0,2π)2, such that

eθi1ŵ+
i1 eθi2ŵ+

i2eθi2ŵ−
i2 eθi1ŵ−

i1 = e2ψŵ ∈ M (6)

P1 and P2 imply that arbitrarily displacing the symmet-

ric chain (under symmetric movement condition) by a

rotation about the z-axis does not alter its motion mani-

fold M.

P3. Under the aforementioned symmetric movement con-

dition, at a generic configuration e2ψŵ, the symmetric

chain will be always mirror-symmetric about its instan-

taneous velocity plane, which passes through o and is

perpendicular to eψŵz. Moreover, there exists some

σi ∈R such that [15]:

eθi1ŵ+
i1eθi2ŵ+

i2 = eψŵeσi ẑ

e−θi1ŵ−
i1 e−θi2ŵ−

i2 = e−ψŵeσi ẑ
(7)

so that

eθi1ŵ+
i1 eθi2ŵ+

i2 · z = eψŵ · z (8)

In other words, the symmetry plane may be thought of

as being rigidly attached to the central link of the col-

lapsed UU leg. This information will be very useful for

singularity analysis.

The aforementioned properties of M are a direct consequence

of M being a symmetric submanifold of SE(3) and m be-

ing its associated Lie triple subsystem (LTS) [2, 13]. More

specifically, the correspondence between m and M in P1 is

a generalization of the Lie correspondence between a Lie

algebra and its corresponding Lie group [2]. The second

claim in P1 is due to the fact that m is invariant under the

adjoint action of its corresponding commutator algebra [2].

A systematic treatment of symmetric chains for all symmet-

ric submanifolds of SE(3) as in P2 is given in [2]. P3 is also

generalizable to general symmetric submanifolds with ψŵ

replaced by a vector in a general LTS m and σẑ by a vector

in its corresponding commutator algebra [2]. We also remark

that, Hunt’s screw argument [3] may be summarized as (see

Fig. 2(b))

θ̇i1w+
i1 + θ̇i1w−

i1 + θ̇i2w+
i2 + θ̇i2w−

i2 = wEE ∈m (9)

which is an instantaneous and therefore weaker version of

Eqn. (6). In reference to P1 and P2, one may simply con-

struct a “collapsed” N-UU PM by arranging several copies

of the symmetric chain (w+
11,w

+
12,w

−
12,w

−
11) in parallel, with

each copy being obtained by a rotation about the z-axis by

some angle φ0.

2.3 Synthesis Condition of N-UU PM

Now we prove the synthesis condition for N-UU PMs,

using a generalized version of P1 for M. We notice that for

any i ∈ {1,2, . . . ,N} and j = 1,2:

eθi j ξ̂
±
i j = (∓dz)H · (eθ1 jŵ

±
i j )H · (±dz)H (10)

The non-collapsing UU leg generates, under symmetric

movement condition,

eθi1ξ̂
+
i1 eθi2ξ̂

+
i2eθi2ξ̂

−
i2 eθi1ξ̂

−
i1

=(−dz)H·(e
θi1ŵ+

i1)H·(e
θi2ŵ+

i2)H·(dz)H·...

(dz)H·(e
θi2ŵ−

i2)H(e
θi1ŵ−

i1)H·(−dz)H

=(−dz)H·(e
ψŵ)H·(e

σẑ)H·(2dz)H·...

(e−σẑ)H·(e
ψŵ)H·(−dz)H

=(−dz)H·(e
ψŵ)H·(2dz)H·(e

ψŵ)H·(−dz)H

(11)



The last equality is due to (az)H commuting with (ebẑ)H for

any a ∈R and b ∈ [0,2π). Equation (11) directly leads to the

explicit expression for the motion manifold Md of the non-

collapsing UU leg (under symmetric movement condition)

Md :=
{
(−dz)H · (eψŵ)H · (2dz)H · (eψŵ)H · (−dz)H

∣∣∣ . . .

w = xcφ +ysφ,φ ∈ [0,2π),ψ ∈ [0,π]
}

(12)

