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ABSTRACT 

In this paper, a damaging block-based model is proposed for the numerical analysis of the cyclic behaviour of full-scale 

masonry structures. Solid 3D finite elements governed by a plastic-damage constitutive law in tension and compression 

are used to model the blocks, while a cohesive-frictional contact-based formulation is developed to simulate their cyclic 

interaction. The use of tests on small-scale specimens to calibrate the mechanical properties of the numerical model is 

presented and discussed. The tests belong to a comprehensive experimental campaign performed on calcium silicate brick 

masonry. The calibrated models are used to simulate in-plane and out-of-plane cyclic tests on masonry walls made of the 

same material, as well as a quasi-static cyclic pushover test on a full-scale terraced masonry house. The efficiency, the 

potentialities and the accuracy of the model here proposed are shown and discussed. The capability of explicitly 

representing structural details (e.g. running bonds) and any in-plane and through-thickness texture of masonry, which 

appears essential to study the response of masonry structures, is guaranteed by the block-based modelling approach. A 

good agreement between the numerical results and the experimental outcomes is observed. This allows to validate the 

model in the cyclic response as well as the strategy proposed for its mechanical characterization. 

 

Keywords: Unreinforced masonry; Cohesive behaviour; Cyclic behaviour; Earthquake; Terraced house; 

Masonry constitutive model 

 

Nomenclature 
𝑐 cohesion of the contact shear response 

𝑑 degradation damage variable for the plastic-damage model 

𝐷 scalar damage variable for the contact behaviour 

𝑑𝑐 compressive scalar damage variable the plastic-damage model 

𝑑𝑡 tensile scalar damage variable the plastic-damage model 

𝐸 Young’s modulus of the material 

𝐸0 𝐸0 is the initial Young’s modulus of the material 

𝑬𝟎 initial undamaged elastic stiffness tensor 

𝐹 yielding surface 

𝑓𝑏0 biaxial initial compressive strength 

𝑓𝑐0 uniaxial initial compressive strength 

𝑓𝑠 contact shear strength 

𝑓𝑡 contact tensile strength 

𝑓𝑡0 initial uniaxial tensile strength 

𝑔𝑐 dissipated energy density in compression 

𝑔𝑡 dissipated energy density in tension 

𝐺 shear modulus 

𝐺𝑐 fracture energy in compression 

𝐺𝑡 fracture energy in tension 

ℎ localization zone size (characteristic length) 

𝐼1 first invariant of the stress tensor 

𝐽2 second invariant of the stress deviator 
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𝐽 Jacobian of the transformation 

𝑘𝑐 hardening variable in compression 

𝑘𝑡 hardening variable in tension 

𝐾𝑛𝑛 contact cohesive stiffness in normal direction 

𝐾𝑠𝑠 contact cohesive stiffness in shear direction 

𝑟(�̂̅�) weight factor 

𝑠𝑐 , 𝑠𝑡  functions of the stress state 

tan𝜙 initial friction of the contact shear response 

𝑢 contact normal displacement 

𝑢0 separation at the limit of the linear elastic behaviour in tension 

𝑢𝑘 ultimate separation of the cohesive behaviour 

𝑢𝑀𝐴𝑋 maximum separation ever experienced by the contact point 

𝑉𝑒 area of the finite element 

𝑤𝜂 , 𝑤𝜉 , 𝑤𝜌 weight factors 

𝛼 dimensionless constant 

𝛼ℎ modification factor depending on the typology of the finite element 

𝛽(𝒌) function of the hardening variables 

𝛾 dimensionless constant 

𝛿 contact tangential slip 

𝛿0 slip at the limit of the linear elastic behaviour in shear 

𝛿𝑘 ultimate slip of the cohesive behaviour 

𝛿𝑀𝐴𝑋 maximum slip ever experienced by the contact point 

𝜺 strain tensor 

휀𝑐 uniaxial compressive strain 

휀𝑡 uniaxial tensile strain 

𝜺𝒑 plastic part of the strain tensor 

�̇�𝒑 plastic strain rate tensor 

𝛆�̂̇� matrix which collects the eigenvalues of the plastic strain rate tensor 

휀𝑐
𝑝
 uniaxial compressive plastic strain 

휀𝑡
𝑝
 uniaxial tensile plastic strain 

𝜖 smoothing constant 

휁 brittleness parameter in tension 

�̇� plastic multiplier 

𝜇 residual friction 

𝜈 Poisson’s coefficient 

𝜉 brittleness parameter in shear 

𝜌 dimensionless constant 

𝜎 contact normal stress 

𝝈 stress tensor 

�̅� effective stress tensor 

�̂̅� matrix which collects the eigenvalues of the effective stress tensor 

𝜎𝑐 uniaxial compression 

𝜎𝑀𝐴𝑋 algebraically maximum principal stress in the effective-stress space 

𝜎𝑡 uniaxial tension 

𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙  uniaxial stress 

𝜍𝑐 uniaxial compressive strength function 

𝜍�̅� uniaxial compressive strength function in the effective-stress response 

𝜍𝑡 uniaxial tensile strength function 

𝜍�̅� uniaxial tensile strength function in the effective-stress response 

𝜏 contact shear stress 

𝜏1, 𝜏2 shear stress components along two orthogonal directions in the plane of the contacting surface 

Φ plastic potential 

𝜓 dilatancy angle of the quasi-brittle material 
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1 Introduction 

A large part of the existing buildings in Europe is composed of masonry structures. On the one hand, 

monumental masonry structures represent fascinating examples of historic architecture [1]. On the other hand, 

ordinary masonry buildings constitute one of the most widespread building typologies [2]. However, masonry 

constructions are sensibly vulnerable to earthquake actions. Even light seismic events can induce considerable 

damage to masonry buildings. This is the case, for example, of the terraced masonry houses in the Groningen 

region (the Netherlands) [3], which, in recent years, has been subjected to earthquakes due to gas extraction in 

the soil. 

Predictions of the response of masonry structures against extraordinary loads (e.g. seismic loads) can be 

performed by means of numerical approaches, which could also evaluate the main weaknesses of these 

structures. However, the mechanical behaviour of masonry is very complex and highly nonlinear, due to the 

composite nature and the heterogeneity of masonry (made of blocks usually bonded with mortar). Therefore, 

the definition of reliable numerical models for masonry assemblages is a very challenging task and an on-

going process in the scientific research [4]. 

Computational strategies for masonry structures can be classified in: (i) pier-spandrels models, (ii) continuum 

homogeneous models and (iii) block-based models. Pier-spandrels models represent the structure by means of 

macroscopic elements which model the behaviour of piers, spandrels and joint between them [5]. Conversely, 

continuum homogeneous models represent masonry by means of a continuum discretization of the geometry. 

The definition of the constitutive law of the material can be obtained through a direct approach [6, 7, 8] or a 

multi-scale approach [9, 10, 11]. Finally, block-based models account for the texture of masonry by an explicit 

and separated representation of each block of the structure. The mechanical behaviour of the blocks is usually 

considered rigid or linear elastic and the interaction between them is accounted for through several 

formulations: interface elements [12, 13, 14, 15, 16, 17], strong discontinuity approaches [18, 19], finite 

element (FE) limit analysis approaches [20, 21, 22, 23], and contact-based formulations [24, 25, 26]. To 

account for the cracking of masonry blocks, several approaches employed interface elements or disconnections 

along the central plane of the blocks. 

Generally, this latter category of models can capture the complex patterns of cracks which characterize the 

evolution of the damage in masonry with more accuracy, reproducing the main aspects of the nonlinear 

response such as, for example, the relative sliding of blocks. Furthermore, these models can represent the actual 

texture of a structure and, therefore, can accurately represent complex structural details (e.g. running bonds 

and toothing between orthogonal walls), which can be substantial in the structural response under horizontal 

loading [27]. Particularly, the use of solid 3D blocks permits to account for in-plane and out-of-plane 

behaviours at the same time. 

In order to better represent the response of masonry structures undergoing earthquakes, the cyclic behaviour 

of masonry should be accounted for. However, only few of the cited papers take it into consideration. Indeed, 

more aspects (e.g. stiffness degradation, residual displacements and hysteresis) have to be accounted for to 

model the cyclic behaviour of masonry. To this aim, in [28] a cyclic 2D model entirely based on multi-surface 

plasticity has been developed and, in [29], a 3D softening plasticity model has been implemented to represent 

the stiffness degradation in the normal direction in a simplified way.  