Again by commutativity of (az)H and (ebẑ)H, ∀a ∈ R,b ∈
[0,2π), Md also admits an axial symmetry, which follows

from that of M. We may therefore construct an N-UU PM

with legs being copies of a UU leg rotated about the z-axis

by different angles φ0, so long as the force matching con-

dition [25, Prop. 6] is satisfied, i.e., the PM is away from

passive constraint singularities (see Sec. 3.3). We emphasize

that the force matching condition is essential to our claim:

each UU leg before assembly is not guaranteed to move un-

der the symmetric movement condition, and in general it

generates a 4-d submanifold of SE(3) that contains the de-

sired 2-d motion manifold Md . Consequently, the motion

manifold of the N-UU PM may also be bigger than Md . This

is impossible if the force matching condition holds. There-

fore, without loss of generality, we may synthesize a N-UU
PM with identical and evenly distributed UU legs. Figure 1

shows one such PM with N = 3.

Note that the same conclusion is reached in [5] using

brute force computation. Here, we reveal the axial symme-

try more elegantly using commutativity of coaxial translation

and rotation. We would like to draw a connection between

this new approach and some recent work of Selig [26], where

the role of commutativity in synthesis of several novel mech-

anisms is emphasized.

3 Kinematics and Singularity Analysis of N-UU PM

In this section, we generalize P2 and P3 for M to Md , for

the purpose of kinematics and singularity analysis of N-UU
PMs.

P2′ The symmetric chain (ξ+
i1,ξ

+
i2,ξ

−
i2,ξ

−
i1) generates Md un-

der symmetric movement condition θ+
i j = θ−

i j = θi j, j =
1,2, i.e., for any tilt axis w = xcφ +ysφ, φ ∈ [0,2π) and

half-tilt angle ψ (within a singularity-free workspace;

see Sec. 3), we may find a unique pair (θi1,θi2) ∈
[0,2π)2, such that

eθi1ξ̂
+
i1 eθi2ξ̂

+
i2 eθi2ξ̂

−
i2eθi1ξ̂

−
i1 =

(−dz)H · (eψŵ)H · (2dz)H · (eψŵ)H · (−dz)H

(13)

P3′ Under the aforementioned symmetric movement con-

dition, at a generic configuration (−dz)H · (eψŵ)H ·
(2dz)H · (eψŵ)H · (−dz)H, the symmetric chain will al-

ways be mirror-symmetric about its instantaneous ve-

locity plane, which passes through a point o given by

o :=eθi1ξ̂
+
i1 eθi2ξ̂

+
i2 ·o = (−dz)H · (eψŵ)H · (dz)H ·o

=(eψŵ −13×3) ·dz
(14)

and is perpendicular to eψŵz. In other words, the sym-

metry plane may be thought of as being rigidly attached

to the central link of the UU leg. Moreover, we have

o− s+ = (eψŵ −13×3) ·dz− (−dz) = eψŵ ·dz (15)

By mirror-symmetry, s− − s+ = eψŵ · 2dz. In other

words, the distal center s− rotates about the fixed proxi-

mal center s+, with unit direction vector w (same as that

of the end-effector) and magnitude ψ (half that of the

end-effector); o remains the center of the line segment

s−− s+ (with a fixed length of 2d) under full-cycle mo-

tion (see Fig. 3(a)).

We remark that P2′ is a direct consequence of Eqn. (11); P3′

may be verified by straightforward computation, or alterna-

tively by treating the UU leg as an incomplete symmetric

chain of certain 3-DoF LTS [2, Ex.3].

3.1 Displacement Kinematics

It is clear from Eqn. (13) that the end-effector motion

of a N-UU PM is uniquely determined by its rotation ma-

trix e2ψŵ, which in turn is determined by the inclination of

s− − s+ away from the z-axis (see Fig. 3(a)). This immedi-

ately leads to simple analytic derivation of both direct and

inverse displacement kinematics, and the details are given in

Appendix A.

3.2 Twist and Wrench Systems of N-UU PM

In reference to the mirror-symmetry property under

symmetric movement condition, the instantaneous twist

space will always be a zero-pitch twist (i.e., a pure rotation)

from the line pencil located at o in the symmetry plane, as

shown by green arrows in Fig. 3(c). To maintain this instan-

taneous zero-torsion motion, we need a reciprocal wrench

system of dimension 4, spanned by a 3-d wrench field (com-

prising zero-pitch wrenches lying in the symmetry plane

and an infinite-pitch wrench perpendicular to the symmetry

plane) and a zero-pitch wrench on s+s−.