More effective approaches for the definition of the cyclic cohesive interface behaviour are based on the 

coupling of plasticity and damage. In this framework, a 2D model where the evolution of the inelastic strains 

is coupled to the evolution of a damage variable has been developed and validated in [30]. Furthermore, 

numerical approaches based on micro-mechanical hypotheses of damage mechanics, which employ a 

decomposition of stresses in two components to account for the damaged and undamaged part of the interface, 

have been presented in [31, 32]. Inelastic strains are associated with the former stress component to represent 

the crack opening and/or the slip in the damaged part of the interface.  

More recently, in [33] the applied element method has been utilized to model calcium silicate brick masonry 

subjected to in-plane cycling loading, whereas in [34] a constitutive model for the masonry joint interfaces 

under cyclic loading has been proposed. This model is based upon the combination of plasticity and damage, 



5 

 

using a multi-surface yield criterion in the stress domain which governs the development of permanent plastic 

strains. 

Very recently, a 3D detailed micro-model to analyse the mechanical response of masonry panels under in-

plane and out-of-plane loading conditions has been proposed by part of the Authors in [35]. This modelling 

approach is characterized by textured units, consisting of one brick and few mortar layers, represented by 3D 

nonlinear solid finite elements. Textured units are assembled by means of zero-thickness rigid-cohesive-

frictional interfaces based on the contact penalty method. Although this latter approach represents an advanced 

model for the mechanical analysis of masonry, it has been investigated and validated in the monotonic regime 

only. 

In this paper, following an approach akin to the one proposed in [35] and aiming to extend it to the cyclic 

behaviour, a novel damaging block-based model is proposed for the numerical analysis of the cyclic behaviour 

of full-scale masonry structures. Solid 3D finite elements governed by a plastic-damage constitutive law in 

tension and compression are used to model the blocks, accounting for masonry crushing and cracking of the 

blocks. A cohesive-frictional contact-based formulation is developed to simulate their interaction, accounting 

for the sliding and the separation of the blocks also in the cyclic regime. In particular, a Mohr-Coulomb failure 

surface with tension cut-off governs the contact behaviour. 

This novel modelling approach can, in fact, be fully characterized by the properties obtained through 

monotonic tests on small-scale masonry assemblages. A strategy for the comprehensive mechanical 

characterization of the mechanical properties of the numerical model from these small-scale experiments is 

discussed in the paper. In particular, an experimental campaign on calcium silicate masonry small-scale 

specimens is used to calibrate the mechanical properties of the model. These mechanical properties are used 

to simulate in-plane and out-of-plane cyclic tests on masonry walls made of the same material, as well as a 

cyclic pushover test on a full-scale terraced masonry house. The efficiency of the contact-based formulation 

and the potentialities and the accuracy of the model herein proposed are discussed. 

The paper is organized as follows. Section 2 illustrates the proposed damaging block-based model and the 

strategy for its mechanical characterization from small-scale tests on masonry. Section 3 briefly describes the 

experimental campaign on calcium silicate masonry used as reference in the paper. Section 4 describes the 

calibration of the mechanical properties from the small-scale tests presented in Section 3. Section 5 collects 

experimental-numerical comparisons and their discussion for the in-plane and out-of-plane behaviour of 

masonry walls, as well as for the cyclic pushover test on a terraced masonry house. Finally, Section 6 highlights 

the conclusions of this research work. 
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2 Damaging block-based modelling 

The novel modelling approach herein proposed for the analysis of the cyclic behaviour of masonry structures 

consists of a block-based model. In this model, the interaction between adjacent blocks is formulated in a 

contact-based framework (Fig. 1) accounting for cohesion and friction, whereas the blocks follow a continuum 

plastic-damage constitutive law [36] both in tension and compression. As the mortar layers are not explicitly 

modelled, the use of expanded blocks is adopted, as commonly employed in block-based models [12, 14]. The 

model is implemented in Abaqus [37], a general-purpose FE software. 

The adopted contact formulation conceives contact pairs composed of one slave face and one master face, 

following the traditional node-against-surface approach [38] (Fig. 1). In particular, the nodes of the slave face 

contact the surface of the master face (Fig. 1). Therefore, contact is enforced at discrete points, which are the 

nodes of the slave face. After the assembly of the blocks, the contact pairs between adjacent blocks are defined 

by means of fully automatic contact detection algorithms [37]. A finite-sliding formulation, which allows for 

arbitrary separation, sliding, and rotation of the surfaces, is adopted [37]. The cohesive contact behaviour is 

governed by an ad-hoc modification of the standard surface-based contact behaviour available in Abaqus [37]. 

In this context, an automatic subroutine ad-hoc written by the authors is implemented to reproduce a Mohr-

Coulomb failure surface with tension cut-off. 

The sliding between blocks is conceived without a dilatant behaviour, whereas dilatancy is considered in the 

3D nonlinear FEs used for the blocks, in the framework of nonassociated plasticity [36]. Indeed, although the 

role of dilatancy in the mechanical behaviour of masonry is still under investigation [39, 40], the experimental 

tests collected in [41] show that dilatancy is considerably influenced by the failure type, i.e. higher dilatancy 

is recorded when the crack crosses mortar and/or blocks rather than that recorded when the bond between 

block and mortar undergoes failure. 

The formulation of the proposed model allows for a direct setting of the mechanical parameters from small-

scale experimental tests on masonry specimens. The main idea at the base of this setting is that the properties 

of the cohesive-frictional behaviour between blocks are based on brick-mortar bond tests (tensile failure and 

shear sliding), whereas the properties of the block 3D FEs are based on tests on masonry wallets and on tests 

on single bricks. 

In the following, the description of the contact mechanical behaviour, the block nonlinear behaviour, as well 

as the strategy suggested for the mechanical characterization of the model mechanical properties from small-

scale tests on masonry are illustrated. 

 

Fig. 1 – Node-against-surface contact approach adopted in the damaging block-based modelling. 
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2.1 Contact mechanical behaviour 

In the normal direction, the contact stress 𝜎 is computed by means of a pressure-overclosure relationship in 

compression and a linear elastic relationship in tension: 

𝜎 = {
Pressure − overclosure relationship, 𝑢 < 0

𝐾𝑛𝑛𝑢, 𝑢 ≥ 0
 

( 1 ) 

where 𝐾𝑛𝑛 is the cohesive stiffness in normal direction and 𝑢  is the normal displacement (separation). The 

pressure-overclosure relationship represents the approach used to enforce the contact constraints. Several 

numerical strategies have been proposed to deal with the contact constraints [42]. The most common 

approaches are Lagrange multiplier methods and penalty methods. Lagrange multiplier methods introduce 

additional multipliers to enforce directly and exactly the contact constraint, whereas penalty methods avoid 

the need for additional variables by introducing an approximation of the constraint condition. In this paper, the 

Lagrange multiplier approach implemented in Abaqus (hard contact) is adopted [37]. Relationship ( 1 ) is 

assumed to be valid for tensile stresses until the tensile strength 𝑓𝑡 of the contact behaviour is reached, whereas 

it is always valid in the compressive regime. 

In the shear direction, the tangential slip 𝛿 is linearly related to the contact shear stress 𝜏 with the relation: 

𝜏 = 𝐾𝑠𝑠𝛿, ( 2 ) 

where 𝐾𝑠𝑠 is the cohesive stiffness in shear. This relation is valid until the contact shear stress equals the shear 

strength 𝑓𝑠. The shear strength 𝑓𝑠 is assumed to be dependent on the contact stress: 

𝑓𝑠(𝜎) = −tan𝜙 𝜎 + 𝑐, ( 3 ) 

where 𝑐 is the cohesion and tan𝜙 is the initial friction of the shear response.  

Therefore, contact failure is supposed when the contact stresses at a point intersects a Mohr-Coulomb failure 

surface with tension cut-off. This criterion can be expressed as: 

max{
〈𝜎〉

𝑓𝑡
,
𝜏

𝑓𝑠(𝜎)
} = 1, 

( 4 ) 

where the symbol 〈𝑥〉 = (|𝑥| + 𝑥)/2 denotes the Macaulay bracket function. The Macaulay brackets are used 

to signify that a purely compressive stress state does not induce contact failure. A sketch of the failure surface 

adopted for the contact behaviour is shown in Fig. 2. Once contact failure is reached, cohesive behaviour in 

tension and cohesive-frictional behaviour in shear is activated. 
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Fig. 2 – Morh-Coulomb failure surface with tension cut-off (𝜏1 and 𝜏2 are the shear stress components along two 

orthogonal directions in the plane of the contacting surface). 