Since the symmetric pairs (ξ+
i1,ξ

−
i1) and (ξ+

i2,ξ
−
i2) always

intersect at two points, si1 and si2 respectively on the symme-

try plane, it is straightforward to see that each UU leg con-

tributes to a 2-d constraint wrench system spanned by two

zero-pitch wrenches, with one passing through si1 and si2

(denoted ζ i1) and the other passing through s+ and s− (de-

noted ζ2) (see Fig. 3(a), where the constraint wrenches are

denoted by blue arrows). ζ2 is identical for all legs [4]. This

shows that at least three UU legs are needed to provide the

required constraint wrench system: as shown in Fig. 3(b),

ζ11, ζ21 and ζ31 necessarily span the wrench field lying on



(a)

(b)

(c)

Fig. 3. (a) displacement kinematics of the 3-UU PM (leg 1 is

hidden for clarity); (b) constraint wrenches (blue) and actuation

wrenches (red) of leg i at initial configuration; (c) twists (green), con-

straint wrenches and actuation wrenches of the 3-UU PM.

the symmetry plane so long as they do not intersect at one

point. The other basis wrench is fulfilled by ζ2 of any UU
leg.

Next, without loss of generality, consider the imposition

of actuation wrenches ζa1 and ζa2 when choosing ξ+
11 and

ξ+
21 as the two actuation joints. It is straightforward to verify

that ζa1 and ζa2 may be chosen as the zero-pitch wrenches

lying on s12s− and s22s− respectively, as illustrated by the red

Fig. 4. A configuration of leg singularity of a UU leg.

arrows in Fig. 3(b) and (c).

3.3 Singularity analysis of N-UU PMs

Leg Singularity

A configuration of leg singularity corresponds to the lin-

ear dependency of all joint screws in a leg [27]. Since the N-

UU PM operates and therefore approaches singularity with

mirror-symmetry, it is not difficult to see that leg singularity

occurs exactly when all four joint screws in a UU leg become

coplanar, one particular configuration of which is shown in

Fig. 4. This is necessarily a stationary configuration [24,27]

of the N-UU PM. Note that a leg singularity such as shown

in Fig. 4 is achieved with a particular value of θi2 but an

arbitrary value of θi1. This implies that the UU leg may ex-

perience a continuous leg singularity by fixing θi2 and con-

tinuously changing θi1.

Since we are interested in identifying the maximal

singularity-free workspace, we identify the leg singularity

that achieves the minimal half-tilt angle. This is exactly the

configuration shown in Fig. 4, leading to a (uniform) maxi-

mal leg-singularity-free half-tilt angle, denoted by ψL,

ψL = π/2− γ− (π/2−β−µ) = β+µ− γ (16)

Taking into consideration different modes of leg singularity

of the UU leg and ranges of constants, we have

ψL = min(|β+µ− γ|, |β−µ− γ|,

|β+µ+ γ−π|, |β−µ+ γ−π|)
(17)

Static Singularity

A static singularity (leading to a loss of control of the

PM, [27]) corresponds to the linear dependency of all con-

straint wrenches ζ i1, i = 1, . . . ,N,ζ2 and actuation wrenches

ζa1,ζa1. If three UU legs are present, the mechanism is at a

static singularity when

[
ζ11 ζ21 ζ31 ζ2 ζa1 ζa2

]
= 0 (18)

where [ · ] denotes the determinant of a square matrix formed

by the vectors within. Since all the constraint and actu-

ation wrenches have zero pitch, we can readily apply the



Grassmann-Cayley Algebra (GCA) techniques [22, 23] to

further decompose (18): each constraint or actuation wrench

is a 2-extensor joined by two points on the corresponding

screw axis

ζ11 = s11s12

ζ21 = s21s22

ζ31 = s31s32

ζ2 = s+s−

ζa1 = s12s−

ζa2 = s22s−
(19)

Then Eqn. (18) is equivalent to the following superbracket

being zero:

[[ s11s12 , s21s22 , s31s32 , s+s−, s12s−, s22s− ]] = 0 (20)

which may be factorized in 24 monomials. Note in particular

the repeated occurrence of s− will send most monomials to

zero, resulting in the following simple identity involving de-

terminants of 4× 4 (using homogeneous point coordinates)

instead of 6×6 matrices:

[
s11 s12 s−

•
s21

]
·
[•
s22 s31 s32 s−

]
·
[
s+ s12 s22 s−

]
= 0 (21)

where
[
s11 s12 s−

•
s21

]
·
[•
s22 s31 s32 s−

]
stands for [22]:

[
s11 s12 s− s21

]
·
[
s22 s31 s32 s−

]
−

[
s11 s12 s− s22

]
·
[
s21 s31 s32 s−

] (22)

Therefore the static singularity factorizes into two of its fac-

tors being zero:

1.
[
s+ s12 s22 s−

]
= 0 (23)

which corresponds to the case where ζa1,ζa2 and ζ2 be-

come coplanar and hence the actuation wrench space

span(ζa1,ζa2) becomes linearly dependent with the

constraint wrench space span(ζ11,ζ21,ζ31,ζ2). It is

straightforward to deduce, from mirror-symmetry, that

Eqn. (23) is equivalent to (ignoring w.l.o.g. the case

s12 = s22)

s12 + s22 = s++ s− (24)

This is usually referred to as actuation or active con-

straint singularity [27]. Figure 5 illustrates a 3-UU PM

at a configuration of active constraint singularity. At

such a configuration, the constraint wrench ζ2 (blue ar-

row) may be represented as linear combination of the

two actuation wrenches ζa1,ζa2 (red arrows).

2.
[
s11 s12 s−

•
s21

]
·
[•
s22 s31 s32 s−

]
= 0 (25)

which can be shown to be equivalent to:

(s31s32s−∧ s11s12s−)∧ s21s22 = 0 (26)

Fig. 5. A configuration of active constraint singularity for a 3-UU
PM (α = 90◦, β = 0◦, γ = 40◦).

Fig. 6. A configuration of passive constraint singularity for a 3-UU
PM (α = 90◦, β = 0◦, γ = 20◦).

where s31s32s− and s11s12s− are 3-extensors, geometri-

cally corresponding to planes passing through the three

point members, and ∧ is the meet operator [22]. There-

fore, Eqn. (26) implies that the line of intersection of

s31s32s− and s11s12s− intersects with the line s21s22.

Equation (26) may be further simplified into

((s31s32 ∧ s11s12)s
−)∧ s21s22 = 0 (27)

Notice that s21s22 is completely contained in the sym-

metry plane as are s31s32 and s11s12, we have:

(s31s32 ∧ s11s12)∧ s21s22 = 0 (28)

Equation (28) corresponds to the geometric condition

of ζ11,ζ21 and ζ31 becoming concurrent, and therefore

characterizes the (passive) constraint singularity [27].

Figure 6 illustrates a 3-UU PM at a configuration of pas-

sive constraint singularity. In this particular case, s21,



s22, s31 and s32 become collinear and therefore ζ21 and

ζ31 become linearly dependent.

Comparison with the Collapsed N-UU PM

In [15], we introduced a collapsed N-UU PM, where

each leg is a spherical chain (w+
i1,w

+
i2,w

−
12,w

−
11), and more-

over, w+
i2 = w−

12. When N = 3, we have shown that its con-

straint singularity is given by the following identity:

[
w−

11 ×w−
12,w

−
21 ×w−

22,w
−
31 ×w−

32

]
= 0 (29)

We now show that Eqn. (29) and Eqn. (28) are in fact equiv-

alent when the non-collapsed 3-UU PM is away from active

constraint singularity: this is equivalent to ζa1, ζa2 and ζ2

spanning a bundle of forces passing through s−. As such,

the remaining wrenches ζ11, ζ21 and ζ31 should span a 3-d

torque space about s− were it be free of constraint singularity.

The constraint singularity is then characterized by Eqn. (29)

since the torques generated by ζ i1’s, i = 1,2,3 about s− are

exactly along the vector w−
i1 ×w−

i2’s.

We remark that in the case of the collapsed N-UU PM,

the singularity will, due to existence of interconnecting links,

always factorize into that of the proximal (active constraint)

and distal half (passive constraint) of the PM [15]. It is inter-

esting to note that the non-collapsing N-UU PM enjoys this

factorization none the less (although their active constraint

singularity differ).

Input-Output Jacobian map of the N-UU PM

In reference to the remark above, we may simply fo-

cus on the pure rotational velocity of the N-UU PM. Denote

the end-effector angular velocity by wEE. We have, due to

mirror-symmetry,

wEE = θ̇11(w
+
11 +w−

11)+ θ̇12(w
+
12 +w−

12)

= θ̇21(w
+
21 +w−

21)+ θ̇22(w
+
22 +w−

22)
(30)

where θ̇12 and θ̇22 are unknown passive joint angle speeds.

It is straightforward to solve θ̇12 using Eqn. (30), leading to

θ̇12 = θ̇21

[
w+

11 +w−
11,w

+
21 +w−

21,w
+
22 +w−

22

]
[

w+
11 +w−

11,w
+
12 +w−

12,w
+
22 +w−

22

]
︸ ︷︷ ︸

f

(31)

Back substitute in the first equation of Eqn. (30) and we have:

wEE =
(

w+
11 +w−

11 f (w+
12 +w−

12)
)

︸ ︷︷ ︸
JEE

(
θ̇11

θ̇21

)
(32)

4 Singularity Loci of 3- and 4-UU PMs

In this section, we give a complete derivation of the sin-

gularity loci of 3- and 4-UU PMs. To simplify matters, we

set α = 90◦, β = 0◦, which is the configuration adopted by

most practical N-UU PM designs. This particular choice of α
and β is confirmed to be (close to being) optimal in terms of

maximizing singularity-free workspace of N-UU PMs [28].

4.1 Leg Singularity Loci

We have already derived the maximal leg-singularity-

free half-tilt angle ψL in Sec. 3.3, which corresponds to the

leg singularity configuration illustrated in Fig. 4. The com-

plete leg singularity locus for leg 1 may simply be derived

from the set of all possible direction of s− − s+ while main-

taining the rank degeneracy of joint screws. For leg 1, this is

given by (from Fig. 4):

eψŵ(2dz) = eθ11ŵ+
11(s−− s+)

⇔
(
w+

11

)T
eψŵ(2dz) =

(
w+

11

)T
eθ11ŵ+

11(s−− s+)

=
(
w+

11

)T
(s−− s+)

(33)

which leads to the following locus, denoted ΦL,1 = 0:

ΦL,1 = cβsφsψ + sβcψ + cβsψL
− sβcψL

= sφsψ + sψL

(34)

where ψL = |π/2− γ| from Eqn. (17) and β = 0◦ (µ = 90◦

as a result). By axial symmetry, the complete leg singularity

loci, denoted ΦL = 0, is given by:

ΦL =
N

∏
i=1

ΦL,1(φ− (i−1)φ0,ψ) = 0, φ0 = 2π/N (35)

A numerical contouring procedure similar to those in [20,29]

may then be applied to Eqn. (35) to plot the leg singularity

loci. The leg singularity loci are illustrated in both Fig. 7 and

Fig. 8 by gray dash-dot curves.

4.2 Actuation Singularity Loci

We first plug the direct displacement kinematics in

Eqn. (23) to attain the following variety describing the ac-

tuation singularities:

ΦA=−s2
φ0

c2
ψ+s2

γ c2
φs2

2ψ+s2
γ(sφ0

−2cφs(φ−φ0)s
2
ψ)

2=0 (24′)

Numerical contouring procedure may then be applied to

Eqn. (24′) to plot the loci, an example of which is illustrated

by the blue curves in Fig. 7. For the purpose of singularity-

free design, we also need to identify the (uniform) maxi-

mal actuation-singularity-free tilt angle, which we denote by

2ψA. This can be extracted by the same numerical contour-

ing procedure, and is given by the radius of the maximum

inscribed circle (red dashed) of the singularity loci.

It may be shown, by computing Eqn. (24) using inverse

displacement kinematics, that the actuation singularity loci



(a)

(b)

Fig. 7. Active constraint singularity loci of a N-UU PM and its dif-

ferential loci (γ = 30◦; coordinates are scaled up to match the true

tilt angle 2ψ). (a) N = 3 (φ0 = 120◦); (b) N = 4 (φ0 = 90◦).

shown in Fig. 7 comprises two of four branches that corre-

spond to the two actuating legs each taking one of the two

inverse solutions. The two missing branches correspond to

the case s12 = s22 that can only occur at a leg singularity.