 

The maximum value of the stress in the post-peak regime, in a contact point, is described in tension by the 

relationship: 

𝜎 = {
(1 − 𝐷)𝑓𝑡, 𝑢0 < 𝑢 < 𝑢𝑘

0, 𝑢 ≥ 𝑢𝑘 
, 

( 5 ) 

and in shear by the relationship: 

 

𝜏 = {
(1 − 𝐷)𝑓𝑠(𝜎) + 𝐷𝜇〈−𝜎〉, 𝛿0 < 𝛿 < 𝛿𝑘

𝜇〈−𝜎〉, 𝛿 ≥ 𝛿𝑘
, 

( 6 ) 

where the degradation scalar variable 𝐷 is defined as: 

𝐷 = max

{
 
 
 

 
 
 
1 −

𝑢0
𝑢𝑀𝐴𝑋

(1 −
1 − 𝑒

−𝜁
𝑢𝑀𝐴𝑋−𝑢0
𝑢𝑘−𝑢0

1 − 𝑒−𝜁
)

1 −
𝛿0
𝛿𝑀𝐴𝑋

(1−
1 − 𝑒

−𝜉
𝛿𝑀𝐴𝑋−𝛿0
𝛿𝑘−𝛿0

1 − 𝑒−𝜉
)

, 

( 7 ) 

being 𝜇 the residual friction, 𝑢0 and 𝛿0 the separation and the slip at the limit of the linear elastic behaviour in 

tension and shear, respectively, 𝑢𝑀𝐴𝑋 and 𝛿𝑀𝐴𝑋 the maximum separation and the maximum slip ever 

experienced by the contact point, respectively, 𝑢𝑘 and 𝛿𝑘 the ultimate separation and the ultimate slip of the 

cohesive behaviour, respectively, 휁 and 𝜉 non-dimensional brittleness parameters in tension and shear, 

respectively. 
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From equations ( 5 ), ( 6 ) and ( 7 ) it appears clear that the cohesive behaviour in tension and shear is governed 

by the same degradation scalar variable 𝐷. Indeed, the damage evolution in tension and shear are fully coupled, 

i.e. the degradation of cohesion in tension degrades the cohesion in shear and vice versa.  

Fig. 3 and Fig. 4 show the contact normal and shear cyclic behaviour, respectively. The monotonic behaviour 

is depicted by means of black thick lines. 

Dealing with the tensile contact behaviour (Fig. 3), if a degraded contact point with 0 < 𝐷 < 1 undergoes 

unloading, the unloading path will be characterized by a linear branch with a degraded stiffness (1 − 𝐷)𝐾𝑛𝑛 

until the stress state reach compression. In the compression regime, the behaviour is fully governed by the 

pressure-overclosure relationship adopted, which is completely independent by the state of degradation of the 

cohesion.  

As can be noted in Fig. 4, the contact shear cyclic behaviour appears more complex than the normal one, as it 

is also governed by friction. If a degraded contact point (0 < 𝐷 < 1), e.g. point A in Fig. 4, undergoes 

unloading, the unloading path will be characterized by a bi-linear branch. The first segment will be defined by 

the initial stiffness 𝐾𝑠𝑠 and by a stress drop equal to two times the maximum frictional contribution, i.e. 

2𝜇〈−𝜎〉. Therefore, the length of the first segment, e.g. AB in Fig. 4, will be equal to AB̅̅ ̅̅ = 2𝜇〈−𝜎〉√1 +
1

𝐾𝑠𝑠
2 . 

The second segment, conversely, will be characterized by a degraded stiffness (1 − 𝐷)𝐾𝑠𝑠 until the reaching 

of point C (Fig. 4), which represents the specular point of A in Fig. 4. From this point forward, the cohesive 

exponential behaviour is re-established, and the contact point further degrades (for example, moving from 

point C to point D in Fig. 4). If a fully degraded contact point (𝐷 = 1), e.g. point G in Fig. 4, undergoes 

unloading, the unloading path will be characterized by a bi-linear branch, in which the first segment will be 

defined by the initial stiffness 𝐾𝑠𝑠 and by a stress drop equal 2𝜇〈−𝜎〉, whereas the second segment will be 

characterized by an horizontal line, purely governed by friction. 

The contact shear cyclic behaviour proposed has been found to be consistent with the experimental results 

obtained by Atkinson et al. [43] on small-scale masonry samples, as well as with the numerical results found 

by Gambarotta & Lagomarsino [30], as shown in Fig. 5. 

 

 

Fig. 3 – Contact normal cyclic behaviour. 
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Fig. 4 – Contact shear cyclic behaviour. Two unloading-reloading paths are indicated: ABCDEF in the shear softening 

stage, GHIL in the final shear friction stage. 𝐷′ and 𝐷"are the values assumed by the degradation scalar damage variable 

𝐷 when reaching the point A and the point D, respectively. 
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Fig. 5 – Cyclic shear behaviour of masonry joints: Comparison between experimental tests (old bricks specimen in [43]) 

and numerical response. 

 

 

2.2 Block nonlinear behaviour 

The isotropic plastic-damage nonlinear behaviour based on the constitutive model developed by Lee and 

Fenves [36] for quasi-brittle materials is assumed for blocks. In the following, the main characteristics of the 

model are recalled. For the reader’s convenience, a summary of the model equations, accounting for the role 

of the parameters involved, is given in the Appendix. 

Two independent scalar damage variables are assumed for the tensile response (0 ≤ 𝑑𝑡 < 1) and for the 

compressive response (0 ≤ 𝑑𝑐 < 1). Consequently, the stress-strain relations in uniaxial tension, 𝜎𝑡, and 

compression, 𝜎𝑐, are: 

𝜎𝑡 = (1 − 𝑑𝑡)𝐸0(휀𝑡 − 휀𝑡
𝑝
), 𝜎𝑐 = (1 − 𝑑𝑐)𝐸0(휀𝑐 − 휀𝑐

𝑝
), ( 8 ) 

where 𝐸0 is the initial Young’s modulus of the material, 휀𝑡 and 휀𝑐 are the uniaxial tensile and compressive 

strains, and 휀𝑡
𝑝
 and 휀𝑐

𝑝
 are the uniaxial tensile and compressive plastic strains (Fig. 6). In particular, the curves 

shown in Fig. 6 characterize the main input data of the continuum model. 

In addition, a nonassociative flow rule is considered to govern the dilatancy and to define the plastic strain 

rate. A flow rule obtained by a Drucker-Prager type plastic potential is considered. Particularly, the flow rule 

is controlled by the dilatancy angle 𝜓, generally assumed equal to 10° in agreement with physical evidences 

[44] and previous computational approaches [45, 46], and a smoothing constant 𝜖 typically assumed equal to 

0.1 [45]. 

Finally, a multiple-hardening Drucker-Prager type surface is adopted as yield surface. This surface is governed 

by the ratio 𝑓𝑏0/𝑓𝑐0 between the biaxial initial compressive strength 𝑓𝑏0 and the uniaxial initial compressive 

strength 𝑓𝑐0 and a constant 𝜌, which represents the ratio of the second stress invariant on the tensile meridian 

to that on the compressive meridian at initial yield. Generally, 𝑓𝑏0/𝑓𝑐0 = 1.16 and 𝜌 = 2/3 for quasi-brittle 

materials, such as masonry [47]. The general parameters adopted for blocks are collected in Table 1. 
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Table 1. General parameters for the blocks. 

𝜖 𝜓 𝑓𝑏0/𝑓𝑐0 𝜌 

0.1 10° 1.16 2/3 

a  b 

Fig. 6 – Plastic-damaging behaviour of blocks: a) tensile and b) compression uniaxial nonlinear curves. 
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2.3 Mechanical characterization of the model from small-scale experimental test 

The proposed numerical model allows for a direct and easy setting of the mechanical parameters. The strategy 

that can be used for the mechanical characterization of the model based on monotonic small-scale experimental 

tests on masonry wallets and components is summarised in Fig. 7. The main idea at the base of this setting is 

that the properties of the contact cohesive-frictional behaviour between blocks are based on brick-mortar bond 

tests, whereas the properties of the block 3D FEs are based on tests on masonry wallets and blocks. 