Alternatively, we introduce a novel approach to directly

compute ψA without numerically generating the loci. Note

that ψA is the extremum of all points on ΦA = 0 and therefore

is necessarily characterized by ∂ψ/∂φ = 0 since the singular-

ity loci are closed curves (if we identify antipodal points on

the boundary of the polar coordinate disk 2ψ = 180◦), which

along with

d

dφ
ΦA(φ,ψ(φ)) =

∂ΦA(φ,ψ)

∂φ
+

∂ΦA(φ,ψ)

∂ψ
·

∂ψ

∂φ
= 0 (36)

implies the following necessary condition:

∂ΦA(φ,ψ)

∂φ
= 0

⇔ (2c2ψsφs(φ−φ0)+ c(2φ−φ0)+ cφ0
)s(2φ−φ0) = 0

(37)

As shown in Fig. 7, the differential loci comprise of three

branches, the first (green) resulting from 2c2ψsφs(φ−φ0) +

c(2φ−φ0) + cφ0
= 0, and the second and third (magenta) re-

sulting from s(2φ−φ0) = 0, or φ = φ0/2+ kπ/2,k = 0,1.

Since the point (φ∗,ψ∗) on the loci ΦA = 0 where ψ∗ =
ψA also lies on the differential loci ∂ΦA/∂φ = 0, φ∗ is necce-

sarily a solution of the system of equations ΦA = ∂ΦA/∂φ =
0, or Eqn. (37) and Eqn. (24′). This gives rise to at most 8

solutions of φ∗ such that ΦA(φ
∗,ψA) = 0. For example, in the

case of γ = 30◦, as shown in Fig. 7, the active constraint sin-

gularity loci (blue) intersect the first set of differential loci

(green) at four points, all having the same (uniform) maxi-

mal tilt angle 2ψA; it intersects the second set (magenta) at

another four points which belong to the minimal enclosing

circle (where the wrist achieves maximal singularity-free tilt

angle in one particular tilt direction).

4.3 Passive Constraint Singularity Loci

In the case of N = 3, the passive constraint singularity

loci, denoted ΦP = 0, may be derived from Eqn. (29) using

inverse displacement kinematics. Its expression is too com-

plex for symbolic reduction and is omitted. In comparison

to the active constraint singularity where only two actuating

legs are involved, the passive constraint singularity involves

all three legs and consequently comprises eight branches, a

situation similar to that reported in [29]. An example of pas-

sive constraint singularity loci is shown in Fig. 8. In par-

ticular, Fig. 8(a) illustrates the branch that corresponds to

the mechanism configuration considered in this paper (i.e.,

as depicted in Fig. 1(a)). It results from assigning positive

branch index [29] to all three legs. As in the case of actu-

ation singularity, the (uniform) maximal passive-constraint-

singularity-free tilt angle, which we denote by 2ψP, is given

by the radius of the maximum inscribed circle (red dashed)

of the singularity loci. For completeness, we also illustrate

the other seven branches in Fig. 8(b) – (e).

For the case N = 4, passive constraint singularity cor-

responds to the row rank degeneracy of the following 3× 4

matrix:

(
w−

11 ×w−
12 w−

21 ×w−
22 w−

31 ×w−
32 w−

41 ×w−
42

)
(38)

or geometrically, the concurrence of si1si2, i = 1,2,3,4. One

may deduce, from the fact w−
11 = −w−

31 and w−
21 = −w−

41,

that s11 = s31 and s21 = s41. Therefore, si1si2, i = 1,2,3,4
become concurrent only when s11 = s21, which can be ruled

out for all cases where d 6= 0.

Finally, we would like to comment that, as is illustrated

by the case with N = 3 and 4, our synthesis and singularity

analysis of N-UU PMs may be easily generalized to the case

where N > 4. The detailed results add little to our study and

are therefore omitted.

5 Singularity-Free Design of N-UU PMs

In this section, we shall utilize our earlier analysis on

singularities of a N-UU PM in its optimal design for max-

imal singularity-free workspace (prescribed by the maximal

uniform singularity-free tilt angle which we denote by ψmax).



(a) +++

(b) −−− (c) −++ / +−+ / ++−

(d) +−− / −+− / −−+ (e)

Fig. 8. Passive constraint singularity locus of a 3-UU PM (φ0 =
120◦, γ = 20◦; coordinates are scaled up to match the true tilt angle

2ψ). (a) branch 1; (b) branch 2; (c) branch 3-5; (d) branch 6-8; (e)

all branches.

5.1 Choice of Singularity Margin

An appropriate singularity margin should be defined in

order to avoid degenerated accuracy and / or stiffness of the

N-UU PM near a singular configuration. Without further in-

formation leading to more meaningful singularity measures,

we may simply set a margin ψmargin on the half-tilt angle, so

that ψmax is given by the minimum of ψL, ψA and ψP for a

particular design constant γ subtracted by ψmargin:

ψmax(γ) = min(ψL(γ),ψA(γ),ψP(γ))−ψmargin (39)

We may find the optimal constant value γ = γmax which leads

to the maximal tilt angle via a performance atlas of ψmax(γ)
versus γ. For N = 3, it can be shown that γmax = 25.7789◦

(see Fig. 9), which is consistent with the design constant of

the Unitru joint [8] (γ= 22.5◦) and Omni-Wrist [9] (γ= 24◦).

Fig. 9. Distribution of 2ψmax versus γ for a 3-UU PM using a tilt

angle margin of 2ψmargin = 20◦.

The above approach is based on the numerical contour-

ing procedure, and therefore does not generalize to the case

N = 4 where the passive constraint singularity loci vanish.

Alternatively, we may set a margin imargin on certain index i

that measures closeness to singularity (see for example [30]

and the references therein). For example, for N = 3, we may

choose i to be the minimum singular value, denoted σ1, of

the matrix with columns corresponding to normalized actua-

tion and constraint torques:

iA = σ1

(
w−

12 w−
22 (s−− s+)/(2d)

)

iP = σ1

(
w−

11 ×w−
12 w−

21 ×w−
22 w−

31 ×w−
32

) (40)

iA and iP denote the active and passive constraint singularity

index respectively. These are exactly the closeness measure

proposed in [31] specializing to the pure rotational case. For

N = 4, iP is simply changed to:

iP = σ1

(
w−

11 ×w−
12 w−

21 ×w−
22 w−

31 ×w−
32 w−

41 ×w−
42

)
(41)

5.2 Identification of Maximal Singularity-free Half-tilt

Angle ψmax

To identify the maximal singularity-free half-tilt angle

ψmax, we simply apply the same numerical contouring pro-

cedure to iA = imargin and iP = imargin for a specified singu-

larity margin imargin. ψmax is simply identified as the radius

of the maximum inscribed circle of the resultant loci. Some

relevant details of the procedure are summarized as follows.

First, in order to accelerate the actuation singularity con-

touring procedure, we shrink the domain of computation to

φ ∈ [0,π], ψ ∈ [0, |π/2−γ|] by noting the two-fold axial sym-

metry of the loci (cf. Fig. 7) and the fact that ψmax is bounded

above by ψL. The axial symmetry is a result of the structural

symmetry of the mechanism (considering only the two actu-

ating legs). Similarly, we set φ ∈ [0,2π/N], ψ ∈ [0, |π/2−γ|]
for passive constraint singularity by noting its N-fold axial

symmetry due to structural symmetry (cf. Fig. 8).

Next, since the above procedure does not guarantee that

the interior of the loci corresponds to an index value greater



(a)

(b)

Fig. 10. Distribution of 2ψmax versus γ for a 3-UU PM using a

singularity margin of (a) imargin = 0.1 (b) imargin = 0.2.

than imargin, we verify the value of iA (or iP) at φ = ψ = 0: if

iA > imargin (or iP > imargin), ψmax is given by the radius of the

maximum inscribed circle of the resultant loci; if iA < imargin

(or iP < imargin), ψmax is equal to 0.

The distribution of 2ψmax versus γ for a 3-UU PM using

a singularity margin of imargin = 0.1 and 0.2 are illustrated in

Fig. 10(a) and (b) respectively. The optimal value for γ in

these cases are ≈ 27◦ and ≈ 28◦ respectively, which corrob-

orates the result from setting a simple tilt angle margin.

The distribution of 2ψmax versus γ for a 4-UU PM using

a singularity margin of imargin = 0.25 and 0.5 are illustrated

in Fig. 11(a) and (b) respectively. The optimal value for γ in

these cases are ≈ 10◦ and ≈ 20◦ respectively. In comparison

to the 3-UU PM, the 4-UU PM is allowed to have a smaller

value in γ due to existence of extra constraint torques. Its

optimal workspace also appears to be larger than that of the

3-UU PM even when a much bigger singularity margin is set.