 

Fig. 7 – Strategy for the mechanical characterization of the model from small-scale experimental tests on masonry 

components and assemblages. 

The contact shear behaviour can be completely defined by shear tests on masonry triplets (Fig. 7). The output 

of experimental tests on triplets (at least with 3 different levels of pre-compression) in terms of cohesion (𝑐), 

initial friction (tan𝜙) and residual friction (𝜇) can be directly used as mechanical properties in the numerical 

model. Moreover, the ultimate slip of the cohesive behaviour (𝛿𝑘) and the brittleness parameter 𝜉 can be 

calibrated in order to better fit the post peak behaviour of the tests, as well as to better approximate the Mode 

II fracture energy. Finally, the shear cohesive stiffness (𝐾𝑠𝑠) can be determined by fitting the initial linear 

branch of the shear-slip curve. Indeed, in the simulation of these tests, the deformability of the blocks plays a 

marginal role.  

The contact normal characterization needs even less parameters (Fig. 7). As a matter of fact, the compressive 

contact behaviour does not need any parameter to be characterized. The tensile cohesive behaviour can be 

characterized by bond wrench tests, in terms of tensile strength (𝑓𝑡), and out-of-plane bending tests which can 

be used to characterize the Mode I fracture energy and, also, can be used to verify the tensile strength measured 

by wrench tests. From the Mode I fracture energy, the ultimate separation of the cohesive behaviour (𝑢𝑘) and 

the brittleness parameter 휁 can be calibrated. The cohesive stiffness in the tensile direction 𝐾𝑛𝑛 represents a 

further component of deformability in the normal direction, which acts only in the tensile regime. Although 

the Young’s modulus of masonry in compression could be, in theory, different from the one in tension, no 

deep experimental investigation has been conducted on this topic. Therefore, the use of a stiff value of 𝐾𝑛𝑛, 

considerably stiffer than 𝐾𝑠𝑠 (e.g. 𝐾𝑛𝑛 = 10𝐾𝑠𝑠), is suggested. 
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Dealing with the block mechanical properties, the continuum isotropic elastic properties as well as the 

compressive and tensile uniaxial nonlinear curves depicted in Fig. 6 need to be characterized (Fig. 7). As in 

the compressive regime the contact formulation does not account for any failure as well as any deformability, 

the compression tests on masonry wallets can be used to characterize the block elastic properties, in terms of 

Young’s modulus 𝐸 and Poisson’s coefficient 𝜈, as well as the compressive nonlinear behaviour of the blocks. 

Therefore, the elastic and compressive responses of blocks is related to masonry properties. Conversely, the 

tensile nonlinear behaviour of the blocks is deduced from tests on blocks (e.g. 3-points bending tests, see Fig. 

7), and, therefore, is related to a block property. 

As one can note, the proposed numerical model shows, beyond the deformability of the continuum isotropic 

blocks, an additional deformability in the shear behaviour due to the cohesive stiffness 𝐾𝑠𝑠 (considering 

negligible the deformability due to 𝐾𝑛𝑛). Therefore, dealing with a masonry panel, the overall shear modulus 

𝐺 evaluated with the proposed model will be lower than the one predicted with an isotropic continuum model 

with the same parameters 𝐸 and 𝜈. Of course, masonry is not an isotropic material and the relationship between 

the three elastic constants is, in general, not valid. Indeed, by using the measured values of 𝐸 and 𝜈 in a 

continuum model, the value of 𝐺 will be, in general, overestimated. In addition, the values of 𝐸 and 𝐺 generally 

adopted in beam-based piers-spandrels models [48] for the simulation of masonry structures often lead to 

values of 𝜈 which have no mechanical meaning (even 𝜈 > 0.5). Therefore, the use of an additional 

deformability in the shear behaviour (governed by 𝐾𝑠𝑠) allows the proposed model to overcome this limitation 

of continuum isotropic models. In particular, the authors experienced that the overall shear stiffness of masonry 

walls is generally gathered with a good accuracy by the proposed model utilizing the cohesive stiffness 𝐾𝑠𝑠 
calibrated in triplet tests. 

Finally, it has to be pointed out that the characterization of the mechanical parameters of the model can be 

fully described by monotonic tests on small-scale masonry specimens (and components), even if the model is 

suitable for cyclic simulations. This aspect constitutes a further appealing feature of the proposed model. 
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3 Experimental campaign 

Extensive testing programs to characterize the behavior of masonry structures from a material to a structural 

level have been carried out at the laboratory of Delft University of Technology since 2014 [49]. At material 

level (small-scale tests), destructive laboratory tests were performed on both existing and replicated masonry 

specimens [50]. At structural level, several in-plane and out-of-plane tests on single piers have been performed 

[51]. Furthermore, the campaign comprehended also two quasi-static cyclic pushover tests on full-scale two-

story high assembled structures [52]. All the tests considered have been conducted by using the same calcium 

silicate brick masonry. 

3.1 Small-scale tests 

Many small-scale tests on masonry samples (wallets, triplets, couplets) and on masonry components (brick 

and mortar) have been performed at the Stevin II laboratory at the Delft University of Technology [50, 53]. 

All the tests considered were performed on replicated calcium silicate brick masonry [53], made of 

210x71x102 mm bricks. Standardized monotonic destructive material tests for the characterization of masonry 

have been conducted and the experimental set-ups and results were collected in [53]. Particularly, compression 

tests on masonry wallets, brick and mortar specimens, bending tests on masonry wallets, brick and mortar 

specimens, bond wrench tests on masonry couplets, and shear tests on masonry triplets have been performed. 

3.2 In-plane cyclic tests on masonry walls 

Seven 2.75 m high masonry walls made of calcium silicate brick masonry have been built and tested under in-

plane cyclic loading. Two height/width aspect ratios (0.7 and 2.5) and two different configurations (i.e. 

cantilever and double clamped walls) were considered. In addition, different vertical pressure values have been 

initially applied to the walls. The used set-up provided a uniform vertical pressure and a horizontal imposed 

displacement on the top of the walls. A sketch of the set-up employed for the in-plane tests is shown in Fig. 

8a. A quasi-static cyclic pushover test was performed on each wall in displacement control. Further details are 

collected in [51]. 

3.3 Out-of-plane cyclic tests on masonry walls 

Four walls were also tested in the out-of-plane direction by applying a quasi-static cyclic loading using a 

system of airbags. Two different configurations (i.e. one-way and two-way spanning configurations) were 

considered. The tests were performed by employing a system of coupled airbags on both sides of the wall to 

apply a uniform pressure. The difference between the loads measured on both sides is the total out-of-plane 

load acting on the wall. A sketch of the set-up used in the tests (e.g. for the two-way spanning walls) is shown 

in Fig. 8b. The interested reader is referred to [51] for further details. 

a b 

Fig. 8 – Sketch of the set-up used for the in-plane (a) and out-of-plane (b) tests on walls. 
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3.4 Cyclic pushover test on a masonry full-scale terraced house 

The extensive experimental campaign conducted in Delft also included a terraced house typology, which was 

representative of the masonry constructions built in the Netherlands during the period 1960-1980. Two terraced 

houses (one made of calcium silicate bricks and the other of calcium silicate elements) were built and tested 

through a quasi-static cyclic pushover loading [49]. In this paper, reference to the calcium silicate brick 

masonry terraced house is made [52, 54]. The construction is characterised by the presence of large daylight 

opening in the facades. Consequently, the loadbearing structure is composed of very slender piers and long 

transversal walls (Fig. 9). The masonry bricks were laid using a stretcher bond and allowing for the interlocking 

of the bricks at the corners of the transversal walls and the piers (Fig. 9). Each floor consisted of two separated 

prefabricated concrete slabs spanning between the loadbearing transversal walls. A braced steel tower was 

built to apply the cyclic horizontal loading to the house. A quasi-static cyclic pushover test was performed on 

the terraced house. The test was performed in displacement control with the additional condition of maintaining 

equal the forces applied at the two floor levels through four actuators (two per each floor). For the reader 

convenience, reference to [52, 54] is made for further details. 

a 

 b 

Fig. 9 – Calcium silicate brick masonry terraced house: sketch of the geometry (a) and photo (b).  
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4 Calibration of the mechanical properties from small-scale tests 

The mechanical characterization of the proposed damaging block-based model has been performed following 

the scheme depicted in Fig. 7, thanks to the small-scale monotonic tests performed on calcium silicate brick 

masonry at the TU Delft [53] (briefly described in section 3).  

An example of calibration of the contact mechanical properties for the shear behaviour is shown in Fig. 10. 

The experimentally-determined values of cohesion (𝑐), initial friction (tan𝜙), and residual friction (𝜇) have 

been directly implemented in the numerical model, whereas the ultimate slip of the cohesive behaviour (𝛿𝑘) 

and the brittleness parameter 𝜉 have been calibrated to better fit the curves in Fig. 10b. In particular, the value 

of 𝐾𝑠𝑠 has been chosen to represent the average of the initial experimental branches. 

By inspecting Fig. 10b, the experimental shear stress-displacement curves appear dependent on the applied 

pre-compression level. Furthermore, the experimental curves show a less significant cohesive behaviour with 

a prevalence of friction for high levels of pre-compression (see for instance the three experimental curves in 

the top of Fig. 10b). A unique set of mechanical parameters was chosen for the description of the shear contact 

behaviour, aiming at representing the averaged experimental response for both the cohesive and frictional 

parts. Given the uneven experimental response, this leads evidently to some approximations. However, the 

level of approximation obtained in the shear contact behaviour could be considered suitable for the model 

purposes. 

Fig. 11 shows the mechanical characterization of the compressive nonlinear behaviour of the blocks by means 

of compression tests on masonry wallets. The numerical model is not able to directly simulate the formation 

of vertical cracks through-thickness of the blocks (Fig. 11a). However, the continuum damage formulation of 

the blocks allows to phenomenologically represent the peak and post-peak compressive behaviour of masonry 

(Fig. 11b) by showing a widespread distribution of compressive damage into the numerical model (Fig. 11c). 

The mechanical parameters calibrated from small-scale tests specimens and, then, used in the numerical 

simulation of panel-scale and full-scale structures are collected in Table 2. Fig. 12 shows the stress-strain 

uniaxial tensile and compressive relationships adopted for the block in the simulations, obtained through a 

calibration process, as shown in Fig. 11b. These curves, which adopted for simplicity a linear softening branch, 

represent the main input for the definition of the plastic-damage constitutive law assumed for the block, which 

characterize both the strength and the brittleness of the material. In particular, the tensile curve (Fig. 12a) 

corresponds to a value 0.41 N/mm of tensile fracture energy, whereas the compressive curve (Fig. 12b) 

corresponds to a value 11.22 N/mm of compressive fracture energy, being the characteristic length related to 

the hexahedral finite elements (55 mm x 55 mm x 80 mm) used throughout this study, defined as specified in 

the Appendix, equal to 55 mm.  

The tensile and compressive scalar damage variables, which in theory can assume any value from 0 to 1, have 

been limited to 0.9 to increase the numerical convergence of the simulations (Table 2), as commonly carried 

out when using plastic-damage constitutive laws [55]. For this reason, as well as the limitation of the softening 

regime to a residual value of stress (for the same purpose), the post-peak branch in Fig. 11b is characterized 

by a (small) residual strength. 
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a  b 

Fig. 10 – Shear tests on triplets: experimental (top) and numerical (bottom) samples (a) and experimental-numerical 

shear stress – relative displacement of the central brick curves (b) for three different level of pre-compression. 

 

 

a b c 

Fig. 11 – Compression tests on masonry wallets: experimental failure (a), experimental-numerical normal stress – 

vertical displacement curves (b), and compressive damage contour plot (c). 
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Table 2. Mechanical parameters utilized in the numerical simulations.  

Contact mechanical properties 

Tensile behaviour  Shear behaviour 

𝑓𝑡 [MPa] 0.12   tan𝜙 [\] 0.52  

𝑢𝑘 [mm] 1.0   c [MPa] 0.11  

휁 [\] 8   𝛿𝑘 [mm] 1.0  

𝐾𝑛𝑛 [N/m3] 75∙109   𝜉 [\] 4  

    𝜇 [\] 0.55  

    𝐾𝑠𝑠 [N/m3] 7.5∙109  

 

Block mechanical properties 

Young’s modulus [MPa] 4800     

Poisson’s ratio [\] 0.17     

Tensile uniaxial nonlinear behaviour  Compressive uniaxial nonlinear behaviour 

Stress [MPa] Inelastic strain 𝑑𝑡 [\]  Stress [MPa] Inelastic strain 𝑑𝑐 [\] 
1.5 0 0  6.8 0 0 

0.1 0.01 0.9  0.9 0.06 0.9 

 

 

a  b 

Fig. 12 – Stress-strain uniaxial relationships adopted for the block: a) tensile and b) compressive uniaxial curves. 

 

5 Numerical results and discussion 

In this section, the results of the performed numerical simulations are critically compared with the experimental 

outcomes. In particular, two tests of in-plane cyclic loaded walls (with two height/width aspect ratios, i.e. 0.7 

and 2.5), one two-way bending cyclic out-of-plane test of a wall, and one cyclic pushover test on a terraced 

masonry house have been simulated. For the sake of consistency, all the simulations have been conducted by 

using the mechanical properties collected in Table 2, and the discretization of the block shown in Fig. 1. 

A quasi-static direct-integration implicit dynamic analysis algorithm [37] has been adopted in the simulations. 

This algorithm allows to analyse quasi-static responses in which inertia effects are essentially introduced to 

regularize unstable behaviours. The Authors experienced a better performance of this algorithm, specifically 

in the softening and cyclic regime, with respect to more common arc length procedures [35]. Geometric 

nonlinearity has been considered in the analyses to account for large-displacement effects. 

5.1 In-plane cyclic behaviour of walls 

The cyclic in-plane tests COMP-2 (slender wall, height/width aspect 2.5) and COMP-6 (thick wall, 

height/width aspect 0.7) [51] have been considered and simulated. Both walls are characterized by a cantilever 

configuration. The walls have been modelled through the damaging block-based model herein presented, by 
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considering a continuum quasi-rigid element on the top to prevent the warping of the wall, following the 

constraints of the experimental set-up. 

The pseudo-time-history of the top displacement experimentally recorded has been applied to a top node of 

the model (in the centre of the quasi-rigid element), and the pseudo-time-history of the resultant of the base 

shear has been measured.  

Concerning the slender wall COMP-2 test, the comparison between experimental and numerical shear force 

against measured net displacement curves is shown in Fig. 13, where the numerical monotonic response of the 

wall is collected as well. The experimental and numerical crack patterns are shown in Fig. 14, where the 

numerical one is taken at the instant represented by the green circle in Fig. 13. A good agreement between the 

results is particularly observed for the prediction of the maximum shear load. In this regard, the cyclic and 

monotonic simulations presented practically the same maximum shear force. The experimental test showed a 

crack pattern characterized by the combination of rocking and sliding (Fig. 14a) that gives a non-negligible 

energy dissipation (Fig. 13). Although the dissipation during the cycles, which plays a crucial role in the 

seismic response of structures, was not fully captured by the model, where almost-pure-rocking was recorded 

in the first cycles (Fig. 13), dissipation occurred in the model for wider cycles due to masonry crushing (Fig. 

14c), see Fig. 13. 
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Fig. 13 – Shear force vs measured net displacement of the slender wall COMP-2: comparison between experimental and 

numerical (cyclic and monotonic) results. 

 

a b c 

Fig. 14 – Slender wall (COMP-2) crack pattern: photos of the cracked wall (a), experimental crack pattern (b) and 

numerical compressive damage contour plot (c). 
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Conversely, the thick wall COMP-6 (whose shear force against displacement curves are depicted in Fig. 15, 

experimental and numerical crack patters in Fig. 16, and compressive and tensile damage contour plots Fig. 

17) was mainly characterized by shear failure (Fig. 16a). The hysteretic behaviour of the wall has been rather 

well predicted by the model, in terms of maximum shear force (Fig. 15), energy dissipation (Fig. 15) and crack 

pattern (Fig. 16a-b). The deformed horizontal displacement contour plot of Fig. 16b has been taken at the 

instant represented by the green circle in Fig. 15. It is worth to note that, although taken at an almost-null top 

horizontal displacement (Fig. 15), significant residual horizontal displacements are recorded at the two sides 

of the wall, which determine the formation of wide x-shaped shear cracks (Fig. 16b). Likewise, residual 

horizontal displacements have also been recorded during the experimental test. The numerical cyclic analysis 

diverged before the full-simulation of the experimental loading path (the non-simulated path has been reported 

in Fig. 15 through a grey colour), since two half-bricks at the base of the wall slid off as shown in Fig. 16b. It 

should be noted, anyhow, that the simulation of the considered test is extremely challenging given the co-

existence of different failure mechanisms, and damage both along mortar joints (opening and sliding, Fig. 16b) 

and in the bricks (crushing and splitting, Fig. 17). Also in this case, the in-plane cyclic and monotonic 

simulations presented a very similar maximum shear force. 

To evaluate the sensitivity of the model to the main mechanical properties, several monotonic analyses have 

been performed on the COMP-6 configuration and the results have been compared (Fig. 18). In particular, the 

results of the “Reference” analysis, conducted with the mechanical properties collected in Table 2, have been 

compared with the analyses “PAR_A” (characterised by doubled values of 𝑓𝑡 and 𝑢𝑘), “PAR_B” (doubled 

values of 𝑐 and 𝛿𝑘), “PAR_C” (doubled values of tan𝜙 and 𝜇), “PAR_D” (doubled values of 𝑓𝑐 and 𝐺𝑓), and 

“PAR_E” (doubled values of all the aforementioned parameters), in terms of shear force against horizontal 

displacement curves and crack patterns (Fig. 18). The overall behaviour of PAR_A and PAR_D appears akin 

to the Reference one, whereas PAR_B and PAR_C show a considerable greater maximum shear capacity. In 

particular, all the analyses showed a shear failure in the wall, exception made for PAR_B which initially 

showed a bending failure and, subsequently, a sudden shear failure just before a horizontal top displacement 

of 10 mm. This phenomenon is highlighted in the shear-displacement curve of Fig. 18 by a significant drop of 

the PAR_B curve. Conversely, the response of PAR_E is completely different, characterized by a bending 

failure and with a considerably greater shear capacity. Therefore, a significant influence on the shear response 

of the wall of the contact shear cohesion 𝑐 and 𝛿𝑘, as well as contact frictional contributions tan𝜙 and 𝜇 is 

observed, as expected. A completely different parameters setting, e.g. PAR_E, gives also a completely 

different response of the wall, confirming the relevance of the use of correct material parameters. 

 

Fig. 15 – Shear force vs measured net displacement of the thick wall COMP-6: comparison between experimental and 

numerical (cyclic and monotonic) results.  
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                  a 

b  

Fig. 16 – Thick wall (COMP-6) crack pattern comparison: photo of the cracked wall (a) and deformed horizontal 

displacement contour plot (b) in meters. 
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a b  

Fig. 17 – Compressive (a) and tensile (b) damage contour plots for the thick wall (COMP-6) at the end of the 

simulation. 

 

 

 

Fig. 18 – Sensibility analysis on the main mechanical parameters of the model. The horizontal displacement contour 

plots have been taken at a horizontal displacement of 10 mm.  
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5.2 Out-of-plane cyclic behaviour of walls 

The two-way spanning out-of-plane cyclic test COMP-11 conducted on a 3.874x2.765x0.102 m calcium 

silicate brick masonry wall has been considered and simulated. It has to be pointed out that the experimental 

set-up conceived for this test needed a considerable level of complexity in order to perform a cyclic out-of-

plane test. Indeed, after the application of a vertical pressure (0.05 MPa) to the wall, a constant pressure was 

applied by the airbag on one side of the wall and a varying pressure by the airbag on the other side of the wall. 

The pressure in the airbag on the active side was adjusted to achieve the target deformation of a selected set-

point; the pressure on the opposite side (passive side) remained constant during each test. Therefore, the set-

up allowed for a displacement-controlled test. 

To be able to reproduce numerically this complex loading protocol, a non-standard analysis procedure has 

been conceived and followed. Firstly, a uniform horizontal pressure is monotonically applied to one side of 

the wall and the equilibrium is investigated through the aforementioned quasi-static implicit dynamic 

algorithm. The solution is computed until a target displacement (the same considered in the experimental test). 

Then, a restart of the analysis is carried out: the previous analysis step is ended and a new step which consider 

a uniform horizontal pressure with an inverted sign is computed. In this way, the cyclic out-of-plane response 

of the wall is analysed.  

The comparison between experimental and numerical lateral force against out-of-plane displacement curves 

for COMP-11 specimen is shown in Fig. 19, where the numerical monotonic out-of-plane response is collected 

as well. The experimental and numerical crack patterns are shown in Fig. 20, where the numerical one is taken 

at the instant represented by the green circle in Fig. 19. A good agreement between the numerical and 

experimental outcomes is observed. The peak loads are well predicted by the numerical cyclic analysis for the 

first cycles. Then, the numerical model showed a greater degradation than the experimental test. The analysis 

has been stopped in correspondence of the green circle in Fig. 19, as, notwithstanding the change in direction 

of the horizontal pressure, the wall was continuing to deform in the same direction, suggesting the collapse of 

the wall. It has to be pointed out that, although the model carefully simulates the experimental set-up, the 

presence of the airbags in the two sides of the wall definitely increases the stability of the wall. In addition, 

unlike the in-plane benchmarks, a considerable difference between the cyclic and monotonic numerical 

responses is observed in terms of peak loads. Nevertheless, a sensible difference in peak loads is also observed 

in the experimental test between positive and negative responses [51], suggesting that the cyclic loading can 

influence the magnitude of the peak loads. 

An excellent agreement is observed from the comparison of the crack patterns in Fig. 20. The model appears 

able to well-represent the failure mode of the two-way spanning wall (Fig. 20), characterized by diagonal 

cracking from the wall edges to the centre of the panel, and horizontal cracks at the wall base, at an intermediate 

height, and at the top of the wall [51]. Indeed, most of the cracks are predicted with a very high accuracy. 
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Fig. 19 – Experimental and numerical lateral force against out-of-plane displacement curves for COMP-11 specimen. 

 

a b 

c d 

Fig. 20 – Out-of-plane benchmark crack pattern comparison. Specimen COMP-11 crack pattern after removing the 

airbags: photo (a) and sketch (b). Numerical crack pattern: front (c) and back(d) views. 
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5.3 Cyclic behaviour of a full-scale masonry structure 

The quasi-static cyclic pushover test conducted on the terraced masonry house shown in Fig. 9 has been 

modelled and simulated. Numerical cyclic and monotonic analyses have been performed on a half-house 

model, given the symmetry of the structure and of the loading conditions. The numerical results in terms of 

base shear against horizontal displacement of the top floor have been collected and compared with the 

experimental ones in Fig. 21. The “numerical cyclic actual” analysis (Fig. 21) has been conducted by imposing 

the actual time-history of the horizontal displacement measured at the two floor levels. Differently, the 

“numerical cyclic reduced” analysis consisted of a reduced number of cycles. Particularly, a set of equal forces 

has been monotonically applied to the two floors of the structure until the top floor reached a target 

displacement and, then, the analysis has been stopped. Successively, a restart analysis has been performed by 

inverting the sign of the forces. This procedure has been repeated a certain number of times by increasing the 

magnitude of the top target displacement. Finally, also monotonic analyses have been performed in two 

directions. The crack pattern of the “numerical cyclic reduced” analysis are collected and compared with the 

experimental cracks in Fig. 22, while the tensile and compressive damage contour plots at the end of the 

simulation are shown in Fig. 23. The deformed shape and the tensile and compressive damage contour plots 

for the positive and negative “numerical monotonic” analyses are collected in Fig. 24 and Fig. 25, respectively. 

An overall positive correspondence between experimental and numerical curves can be observed in Fig. 21. 

The “numerical cyclic actual” analysis is untimely stopped due to divergence in the solution of the continuum 

nonlinear equations in a single block. Differently, although ended for the same reason, the “numerical cyclic 

reduced” analysis was able to proceed further, until significant top displacements (e.g. ±60 mm). Anyhow, the 

prediction of the peak shear force for both cases is in good agreement with the experimental one (Fig. 21). 

Interestingly, for the “numerical cyclic reduced” analysis a degradation of the shear force is observed in the 

positive direction for subsequent cycles, while no particular degradation is observed in the negative direction. 

This aspect appears particularly valuable as it is also an experimental trend (Fig. 21), determined by the 

different width of the two piers of the house [52]. Furthermore, concerning the monotonic response of the 

model, in the positive direction the shear base is characterized by a peak load, followed by a significant 

softening until about +20 mm and, then, by a plateau, while in the negative direction, once reached the peak 

load, it remains practically constant. The differences in the peak load between the numerical cyclic and 

monotonic responses are irrelevant for the negative direction, while they are significant in the positive 

direction, suggesting that the failure mechanism which occurs in the positive direction is influenced and 

degraded by a cyclic action, whereas the one which occurs in the negative direction appears independent from 

that. Generally, the numerical model tends to underestimate the dissipation during the cycles (Fig. 21). 

The actual crack pattern experienced by the structure appears very complex and characterized by a combination 

of in-plane and out-of-plane failure mechanisms [52]. The comparison of the “numerical cyclic reduced” 

deformed shapes with the actual crack pattern shows the very good accuracy of the model which accounts for 

the main failures of the structure (Fig. 22). Particularly, the shear-vertical crack experienced by the structure 

in the wider (left) pier (see Fig. 22, top) is well-predicted by the model which shows a series of contact shear 

failures as well as a vertical distribution of tensile damage in the blocks (Fig. 22, top), standing for a vertical 

crack which crosses the blocks as well (which is an experimental outcome too). Besides, the interaction of the 

piers with the transversal walls, due to the running bond texture, is fairly captured by the model. The different 

failure mechanism that develops in the piers for the two loading directions can be clearly observed also by 

comparing the deformed shapes of the model in the positive (+50 mm) and negative (–50 mm) directions (Fig. 

22 and Fig. 23 for the cyclic analyses, and Fig. 24 and Fig. 25 for the monotonic analyses): while the wider 

(left) pier shows a shear-vertical failure in the lower level when loaded in a positive direction, it shows a 

completely different mechanism, i.e. almost-pure rocking, when loaded in a negative direction. This also 

explains the different post-peak direction observed for the two loading directions. Again, the role of the 

transversal walls and their connection to the piers appears crucial in the structural response.  

Finally, the cyclic evolution of the resultant of the vertical reaction for the walls of the structure depending on 

the horizontal displacement of the second floor is shown in Fig. 26 for the “numerical cyclic reduced” analysis. 

This outcome allows to further investigate the cyclic response of the structure. Indeed, the cyclic redistribution 

of the vertical load between the transversal wall W1 (W2) and the pier P1 (P2), see Fig. 26, appears particularly 

interesting, as, for instance, the first floor is connected in no way with the piers and it only stands on the 
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transversal walls. Therefore, the load transfer passes through the corner, thanks to the toothing of the walls. In 

the negative direction, the vertical load is mainly borne by W1 and P2 (Fig. 26). In particular, by increasing 

the top displacement in the negative direction, the vertical load is gradually transferred from W2 to P2 and at 

about –20 mm the vertical load is completely transferred and the wall W2 is completely unloaded. Conversely, 

in the positive direction the vertical load is mainly borne by W2 and P1 (Fig. 26). If the load transfer between 

P2 and W2 follows a regular evolution, suggesting the activation of a pure rocking mechanism, the load transfer 

between P1 and W1 appears more complex in the positive direction, where the unloading path is different from 

the loading one (Fig. 26). Once more, this aspect suggests a more complex failure mechanism in the positive 

direction.  

 

 

Fig. 21 – Terraced house base shear – horizontal displacement experimental-numerical comparison.  
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Fig. 22 – Numerical cyclic reduced analysis: deformed shapes and comparisons with the actual crack pattern. The 

numerical plots are taken in correspondence of the two green circles in Fig. 21, for a top displacement ±50 mm, whereas 

the photos are taken during the last cycle of the experimental test. 
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Fig. 23 – Numerical cyclic reduced analysis: tensile and compressive damage contour plots at the end of the simulation. 

 

 

Fig. 24 – Numerical monotonic simulation in the positive direction: deformed shape at +50mm (left) and tensile and 

compressive damage variables contour plots. 
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Fig. 25 – Numerical monotonic simulation in the negative direction: deformed shape at -50mm (left) and tensile and 

compressive damage variables contour plots. 

 

 

Fig. 26 – Numerical cyclic reduced analysis: resultant of the vertical reaction for the walls depending on the horizontal 

displacement of the second floor. 
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6 Conclusions 

In this paper, a novel damaging block-based model for the numerical analysis of the cyclic behaviour of full-

scale masonry structures has been proposed. Solid 3D finite elements governed by a plastic-damage 

constitutive law in tension and compression have been used to model the blocks, while a cohesive-frictional 

contact-based formulation has been developed to simulate their cyclic interaction. 

The mechanical characterization of this novel modelling approach can be easily carried out, as it requires only 

simple monotonic tests on small-scale masonry specimens. A strategy for the comprehensive mechanical 

characterization of the mechanical properties of the numerical model from these small-scale experiments has 

been proposed. 

A comprehensive experimental campaign on calcium silicate brick masonry specimens has been used to 

validate the proposed calibration procedure, and to assess the accuracy of the modelling approach at structural 

level. Once defined the mechanical parameters from small-scale tests, they have been used in the simulation 

of in-plane and out-of-plane cyclic tests on masonry walls made of the same material. An overall good 

agreement between the numerical results and the experimental outcomes has been observed both in the in-

plane and out-of-plane responses. This allowed to validate the model as well as the strategy proposed for its 

mechanical characterization.  

Furthermore, a cyclic pushover test on a full-scale terraced masonry house has been simulated using the same 

mechanical parameters calibrated from small-scale tests. Good results have been obtained, showing the 

reliability of the model, although the numerical model tends to underestimate the dissipation during the cycles. 

Further thorough comparisons between numerical and experimental data also in terms of dissipation during 

the cycles will be carefully carried out in the future. However, given the accuracy of the model and its 

capability to explicitly account for structural details such as running bonds, toothing between walls, the actual 

masonry texture, etc. which can be crucial in the structural response, the model can also be used to interpret 

the results of full-scale complex experimental tests. 

Finally, the efficiency of the model is also shown by its limited computational effort. Indeed, although a full-

scale terraced masonry house has been considered, all the analyses have been performed on a commercial 

laptop in a reasonable amount of time. By way of example, the average time needed for the monotonic pushover 

analyses on the full-scale terraced house, carried out on a laptop equipped with a processor Intel®Core™ i7-

6500U CPU @ 2.50GHz and 16GB RAM, was 2 hours and 9 minutes. 

Therefore, although some further advances in the robustness of the solving algorithm should be developed, the 

model here proposed represents an efficient and reliable tool to analyse the cyclic behaviour of masonry 

structures. 
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APPENDIX 

The main features of the plastic-damage model developed by Lee and Fenves [36] are here presented. Isotropic 

degradation damage is assumed and, if a scalar degradation damage variable 0 ≤ 𝑑 < 1 is used to represent 

the isotropic damage and the concepts of strain decomposition and effective stress are employed, then the 

Cauchy stress tensor 𝝈 becomes: 

𝛔 = (1 − 𝑑)�̅� = (1 − 𝑑)𝑬𝟎(𝛆 − 𝛆
𝒑), ( 9 ) 

where �̅� is the effective stress tensor, 𝑬𝟎 is the initial undamaged elastic stiffness tensor, 𝛆 is the strain tensor 

and 𝛆𝒑 is the plastic part of the strain tensor. 

The plastic strain rate is obtained from a plastic potential Φ defined in the effective-stress space: 

𝛆�̇� = λ̇
𝜕Φ(�̅�)

𝜕�̅�
, 

( 10 ) 

where λ̇  is the plastic multiplier (λ̇ ≥ 0). To control dilatancy, a nonassociative flow rule is considered. 

Particularly, the plastic strain rate is obtained by a flow rule generated by a Drucker-Prager type plastic 

potential, which, in terms of effective stresses, has the form: 

Φ = √(𝜖𝑓𝑡0 tan𝜓)
2 + 3𝐽2(�̅�) +

1

3
𝐼1(�̅�) tan𝜓, ( 11 ) 

being 𝐼1 the first invariant of the stress tensor, 𝐽2 the second invariant of the stress deviator, 𝑓𝑡0 the initial 

uniaxial tensile strength, 𝜖 a smoothing constant generally assumed equal to 0.1 [45], and 𝜓 the dilatancy angle 

of the quasi-brittle material, typically assumed equal to 10° in agreement with experimental evidences [44] 

and previous numerical models [45, 46]. 

The stress admissibility condition reads as: 

𝐹(�̅�, 𝜍𝑡, 𝜍𝑐) ≤ 0, ( 12 ) 

where 𝜍𝑡 and 𝜍𝑐 are uniaxial tensile and compressive strength functions depending on two hardening variables 

𝑘𝑡 and 𝑘𝑐: 

𝜍𝑡(𝑘𝑡) = [1 − 𝑑𝑡(𝑘𝑡)]𝜍�̅�(𝑘𝑡),      𝜍𝑐(𝑘𝑐) = [1 − 𝑑𝑐(𝑘𝑐)]𝜍�̅�(𝑘𝑐), ( 13 ) 

being 𝜍�̅�(𝑘𝑡) and 𝜍�̅�(𝑘𝑐) the uniaxial tensile and compressive strengths in the effective-stress responses and 

the scalar damage variables 𝑑𝑡(𝑘𝑡) and 𝑑𝑐(𝑘𝑐) functions of the hardening variables. The degradation damage 

variable 𝑑 in ( 9 ) is then written as a function of the stress state and the scalar damage variables 𝑑𝑡 and 𝑑𝑐 as: 

𝑑 = 1 − (1 − 𝑠𝑡𝑑𝑐)(1 − 𝑠𝑐𝑑𝑡), ( 14 ) 

where 𝑠𝑡 and 𝑠𝑐 are functions of the stress state that are introduced to model stiffness recovery effects 

associated with stress reversals. Assuming that the material fully recovers the compressive stiffness, they are 

defined according to the following relationships: 

𝑠𝑡 = 1 − 𝐻(𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙),                        𝑠𝑐 = 1 − (1 − 𝐻(𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙)), ( 15 ) 
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where 

𝐻(𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙) = {
1, 𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 ≥ 0
0, 𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 < 0

 , 
( 16 ) 

being 𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 the uniaxial stress (positive in tension). Assuming, for instance, an initially undamaged material 

in compression (𝑑𝑐 = 0), the degradation damage variable 𝑑 becomes  

𝑑 = 1 − (1 − (1 − (1 − 𝐻(𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙))) 𝑑𝑡) , ( 17 ) 

where in tension 𝐻(𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙) = 1 and, therefore, 𝑑 = 𝑑𝑡 (as expected); whereas in compression 𝐻(𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙) =
0 and, therefore, 𝑑 = 0, the material fully recovers the compressive stiffness (which in this case is the initial 

undamaged stiffness, 𝐸 = 𝐸0). Furthermore, 𝑑 in ( 14 ) fulfils the condition 0 ≤ 𝑑 < 1 and equals 𝑑𝑡 when 

𝑑𝑐 = 0 (uniaxial tensile case) and 𝑑𝑐 when 𝑑𝑡 = 0 (uniaxial compressive case). Consequently, the uniaxial 

strength functions ( 13 ) can be written as: 

𝜍𝑡 = (1 − 𝑑)𝜍�̅� ,      𝜍𝑐 = (1 − 𝑑)𝜍�̅� . ( 18 ) 

Being 𝒌 = [𝑘𝑡 , 𝑘𝑐]
𝑇, the plastic-damage model employs the yielding surface (Fig. 27) proposed in [47] and 

further developed in [36], which has, in the effective-stress space, the form: 

𝐹 =
1

1 − 𝛼
[𝛼𝐼1(�̅�) + √3𝐽2(�̅�) + 𝛽(𝒌)〈�̅�max〉 − 𝛾〈−�̅�max〉] + 𝜍�̅�(𝑘𝑐) = 0, ( 19 ) 

where �̅�max is the algebraically maximum principal stress in the effective-stress space, 𝛼 and 𝛾 are 

dimensionless constants and 𝛽(𝒌) is a function of the hardening variables. The constant 𝛼 depends on the ratio 

𝑓𝑏0/𝑓𝑐0 between the biaxial initial compressive strength 𝑓𝑏0 and the uniaxial initial compressive strength 𝑓𝑐0 

through the relationship 𝛼 = [(𝑓𝑏0/𝑓𝑐0) − 1]/[2(𝑓𝑏0/𝑓𝑐0) − 1]. Typically, 𝑓𝑏0/𝑓𝑐0 = 1.16, which implies 

𝛼 = 0.12 [47]. The constant 𝛾 appears only in triaxial compression and is defined as 𝛾 = 3(1 − 𝜌)/(2𝜌 − 1), 
where the constant 𝜌 represents the ratio of the second stress invariant on the tensile meridian to that on the 

compressive meridian at initial yield. Typically, 𝜌 = 2/3, which leads to 𝛾 = 3 [47]. Finally, 𝛽(𝒌) is assumed 

to depend on the hardening variables by the relationship 𝛽(𝒌) = −𝜍�̅�(𝑘𝑐)/𝜍�̅�(𝑘𝑡)(1 − 𝛼) − (1 + 𝛼). 

a   b 

Fig. 27 – Plastic-damage model yielding surface in: a) plain stress and b) the deviatoric plane. 
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The evolution of the hardening variables is expressed in terms of the eigenvalues of the effective stress and 

plastic strain rate tensors, collected, respectively, in �̂̅� and 𝛆�̂̇�, as: 

�̇� = λ̇𝐡(�̂̅�, 𝒌, 𝑔𝑡 , 𝑔𝑐)
𝜕Φ(�̂̅�)

𝜕�̂̅�
= 𝐡(�̂̅�, 𝒌, 𝑔𝑡 , 𝑔𝑐)𝛆

�̂̇�, 
( 20 ) 

being 

𝐡(�̂̅�, 𝐤, 𝑔𝑡 , 𝑔𝑐) = [
𝑟(�̂̅�)𝜍𝑡(𝑘𝑡)/𝑔𝑡 0 0

0 0 (1 − 𝑟(�̂̅�))𝜍𝑐(𝑘𝑐)/𝑔𝑐
], 

( 21 ) 

where the scalar quantity 𝑟(�̂̅�) is a weight factor (0 ≤ 𝑟 ≤ 1) defined as 𝑟(�̂̅�) =  
∑ 〈�̂̅�𝑖〉
3
𝑖=1

∑ |�̂̅�𝑖|
3
𝑖=1

, and the quantities 𝑔𝑡 

and 𝑔𝑐 are the dissipated energy densities in tension and compression, respectively. These are derived from 

the tensile 𝐺𝑡 and compressive 𝐺𝑐 fracture energies, which are primary mechanical properties of the material, 

following the relationships: 

𝑔𝑡 = 𝐺𝑡/ℎ,    𝑔𝑐 = 𝐺𝑐/ℎ, ( 22 ) 

being ℎ the localization zone size (characteristic length) defined as 

ℎ = 𝛼ℎ√𝑉𝑒 = 𝛼ℎ (∑ ∑ ∑ det𝐽𝑤𝜌𝑤𝜉𝑤𝜂
𝑛𝜂

𝜂=1

𝑛𝜉

𝜉=1

𝑛𝜌

𝜌=1
), 

( 23 ) 

where 𝑤𝜌, 𝑤𝜉 and 𝑤𝜂 are the weight factors of the Gaussian integration scheme, 𝐽 the Jacobian of the 

transformation, 𝑉𝑒 the element area and 𝛼ℎ a modification factor that depends on the typology of the finite 

element used. In this way, the mesh size does not significantly influence the material response. 

Generally, the values of the fracture energies (𝐺𝑡 and 𝐺𝑐), which are primary material parameters that have to 

be inputted in the model, can be defined either in a direct way, i.e. by directly specifying their values, or in an 

indirect way, i.e. by the point-by-point specification of the inelastic stress-strain uniaxial curves in tension and 

compression. Typically, the point-by-point specification of the inelastic stress-strain uniaxial curves in tension 

and compression is preferred as it allows to specify a residual strength (both in tension and compression) which 

greatly helps the convergence of the solving algorithm in case of softening. 
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