This suggests that 4-UU PMs should be preferred over 3-UU
PMs for better accuracy and stiffness performance.

6 Conclusion

In this paper, we have conducted a comprehensive anal-

ysis of the N-UU PM with the aim of optimal design for

achieving a maximal uniform tilt angle. We have shown that

by utilizing the symmetric submanifold properties of its un-

(a)

(b)

Fig. 11. Distribution of 2ψmax versus γ for a 4-UU PM using a

singularity margin of (a) margin = 0.25 (b) imargin = 0.5.

derlying motion manifold, we gain a very clear geometric

understanding of both the synthesis condition and the dis-

placement and twist / wrench kinematics of the N-UU PM.

It should be emphasized that this geometric approach is sup-

ported by symmetric space theory and therefore generaliz-

able to other PMs involving symmetric submanifolds. We

have illustrated this by drawing connection to a collapsed

N-UU PM, which is topologically distinct from the non-

collapsing one studied here (the former attains interconnect-

ing links). We remark that the synthesis and analysis ap-

proach presented in this paper may be easily generalized to

other types of mechanisms whose output motion manifold

is a symmetric submanifold, thanks to the mirror-symmetry

and half-angle property that universally apply to all symmet-

ric submanifolds of SE(3). However, the spherical reduction

of the N-UU PMs is unlikely to have such a generalization.
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Appendix A: Displacement Kinematics of the N-UU PM

Inverse Displacement Kinematics

Given a desired tilt axis w= xcφ+ysφ and half-tilt angle

ψ, we first compute the current location of the distal center

s−

s− = s−(φ,ψ) = eψŵ(2dz)+ s+ (42)

which may then be used to compute si2, i = 1, . . . ,N. More

specifically, si2 satisfies the following two linear equations,

the first resulting from the mirror-symmetry of the UU leg

(see Fig. 3(a))

(s−− s+)T (si2 − (s−+ s+)/2︸ ︷︷ ︸
o

) = 0 (43)

and the second resulting from link geometry (Fig. 1(d))

(e2ψŵw−
i1)

T (si2 − s−) = cµd/sγ (44)

si2 lies on the line of intersection of the two planes prescribed

by Eqn. (43) and Eqn. (44), with Plücker coordinate [32]

l = u×v, l̄ = u0v− v0u (45)

with

u = s−− s+, v = e2ψŵw−
i1

u0 =−(s−− s+)T (s−+ s+)/2

v0 =−(e2ψŵw−
i1)

T s−− cµd/sγ

(46)

This allows us to express si2 by

si2 = si2(λ) =

{
(l× l̄)/‖l‖2 +λl l 6= 0

λl̄ l = 0
λ ∈R (47)

where ‖l‖= (lT l)1/2. We may solve the unknown λ from the

following quadratic equation which results again from link

geometry:

(si2(λ)− s+)T (si2(λ)− s+) = d2/s2
γ (48)

Note that this is a quadratic equation in λ, we have up to two

solutions for each si2. The input angles (θ11,θ21) may finally

be derived from link geometry, and is given by

(
si2 − s−

‖si2 − s−‖
−w+

i1cµ

)T (
w+

i2 −w+
i1cµ

)
= s2

µcθi1
, i = 1,2

(49)

Direct Displacement Kinematics

The direct displacement kinematics may be derived by

reversing the inverse displacement kinematics. First, given

the input angles (θ11,θ21), we may compute si2, i = 1,2 by

si2 = si2(θ11,θ21) = eθi1ŵ+
i1si2 (50)

Two linear equations for s− may then be extracted from tak-

ing the differences of the following three equations resulting

from link geometry

(s−− s+)T (s−− s+)T = 4d2

(s−− s11)
T (s−− s11) = d2/s2

γ

(s−− s21)
T (s−− s21) = d2/s2

γ

(51)

Rewriting s− using Plücker coordinate of the intersection

line and back-substituting into one of the three equations in

Eqn. (51) gives two solutions of s−. The tilt axis w and half-

tilt angle ψ may then be easily derived using Eqn. (42). �


