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ABSTRACT These days, ubiquitous computing has radically changed the way users access and interact
with services and content on the Internet: novel smart mobile devices and broadbandwireless communication
channels allow users to seamlessly access them anytime and anywhere.Middleware infrastructures to support
ubiquitous computing need to support an extremely dynamic and ever-changing scenario, where novel
contents/services, devices, formats, and media channels become available. Service-oriented architectures
and service composition techniques have proven to be the key in designing flexible and extensible platforms
that are able to reliably support ubiquitous computing. However, current trends in service composition for
ubiquitous computing tend to be either too formal and, therefore, poorly used by average final users, or too
vertical and poorly flexible and extensible. This paper proposes novel service composition middleware for
ubiquitous computing that relies on a translucent composition model to achieve a flexible, extensible, highly-
available, but also easily understandable and usable platform. The proposed system has been widely tested,
benchmarked, and deployed on a number of different and heterogeneous ubiquitous scenarios.

INDEX TERMS Middleware, ubiquitous computing, context-aware services, service-oriented computing.

I. INTRODUCTION
In the last decade, ubiquitous computing has dramatically
changed the way users exploit services and contents available
on the Internet [1]. Novel smart mobile devices, advances in
wired and wireless communication channels, and the prolif-
eration of new, more dynamic, and user-centric services and
contents (from social networks to tactile Internet and multi-
sensory human bound communications), more andmore push
users access contents and services at any time, with any kind
of devices, and via any (either wired or wireless) connectivity
type.

This scenario poses non-trivial architecture issues in terms
of heterogeneity, dynamicity, and reliability. Middleware
platforms to support users in ubiquitous content/service
exploitation need to face a complex and ever-changing land-
scape of services, devices, and contents, with the goal to
merge and integrate them into a comprehensive solution.
They should be able to (self-)adapt in order to grant continuity

and survivability of service provision under harsh conditions,
notwithstanding possible wireless medium idiosyncrasies,
intermittent disconnections, and abrupt changes in the com-
munication infrastructure.

At the same time, in the last decade, Service-Oriented
Computing (SOC) has gained momentum as a flexible, mod-
ular, and powerful architectural approach. SOC allows to
tame large complex software systems by decomposing them
into a manageable ecosystem of well-defined cooperating
services.

Service composition techniques push the service-oriented
approach further to allow easily aggregating and orchestrat-
ing services into larger and more complex components of
business logic, hence promoting modularization and soft-
ware reuse. Thus, SOC and service composition techniques
have become founding approaches to cope with increasingly
dynamic and heterogeneous situations of typical ubiquitous
systems [2], [3].
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Two main trends have emerged in service composition
for ubiquitous computing. Some proposals rely on formal
approaches to neatly model and verify service composition
platforms [4]–[6]. These approaches, while powerful and
general-purpose, tend to be extremely complex and hardly
usable by final users. Other proposals, on the contrary, rely
on large-scale, user-friendly tools (of different nature, such
as web-oriented, graphically appealing service mashup plat-
forms) [7]–[10]. They are easily usable by average end users,
but frequently tend to be tailored to specific limited scenarios
and hardly extensible and reusable.

To overcome above limitations, we propose a novel pro-
posal that exhibits several original characteristics.
• It leverages a translucent approach that makes visible to
final users only needed details and hides details not to
propose too complex scenarios.

• It proposes a model for adaptive ubiquitous service com-
position that provides a user friendly, but also flexible
and extensible, abstraction to describe service features
and user requirements in terms of aggregation and ser-
vice compositions.

• It presents a real middleware platform implementation
that is also able to grant survivability of service provi-
sioning by dynamically and continuously (re-)adapting
to possible abrupt changes in the service delivery
context.

• It assesses and evaluates the performance of the imple-
mented prototype under typical ubiquitous scenarios and
operating conditions, thus allowing us to automatically
distill the main assumptions and simplifications to real-
ize an effective service composition implementation,
easy-to-use also by non-expert users.

II. RELATED WORK
SOC strongly promotes aggregation and reuse of soft-ware
artifacts (services) to increase modularity and flexibility of
distributed systems [11].

Modularity and flexibility could come at the expense of
reliability: unmanaged/unplanned failures in one single ser-
vice may disrupt the overall service composition, if the com-
position has not been designed to be intrinsically resilient.

The following subsections discuss the main research
trends in both service composition and service survivability/
resilience.

A. SERVICE COMPOSITION
In this subsection, without pretension of completeness,
we present a selection of works that, similarly to our proposal,
aim to address service composition as a way to put together
existing services to realize novel value-added service aggre-
gates in ubiquitous computing scenarios.

The extremely vast and heterogeneous landscape of ser-
vice composition proposes several different approaches and
proposals that target extremely different scenarios.

Early service composition platforms focused on
rather static scenarios (especially Enterprise Application

Integration [12]) that required to coordinate a (usually lim-
ited) number of services in a well-defined and de-terministic
way. Seminal proposals therefore aimed at providingmethods
and tools to clearly define static and immutable compositions
of services by explicitly ex-pressing how services had to
cooperate, e.g., the order in which they needed to be invoked
and all involved oper-ational parameters (e.g., input/output).
BPEL4WS [13] is one of the most widespread standards for
service composition and proposes an XML-based grammar
to define compositions of Web Services.

However, this kind of approach has proven to be very
limited, especially in ubiquitous and pervasive computing
scenarios, for some compelling reasons [3]. The first crucial
one is that designing a service composition in such a way
is typically a completely user-dependent process. This obvi-
ously requires composition designers to possess a wide and
high-level expertise in both the application domain the task
relates to, and in the formal grammar used to express the com-
position. The second problem with early static approaches
is the fact that they inherently fall short in more dynamic
scenarios. Indeed, the initial set of available services may
vary in time (by either growing or shrinking), an exact match
between a specific subtask and a concrete service may not
be available, and the overall final task cannot be ex-pressed
in a precise and unambiguous way, either because the final
service composition user has little expertise of the application
domain, or because the requirements themselves are unclear.

Many different approaches tried to face these issues in such
dynamic scenarios; basically, two main tendencies outstand
and sometimes even coexist.

The adoption of semantic descriptions allows to capture
service and service composition features that go beyond
traditional basic operational features (such as input/output
parameters) and provides a higher-level description of both
requirements the composition need to fulfill, and service
features such as behavior and interoperability constraints.
WSDL-S [14] and OWL-S [15] are two of the most notable
XML-based proposals in the field of semantic metadata ser-
vice description and enforcement. Along this direction, vari-
ous works adopt a semantic approach to provide users with
richer and more detailed descriptions of services [2]–[4].
This has the obvious benefit of being clear and neat to inex-
perienced users. However, a richer service description also
allows capturing details such as what a service is able to do
rather than how it does it. That represent a crucial aspect in
ubiquitous computing environments to automate (by the use
of inference) compositions of suitable services each time no
clear solution is evidently achievable [3], [10].

Other proposals aim at providing much more theoreti-
cal formal service composition models not only to describe
service compositions but also to help reasoning on them,
for instance to detect inconsistencies and possible deadlock
conditions, and to infer novel and better compositions from
previous ones. Typical approaches that fall in this category
model service compositions by means of Petri Nets [16]
or of some variants of process algebras (e.g., Calculus of
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Communicating Systems [17] and Calculus of Sequential
Processes [18]). Other approaches [19] define semantics in
terms of a first-order logic, namely the situation calculus [20]
and, based on that semantics, they describe service composi-
tions by means of a Petri Nets model. Formal approaches,
such as Petri Nets and first-order logic-based ones, have
proven to be extremely powerful, especially when it comes
to reason on a certain application domain and set of service
compositions. Some models are able to determine whether
a composition not only satisfies initial requirements but
also if it is correct and provide no deadlock conditions and
unreachable states. Other models allow to automatically infer
novel service compositions from existing ones in order, for
instance, to provide optimized compositions (e.g., service
composition with equivalent overall behavior but with less
services involved) and alternative versions [5], [6].

Another interesting trend in service composition directly
relates to the emerging Web Mashup scenarios: users more
and more are provided with Web-enabled user-friendly
appealing tools to aggregate contents over the Web [7]. Sev-
eral industrial mashup support tools are available since many
years, such as Yahoo Pipes, Intel Mashmaker, IBM Mashup
Center, and Google Maps-based mashups. These tools let
non-expert users participate in the process of content creation
and aggregation, by helping and guiding them throughout
such a non-trivial task. However, these solutions are typically
vertical and ad-hoc: allowed contents and services are usually
Web pages (typically XML-based formats such as RSS) and
users can exploit such contents basically by means of the sole
Web browser. Some seminal academic research efforts have
been aimed to ad-dress these limitations by exploiting the
SOC model as a promising way to extending and broadening
mashup platform support [8], [9]. However, fast computation
of service mashup compositions in heterogeneous ubiquitous
scenarios is still widely recognized as a challenging open
issue [10], [21].

B. SERVICE SURVIVABILITY/RESILIENCE
From a research perspective, resilient/survivable service com-
position and adaptation is a relatively unaddressed area.

Recently, [22], [23], and [24] proposed a service com-
position model specifically targeted at highly dynamic,
QoS-oriented service environments.

Reference [25] proposed a service indexing and search
methodology specifically aimed at quickly identifying and
recovering services and service compositions in case of
outages.

A few years ago, [26] surveyed services and mechanisms
designed for the protection of service-oriented architectures.

From a business perspective, on the other hand, service
resilience seems to be a more investigated topic. Current hype
on MicroServices Architectures (MSA), namely, the ten-
dency to decompose traditional monolith applications into
a set of loosely coupled, finer-grained cooperating services,
pushes service survivability and requirements for resilience
to the extremes.

In highly scaled, densely populated, (micro-)services
ecosystems that fuel modern online services and applications
(e.g., Netflix), even a slight increase in service latency can
cause cascading disruptions [27].

Modern architectural approaches and tools
(e.g., Hystrix [28]) are designed to embrace failure from
service inception, and, for instance, promote the adoption of
circuit breakers, namely, tools to automatically temporarily
disable (latent and/or failing) parts of the service composition
while maintaining (large portions of) the overall composition
still operational.

III. DESIGN PRINCIPLES AND COMPOSITION MODEL
Current ubiquitous scenarios are more and more providing
large-scale mass-market services, contents, and devices that
reach an ever-increasing number of average end users [1], [3].
On the one hand, these scenarios call for support platforms
that should be extremely user-friendly, and easily and intu-
itively usable even by average and non-skilled users. On the
other hand, they need to cope with extremely heterogeneous,
dynamic, and diverse situations, such as (not-so-infrequent)
discontinuities of the wireless access due to lack of coverage
or failures, hence calling for the ability to dynamically adapt
to extend and support novel and unforeseen contents/services,
user devices, and communication channels.

In our opinion, both user friendliness and extensibility/
flexibility are crucial in the realization and diffusion of a ubiq-
uitous service-oriented support system, to let non-skilled end
users intuitively select, aggregate, and interact with services
according to their needs.

We claim amiddleware approach to help designing support
platforms that manage such heterogeneous situations in a
flexible and extensible way. However, we claim that a translu-
cent approach is the key to grant our service compositionmid-
dleware both user friendliness and extension/flexibility. The
translucent approachmakes possible, at the same time, for our
proposal to hide unnecessary intricacies to non-experienced
users, and to remain flexible and open, to conveniently deal
with complex, unpredicted, and heterogeneous situations.

Our translucent semantic middleware clearly separates
semantics into different layers at different abstraction lev-
els and let average end users access only higher-level ones.
Composition templates are at the heart of our model: they
provide users with abstract, high-level, and extremely intu-
itive composition schemas that can be easily used to require
service compositions. Ideally, in fact, users should only spec-
ify which kind of services they are interested in (service
metadata) and how to arrange them (templates). Lower-level
semantic items of our model, then, take care of translating
user requirements into concrete operational items of the plat-
form (e.g., services and aggregates of services) that provide
users with the required scenarios. From these design guide-
lines we distilled our middleware architecture that consists of
three main layers (see Fig. 1).

The bottom business logic layer includes services and
workflows: services are the basic building blocks of our
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FIGURE 1. Translucent semantic model.

application system and workflow [29] is the concrete means
to make them cooperate. Workflows describe structured
activities and their complexity can range from simple
sequences of services activated after one another, to complex
compositions of both services and control blocks, such as
conditional branches, forks, joins and so on.

The top user semantics layer includes service metadata
to convey high-level information about semantic features of
services, e.g., their typology (content generation and retrieval,
transcoding, etc...) and QoS-related aspects (such as average
computational load and cost) used to drive service choice
for users. In addition, the templates model abstract flows
of activities, i.e., flow definitions whose nodes need to be
(either partially or fully) filled inwith concrete business logic.
In other words, templates are a suitable abstraction to help
users in sketching out arrangements of services (so to express
service coordination logic).

Finally, the middle semantics fusion layer provides fea-
tures that allow to translate abstract templates into workflows.
Rules express constraints over the pieces of business logic
that participate in the realization of a template, whereas roles
allow to express such constraints not on a specific business
logic element (e.g., a service or a workflow node) but to
abstract counterparts, and to share and reuse them across
different elements of the template. Finally, semantic domains
convey a useful way to partition semantic features into differ-
ent spaces, so to avoid a fixed and immutable semantic knowl-
edge base, but rather to permit insertion of novel semantic
concepts while still keeping older ones consistent.

Following subsections better detail each of these layers
and their inner main components; we will use a bottom up
presentation approach.

A. BUSINESS LOGIC LAYER
Business logic layer provides the low-level facilities that
concretely realize application scenarios. Entities of this layer
could be completely invisible to average final users: it is up to
our middleware to concretely manage business logic imple-
mentation details to realize user requirements. Nevertheless,
coherently with our translucent approach, skilled users are
still allowed to manually arrange services into concrete work-
flows, by taking care of directly connecting services with
each other, as in more traditional static approaches.

1) SERVICES
Following the SOC paradigm, wemodel pieces of application
logic as services that can be plugged in by need to extendmid-
dleware ubiquitous features support. Hence, support for novel
content types as well as novel formats (and consequent adap-
tation/transcoding logic) and novel user interaction channels
can be easily added by simply adding new services.
Definition 1: We define S as the set of all available services

in the system. S may grow in time but it always contains a
finite set of elements.

2) WORKFLOWS
In traditional SOC approaches, aggregation and coordina-
tion of services help realizing more complex value-added
application scenarios out of basic building blocks, thus pro-
moting business logic reuse and modularity. Workflows can
range from simple sequences of services to more complex
aggregates with conditional branches, fork/join nodes and so
on. Managing execution of logic entails concretely invoking
services after one another; hence, workflows are in charge of
tasks such as parameter passing between subsequent stages
and exception handling.
Definition 2: We model workflows as directed graphs con-

sisting of nodes and links WF := (WFN,WFL). Work-
flow nodes (WFN) can be either concrete services or control
blocks (e.g., fork, join, and conditional nodes). Workflow
links (WFL) are directed connections that interconnect two
workflow nodes.

Services and workflows are concrete entities of the system
in charge of realizing user-driven ubiquitous scenarios. Once
identified, workflows and services need no semantic interpre-
tation. On the contrary, semantics is used to decide whether
a given (more or less formal) description of requirements
can be satisfied and translated into a concrete workflow of
services.

B. SEMANTICS FUSION LAYER
The semantics fusion layer realizes the glue that helps trans-
lating high level user requirements into concrete workflows
of available services.

Rules are at the heart of that translation and basically
represent constraints on some features of the services that
can participate in a composition. Semantic service features
may be any kind of relevant piece of information for a given
scenario. Since providing a priori a complete, extensive, and
monolithic description of semantic features is simply unreal-
istic for extremely dynamic andmutable scenarios such as the
ubiquitous computing ones, we break down ‘‘homogeneous’’
semantic pieces of information and group them into semantic
domains. Finally, rules in ourmodel can either refer to a single
concrete item of the system (e.g., a given service), or relate
to groups of items. Since the latter case may require a tedious
and error-prone association of the same rule to different items,
we introduced the notion of role. Roles allow to group items
and easily express rules on all of them with one action,
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providing a more compact and manageable way to express
groups of rules. Suppose for instance users require to access
different data sources (whose number may not be defined
a priori), each one providing HTML content; our platform
may more conveniently provide a rule stating that ‘‘each
service willing to play the role of datasource should provide
HTML content’’, instead of explicitly specifying for each
datasource service something like ‘‘service X should provide
HTML content’’.

1) SEMANTIC DOMAIN
A number of different proposals exist to specify semantic
information on services; some approaches are extremely tai-
lored to specific areas of interest and application domains,
whereas other proposals aim at giving generic purpose mod-
els and languages to describe any kind of semantic feature.
As an example,Web Service Semantics [14] and OWL-S [15]
promote standard XML formats to describe semantics.

Our model does not rely on a specific service semantic
description, but rather can be used by any standard, thus
improving flexibility and reuse. Furthermore, a monolithic
and predetermined set of semantic notions does not fit well
with intrinsically dynamic scenarios where semantic descrip-
tion itself may need to grow and adapt to ever-changing
scenarios.

We therefore prefer providing our system with a way to
conveniently add novel semantic information and make it
coexist with already existing concepts. To cope with such
intrinsic heterogeneity and openness, we propose the notion
of semantic domains to conveniently group semantic infor-
mation based on, for instance, metadata area of interest and
even metadata format. As an example, we distinguish meta-
data related to service quality rather than binding features.
Novel semantic domains can be introduced to capture novel
aspects and give novel and different interpretations to pieces
of business logic.
Definition 3: We define D as the set of available semantic

domains. Each domain can specify and contain semantic
attributes (i.e., named properties that describe specific fea-
tures) and values related to such attributes. We define Ad the
set of available semantic attributes over semantic domain d
and Vad is the set of available semantic values for semantic
attribute a of domain d.

As an example, assumed the Syntax semantic domain,
some of its possible attributes are (from now on, examples
will be reported using a different font):

Asyntax = {input, output}

and possible values for attribute input could be:

Vinput,syntax = {application/xml, text/plain, . . .}.

Another semantic domain characterizes QoS attributes.
Typical attributes for the QoS semantic domain are:

AQoS = {estimated ComputationLoadinput, billing, . . .},

and possible values for attributes could be numerical values
representing the average estimated computational load and
the cost of the service if its use is not free-of-charge.

Semantic attributes and values can be associated to any
item in our model. Associations between an element of our
model and an attribute and value can be either direct or
indirect.
Directly associating an attribute and value to an itemmeans

tagging it with a certain semantic meaning; as an example,
we will use this approach in the following for service seman-
tic metadata association.

Even if this is a perfectly viable approach, sometimes it is
muchmore helpful to provide a way to express certain seman-
tic features for an entire class (or group) of items without
having to explicitly bind any one to that feature. Furthermore,
sometimes it could be impossible to specify semantics for an
item since it is not a concrete one but rather is an abstract item
our service composition engine needs to concretely substitute
with pieces of business logic.

To overcome these problems we provide indirect attribute
associations via the notion of role.

2) ROLE
Roles allow to create classes of model elements that share
common semantic features. The addition of a semantic fea-
ture (either attribute or value) to a role means that each item
willing to play that role should provide the specified attribute.

Roles are a convenient way to realize indirect semantic
association, hence they can be used to express semantic
on elements that are not concrete yet (such as template
elements).
Definition 4: We define R as the set of available roles and

Ard as the set of available semantic attributes of domain d for
role r.

For instance, given the content generator (generator) role,
the attribute

outputgeneratorsyntax = {generator, syntax, output}

identifies the semantic attribute output

(of semantic domain syntax) for business

logic willing to play the role of generator .

3) RULE
The rules are the concrete way to drive selection and arrange-
ment of concrete services into workflows that realize user
requirements. Rules are the concrete means to drive selection
and arrangement of concrete services into workflows that
realize user requirements.

Rules provide semantic composition constraints by com-
paring semantic attributes and values of a specific semantic
domain for one or more pieces of business logic; hence they
are used to concretely evaluate whether a real composition of
services can be arranged to fulfill user requirements.

We distinguish consistency rules and scoring rules as
follows.
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Definition 5: Consistency rules (cr) evaluate whether a
certain set of semantic attributes and values are compatible
with each other. cr :=

[
ARD ∪ VD

]n
→ {0, 1}.

Definition 6: Scoring rules (sr) evaluate the degree of
compatibility of a certain set of semantic attributes and/or
values. We indicate the degree of compatibility with a real
value.

sr :=
[
ARD ∪ VD

]n
→ R

As an example, we provide the following rules:

outputgeneratorsyntax

= inputdeliverersyntax

∑
estimatedComputationLoad roleiQoS , rolei

∈ {generator, transcoder, deliverer}

The former one is a consistency rule that determines
whether the semantic attribute output (of semantic domain
syntax) of role generator and semantic attribute input of role
deliverer are compatible; the latter one sums up values of
attribute estimatedComputationLoad (semantic domainQoS)
for roles generator, transcoder, and deliverer, in order to
evaluate the overall computational cost for each piece of
business logic that plays one of the aforementioned roles.

C. USER SEMANTICS LAYER
User semantics layer provides facilities that can easily assist
users in choosing the right services, in arranging them, and in
deciding how to exploit them.

User friendliness here stems from the fact that users are
only asked to choose:
• which kind of services they are interested in (service
metadata);

• how to aggregate them (templates).
It is then up to our composition engine to decide whether
these requirements can be satisfied, given the available ser-
vices, and to automatically build compositions of services
that can correctly and consistently cooperate, from both an
operational and a semantic point of view.

1) SERVICE METADATA
Services represent atomic pieces of business logic related
to content production, transcoding, adaptation, and so on,
and are described by means of semantic service metadata,
to express both low-level grounding connection features and
high level semantic information.
Definition 7: Given S the set of available services,

we define the service metadata property as:

pSd,a = (s, ad , vad ) where s ∈ S, ad ∈ Ad , vad ∈ Vad

The service metadata property (or simply the property) is the
value vad of semantic attribute a over semantic domain d
for service s. Similarly, Psd denotes the set of properties of
service s on semantic domain d and Ps the set of properties of
service s.

In a typical example, metadata for a text-to-speech (tts)
synthesis service may express the provided bit-rate synthesis
as shown in Fig. 2.

FIGURE 2. Semantic metadata property example.

2) TEMPLATE
Templates represent abstract workflow schemas our platform
should fill in with concrete business logic (e.g., services) to
satisfy user needs. Templates are modeled as directed graphs
and are made up of nodes that can represent either concrete
service logic or abstract placeholders with some semantics
associated.

By adopting a graph-based description, we are able to
easily and graphically convey information of what a tem-
plate does to final users; in fact, graph-based representations
easily allow users to perceive the flow of control between
subsequent stages of a complex aggregate of business logic.
Not surprisingly, intuitive and user-oriented Web 2.0 mashup
tools such as Yahoo Pipes exploit the same approach and
provide a drag-and-drop graphical interface that allows
to arrange blocks (services) into more or less complex
graphs.
Definition 8: We define the set ofavailable template nodes

as N := S ∪CB∪PL ∪T . Thus, each node in a template can
be a concrete service (S), a control block (CB), a placeholder
(PL), and a template (T) in its turn.

Node definition makes templates inherently recursive:
each template node may for instance hold atomic concrete
logic as well as other sub-templates (that aggregate and put
together atomic services).
Definition 9: Nodes are connected by links that repre-

sent directed connections between two nodes. We define
L := (N × N ) as the set of links connecting available
nodes.
Control blocks (CB set) are nodes expressing forks, joins,

conditions, and so on, and they are typically used to manage
and control the flow of execution among successive stages.
Placeholders(PH set) are the key elements in templates

because they represent the abstract nodes our platform must
substitute with concrete business logic in order to fulfill
user requirements. In order to do so, we typically impose
consistency rules on placeholders, thus expressing semantic
constraints on the concrete business logic that will replace
placeholders. Typically, consistency rules may involve dif-
ferent placeholders and can be also shared and reused for
different sets of placeholders in the same template. A typical
example would be a rule to constrain each service willing to
replace any of the placeholders to have a computation load
(e.g., estimatedComputationLoad semantic attribute) below
a certain threshold value. Indirect semantic association by
means of roles is a straightforward method to avoid speci-
fying such a rule for each placeholder.
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As a consequence, we provide a way to explicitly associate
roles to placeholders, hence allowing for the sharing and
reuse of rules across the template.
Definition 10: We define the set of Placeholder-Role Rela-

tions as PRR := {prr : PH → R}, and PRRp as the set of
Placeholder-Role Relations for placeholder p.

Finally each template carries a set of rules RU that drive
the process of filling placeholders by evaluating semantic
attributes over declared placeholders roles.
Definition 11:We define a template T := {N ,L,PRR,RU}

Given a template t : Nt ,Lt ,PRRt ,RU t identify respectively
the nodes, links, placeholder-role relations, and rules of
template t.

D. USAGE SCENARIO – USER REQUIREMENTS
In the following we will describe a typical ubiquitous content
aggregation scenario from the user standpoint (see Fig. 3).
User requires to gather information from different content
sources (such as an RSS feed, a newsletter, and a plain HTML
portal); furthermore, user requires to receive aggregated con-
tent via an SMS message on her mobile phone at a certain
hour every day.

FIGURE 3. Example template and rules.

In our vision, the average end user should have no deeper
technical information about her requirements and it is up to
the platform to arrange available business logic components
to satisfy user needs (if it is possible).

Our platform provides a ‘Content Aggregation’ template
that features a couple of initial and final placeholders and a
variable number of placeholders in between (in the following
we will consider three generator nodes), each one of them
playing a generator role.

This template already comes with a rule that constrains
services willing to play the generator role to provide the
value ‘‘generation’’ for semantic attribute typology of domain
behavior.
User marks the initial placeholder (p1) as an eventInput

node to tell the system she wants the composition be activated
asynchronously by means of an event. This action brings into
the template a novel rule (associated to the role eventInput)
that constrains services willing to play the eventInput role
to provide the value ‘‘timerEvent’’ for semantic attribute
typology of domain behavior.

Similarly, she marks the final placeholder (p6) as an
userOutput node to tell the system she wants the composition
to send its output via an SMS message. This brings into
the template a novel rule (associated to the role userOutput)
that constrains services willing to play the userOutput role to
provide the value ‘‘delivery’’ for semantic attribute typology
of domain behavior.

By performing these simple choices, user has constrained
the template to behave and interact in a well-defined way, i.e.
by asynchronously reacting to an event and by notifying the
user of the elaboration result via an SMS message.

Available semantic attributes over the generationDo-
main semantic domain relate, for instance, to content type
(contentType). Users can therefore select semantic values
(e.g., by means of convenient Web user interfaces) for such
attributes, to impose constraints on each placeholder. Our
platform therefore adds a rule to the template that forces
service (or service aggregates) willing to replace node p2 to
provide the semantic value ‘‘RSS’’ for attribute content-
Type. By following the same approach, user configures nodes
p3 and p4 to produce newsletter- and HTML-related content.
Note that rules that can (or need to) be shared among dif-
ferent placeholders (e.g., rules on the generator role) should
be expressed indirectly by means of attributes over a role
that marks more than one placeholder. To force placeholder-
specific semantic values, we use roles specific to each place-
holder (e.g., by convention, a role with the same name as the
placeholder). This is the case with ‘‘contentType’’ attribute
for generator nodes: each generator placeholder should fea-
ture a different value, hence a different rule, to force the plat-
form select different kinds of contents. Finally, user requires
output to be of type SMS.

The service composition layer is now in charge of deciding
whether currently available services (or service aggregates)
can satisfy user needs.

In a similarly simple way, the user could have required
a synchronous direct pull-based interaction, for instance by
configuring both input and output on an HTTP channel.
Note that more skilled users may access a more sophis-
ticated interface by means of which they can modify the
template graph (e.g., by inserting and removing templates) in
order, for instance to provide two alternative input and output
placeholders.

IV. COMPOSITION CONSISTENCY AND SCORING
The main goal of the composition layer is to translate abstract
templates into concrete workflows made up of available
business logic (services): we call this process composition
reification. This activity basically entails filling template
placeholders with either services or sub-templates that are
suitable to play the roles declared by the placeholder.

Consistency of services with user requirements is deter-
mined by evaluating all consistency rules that involve roles
of the placeholder to be filled. In real deployment scenar-
ios a large number of services are available, and some of
themmay provide similar business logic. We therefore expect
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that, given certain user requirements, more alternative sets
of services may be found to satisfy them. Even if equivalent
from a functional standpoint, these alternatives will probably
feature different non-functional characteristics, such as cost
and Quality of Service (e.g., responsiveness and availability).
Our model therefore provides a way to evaluate different
alternative solutions and to rank them for different criteria via
scoring rules.

Composition scoring allows to realize a wide variety of
strategies to satisfy both user needs and platform performance
requirements; for instance, it allows to provide users either
with the ‘‘best’’ solution out of all possible ones or the first
and possibly non-optimal one the platform is able to find.
‘‘Best’’ here can be interpreted in its broadest sense: some
users, in fact, may require the most responsive solutions,
whereas others may require the least expensive ones (also a
balance of the two policies); moreover, under specific high
load conditions, our system may decide to provide users with
the most lightweight solutions (even if less performing).

In this section we will describe the evaluation models for
both the consistency phase (to determine whether a given set
of services satisfy consistency rules) and the scoring phase
(to determine ‘‘how well’’ a given set of services satisfy user
requirements).

A. EVALUATION FACILITIES
This section describes basic tasks at the heart of the template
reification process, namely service substitution, consistency,
and scoring evaluation.

1) CONSISTENCY EVALUATION
Consistency evaluation refers to the process of determining
whether semantic values are consistent with each other for a
specific meaning.
Definition 12: We define consistency as a function

that compares semantic values to check whether they are
consistent:

fconsistency = [VAD]n→ {0, 1} , n ≥ 2

The most common consistency function imposes that
two or more semantic values have to be equal; nevertheless,
our platform is able to deal with any kind of consistency
function, thus providing a convenient way to model complex
relationships. For instance, in a typical heterogeneous content
format scenario, some kind of business logic (e.g., audio
transcoding) can be compatible with any type ofMIME audio
input type (‘‘audio/∗’’).

2) SCORING EVALUATION
Scoring evaluation refers to the process of determining the
degree of consistency of semantic values with each other for
a specified meaning.
Definition 13: We define scoring as a function that weighs

the degree of consistency of two or more semantic values:

fscore = [VAD]n→ <, n ≥ 2

The most typical scoring functions compute both total and
average values from a set of two or more semantic values;
nevertheless, our platform is able to deal with any kind of
consistency function, thus providing a convenient way to
model evaluations.

3) SUBSTITUTION
Concrete services are meant to substitute placeholders in
playing certain roles. Since each role may be associated with
semantic attributes, the substitution function is in charge
of extracting the service semantic property whose attribute
matches with the one of the role. This value is then used to
either concretely verify whether consistency rules are satis-
fied or to evaluate scoring rules
Definition 14: We define substitution as a function:

fsub =
[
AR × S

]
→ VAD ∪ ∅

Given a service s and an attribute ax , a substitution either
returns the semantic value vx if service declares a correspond-
ing metadata property (s, ax , vx), or an empty set in case no
solution is found.

B. SERVICE AND TEMPLATE RULES
Rules usually do not tie to a particular service, instead, they
are expressed in terms of roles; hence roles allow to abstract
and reuse rules across services. Indeed, each service willing
to play a specific role must satisfy each rule that involves such
roles.

The rule descriptions given in previous sections are
generic: in this section we refine their definition and we
identify significant subsets of both consistencyandscoring
rules.
Service rules bind a semantic attribute of a candidate

service to a concrete semantic value; hence service rules
constrain the choice of a single service.
Template rules compare semantic attributes of candidate

services to semantic attributes of other candidate services;
hence template rules establish relationships among different
service candidates.

By following the above considerations (and by explicitly
including consistency and scoring functions), we refine con-
sistency and scoring rules as follows.
Definition 15: We define SCR as the set of service consis-

tency rules (scr) defined as follows:

SCR :=
{
scrr :

(
ard , vad , fconsistency

)
|ard ∈ A

r
d , vad ∈ Vad

}
A service consistency rule scrr therefore binds a specific
attribute of a role r to a specific semantic value. Each service
willing to play role r needs to provide a semantic property
whose value is consistent (by verifying the consistency func-
tion fconsistency) with vad.
Definition 16: We define TCR as the set of template consis-

tency rules (tcr) defined as follows:

TCR :=
{
tcrr1,...,rm :

(
a1r1d , . . . , anrmd , fconsistency

)
|

a1r1d , . . . , anrmd ∈ Ad
}
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A template consistency rule tcrr1,...,rm therefore binds n
attributes of m roles to each other (m<=n since more
attributes of the same role can participate in the rule).

Similarly, we impose the same behaviour over scoring rules
and we define service scoring rules (ssr) and template scoring
rules (tsr).
Definition 17: We define SSR as the set of service scoring

rules (ssr) defined as follows:

SSR :=
{
ssrr :

(
ard , vad , fscore

)
|ard ∈ A

r
d , vad ∈ Vad

}
A service scoring rule therefore evaluates ‘‘how well’’ a
specific attribute of a role compares to a specific semantic
value vad .
Definition 18: We define TSR as the set of template scoring

rules (tsr) defined as follows:

TSR :=
{
tsrr1,...,rm :

(
a1r1d , . . . , anrmd , fscore

)
|a1r1d , . . . , anrmd ∈ Ad

}
A template scoring rule therefore evaluates a set of specific
attributes.

Even though rules of our model may be extremely
generic, from an operational standpoint, rules described in
Definition 15-18 are the most relevant and useful ones. As a
consequence we make the following operational assumption.
Assumption 1: Each template declares only service con-

sistency, template consistency, service scoring, and template
scoring rules: ∀t ∈ T ,RU t ⊂ (SCR ∪ TCR ∪ SSR ∪ TSR).

Even though our model fits complex and complete compo-
sition systems where composition rules may be any kind of
constraint, from an operational standpoint we acknowledge
that the most useful kinds of constraints are the ones that
relate to services and templates, and allow to both verify their
consistency and to score them.

C. RULE EVALUATION
In order for a placeholder to be filled with a candidate service,
rules related to the placeholder roles (PRR relations) must be
evaluated. Consistency rule evaluation determines whether a
service (or a set of services) can play the required role(s),
whereas scoring rule evaluation determines ‘‘how well’’ the
candidate service can play the required role(s).
Definition 19: We define service rule consistency evalua-

tion as a function that determines whether a given service can
play a given role according to a given scr.

evalscr : [SCR× R× S]→ {0, 1}

Specifically, given a service s, a role r, and a service consis-
tency rule scrr :

(
ard , vad , fconsistency

)
, consistency evaluation

takes place by substituting service s to the corresponding roles
r in the rule, and then by applying the consistency function
declared by the rule itself.

evalscr (scrr , r, s) = fconsistency
(
fsub

(
ard , s

)
, vad

)
Definition 20: We define template rule consistency eval-

uation as a function that determines whether a given set of

services can play a given set of roles according to a given tcr.

eval tcr :
[
TCR× [R× S]n

]
→ {0, 1}

Specifically, given a template consistency rule

tcrr1,...,rm :
(
a1r1d , . . . , anrmd , fconsistency

)
and a set of role-service substitutions (rj, sk), j ∈ (1, m) ,

k ∈ (1, p) evaluation takes place by substituting services to
the corresponding roles in the rule, and the by applying the
consistency function declared by the rule itself:

eval tcr
(
tcrr1,...,rm , (r1, s1) , . . . ,

(
rm, sp

))
= fconsistency

(
fsub

(
a1r1d , s1

)
, . . . , f sub

(
anrmd , sp

))
.

Definition 21: We define service rule scoring as a function
that evaluates ‘‘how well’’ a given service can play a role
according to a given ssr.

scoressr : [SSR× R× S]→ <

Specifically, given a service s, and a service scoring rule
ssrr :

(
ard , vad , fscore

)
, scoring takes place by substituting ser-

vice s to the corresponding role r in the rule, and then by
applying the scoring function declared by the rule itself:
scoressr (ssrr , r, s) = fscore

(
fsub

(
ard , s

)
, vad

)
.

Definition 22: We define template rule scoring as a func-
tion that evaluates ‘‘how well’’ a given set of services can
play a given set of roles according to a given tsr.scoretsr :
[TSR× [R× S]n]→ <.
Specifically, given a template scoring rule, tsrr1,...,rm :(
a1r1d , . . . , anrmd , fscore

)
, and a set of role-service substitutions(

rj, sk
)
, j ∈ [1,m] , k ∈ [1, p] scoring takes place by substi-

tuting services to the corresponding roles in the rule, and then
by applying the scoring function declared by the rule itself:

scoretsr
(
tsrr1,...,rm , (r1, s1) , . . . ,

(
rm, sp

))
= fscore

(
fsub

(
a1r1d , s1

)
, . . . , f sub

(
anrmd , sp

))
.

D. TEMPLATE REIFICATION
We call template reification the process of filling each place-
holder node in a template with a suitable service and, in gen-
eral, of completely finding a concrete substitution for abstract
elements with concrete counterparts. A reifiable template
is a template whose placeholders can be substituted by at
least a set of services that satisfy the following two consis-
tency properties, namely service consistency and template
consistency.
Definition 23: Service consistency requires that each ser-

vice willing to replace a placeholder should satisfy all the
service consistency rules associated with any one of the roles
associated with the placeholder.Given a placeholder p, a tem-
plate t, and a candidate service (for placeholder p) cp ∈ S,
cp is service-consistent for placeholder p if:

∀r| ∃ prrn→ {r} , ∀scrr ∈ RU t → {r} ,

evalscr
(
scrp, r, cp

)
= 1.
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Definition 24: Template consistency requires that each set
of services willing to replace a set of placeholders should
satisfy all the template consistency rules associated with any
one of the roles associated with each placeholder. Given a
placeholder p, a service candidate service sp to substitute p,
and a set of other candidate services CS, s p is template con-
sistent in CS if: ∀r| ∃prrn → {r}, ∀tcrr1,...,rm ∈ RU t | ∃ri =
r,∃ {s1, . . . , sm−1}| si is service consistent in

px ∈ PH t∀i, eval tcr
(
tcrr1,...,rm , (r1, s1) , . . . ,

(
ri, sp

)
,

. . . , (rm, sm−1)
)
= 1.

Template consistency verifies that a service willing to
replace a placeholder can satisfy all of the template consis-
tency rules that involve one (or more) role of the placeholder
to be replaced.
Definition 25: Given a template t and a set of candidate

services CS={s1,...sn}, template t is reifiable in {s1,...sn} if:
∀si ∈ CS, si is service consistent in pi ∈ PH t , si is template
consistent in {s1, . . . , sn}.
Each service in {s1, . . . , sn} can therefore be used to sub-

stitute a corresponding placeholder in a way that guarantees
satisfaction of all the consistency rules. So, the composition
platform can build a concrete workflow out of the template by
consistently replacing its abstract placeholders with existing
services (set {s1, . . . , sn}).
Definition 26: Given a template t that is reifiable in

{s1,...sn}, we call {s1,...sn} reification set.
Each reification set therefore represents a solution that

can be used to translate an abstract template into a concrete
workflow; the resulting workflow is granted to be consistent
with user requirements (e.g., all composition rules).

E. USAGE SCENARIO – CONSISTENCY AND SCORING
In Section III.D we showed how user selects a ‘Content
Aggregation’ template and how user choices translate into
concrete consistency rules for one template. Service com-
position layer now inspects available services to determine
whether services exist whose semantic properties can satisfy
specified rules and therefore can be used to translate the
abstract template into a concrete workflow. If more solutions
can be found, our platform also ranks them according to given
criteria.

1) CONSISTENCY EVALUATION
To grant template consistency, one of the most typical consis-
tency rules in our templates relates to syntactical consistency,
e.g., to the ability to check whether services can interoperate
in terms of basic interconnection features such as input/output
parameters and pre-/post-conditions satisfaction.
Link consistency rule(lcr) is a specific template consis-

tency rule that can be for example of the form: lcr :=
((producer, syntaxDom, output), (consumer, syntaxDom,

input)), whereproducer and consumer roles mark subsequent
nodes and the above rule states that each service willing to
play the producer role should declare a semantic property

output (in the semantic domain syntaxDom) whose value is
consistent with the value of semantic property input of the
service willing to play the role of consumer. To guarantee that
each preceding service output is compatible with the follow-
ing service input, it is sufficient to add a link consistency rule
to each couple of adjacent (i.e., connected by a link) services.
This kind of rule is associated to each template in our

system, however it is completely transparent to final users
(i.e., users usually do neither influence nor perceive their
presence at all). This allows to grant system correctness,
without requiring users to delve into the details of manually
checking link consistency.
Given the template and rules shown in Section III.D, our

system detects that an available RSSReader service (whose
typology is ‘‘generation’’) provides the ‘‘RSS’’ value for
attribute contentType. This means it can play the role gen-
erator and thus fill in placeholder p2. The same applies to
placeholders p3 and p4 and NewsReader and HTMLReader
services. By providing ‘‘aggregation’’ as typology attribute,
the Aggregator service is suitable to fill in placeholder p5.
Finally, the SMSSender service metadata allow SMSSender
to fill in placeholder p6.
This allows to translate the abstract template and original

user requirements into a concrete workflow of services as
depicted in Fig. 4.

FIGURE 4. Template reification.

2) SCORING EVALUATION
Suppose no link consistency violation occurs and differ-
ent alternatives exist to both the SMSSender service and
the HTMLReader, with different QoS characteristics (in the
example in Fig. 5, cost and responsiveness). Hence user
requirements can be satisfied by different concrete work-
flows.

Two template scoring rules may drive the choice among
these alternatives:
• a min_cost scoring function may sum all cost values for
any service involved in the template;

• a max_responsiveness scoring function may sum all
responsivenessvalues for any service involved in the
template.

Some users may prefer maximum responsiveness, no matter
the cost: our platform (see Fig. 6) then provides a solution
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FIGURE 5. Example service alternatives.

FIGURE 6. Solution scoring.

that features SMS_1 and HTML_2, hence achieving the max-
imum responsiveness (i.e., 15; we suppose services other
than SMSSender and HTMLReader provide no contribution
to costand responsiveness). At the opposite, other users may
prefer minimizing the costs, no matter the quality of respon-
siveness of the overall service: in this case, our platform
provides a composition that leverages SMS_2 and HTML_1.
Obviously, mixed strategies may coexist to provide a tradeoff
between the two alternatives.

V. IMPLEMENTATION
Our proposal aims at targeting large deployment scenarios,
with lots of users and services available and with possibly
complex requirements in terms of different service aggre-
gates (templates) and requirements on them (rules). System
scalability thus becomes crucial to derive from an open and
flexible model an efficient concrete system implementation.

Scalability issues are mainly related to two main factors:
the enlarging repertoire of services satisfying a template and
the potential of vesting other templates. On the one hand,
in fact, the ever-increasing number of services may lead to
an increasing number of different alternative solutions (reifi-
cation sets) to satisfy user requirements; thus, algorithms to
evaluate all possible solutions may quickly become greedy
time- and resource-consuming. On the other hand, the inher-
ent model recursion allows to build larger and more com-
plex templates up from other templates (e.g., by replacing
placeholders with templates); that opens up the possibility to
infer a (possibly) unlimited number of increasingly larger and
complex template aggregates, all correctly satisfying initial
user needs.

A. IMPLEMENTATION GUIDELINES
To limit the impact on scalability, we devise two main guide-
lines. First, we are not targeting completeness: our system
may decide to find only a subset out of all potential solu-
tions. From a user standpoint, in fact, each reification set

is granted to satisfy all requirements user has expressed:
hence our platform may decide (for instance, under heavy
load conditions) to stop computing alternative solutions once
the first suitable one (in alternative only a given number)
is found and provide it to users; this may result in non-
optimal solutions (e.g., solutions whose score may be worse
than the one of non-calculated solutions). On the contrary,
under certain ‘‘lightweight’’ operating conditions, or for some
‘‘premium’’ users, our platform may decide to find out all
possible solutions.

The second aspect aims at limiting the adoption of recur-
sion in the process of finding solutions: our implementa-
tion by default does not search for substituting placeholders
(or groups of placeholders) with other templates. Recursion
should be allowed only in case no reification sets can be
found for the given template and user requirements. Under
certain conditions, in fact, substituting placeholders of the
original template with other templates may easily allow novel
solutions that satisfy user requirements. With the goal of effi-
ciency, we identified some well-known situations in which
a recursive approach may effectively help finding out novel
solutions without imposing much effort on computational
resources and we have enabled recursion only to handle
these situations. The most typical case involves link con-
sistency check failures: suppose we have a simple (portion
of a) ‘‘sequence’’ template in which service A output feeds
service B input (see Fig. 7) and suppose no services can be
found for which A output format and B input format match
(link consistency failure).

FIGURE 7. Sequence template example.

The above problem can easily be solved by replacing place-
holders A and Bwith an adaptation template made up of three
nodes (see Fig. 8); the first and last nodes mimic features of
placeholders A andB, and themiddle node (called T) is meant
to hold a format translation service, e.g., it declares a service
consistency rule that constrains service typology to be of type
‘‘transcoding’’ (meaning that only services able to perform
format transcoding should be placed in between) and two link
consistency rules (i.e., A output compatible with T input, and
T output compatible with B input). Our system may now find
a correct arrangement of services to satisfy A and B nodes,
and a third service to place in between that acts as a format
transcoder, hence granting link consistency.

As a concrete example, the Aggregator service in
Section IV.E provides an XML-based output instead of plain
text. That violates the link consistency check with the fol-
lowing SMSSender. By applying the adaptation template, our
platform may recursively place a suitable XML-to-Text
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FIGURE 8. Recursive template definition example.

transcoder service in between to guarantee link consistency
satisfaction (as in Fig. 9).

FIGURE 9. Recursion example in a real template.

B. CONSISTENCY CHECK IMPLEMENTATION
Many different implementations may be conceived to realize
the reification algorithm of our model. Basically, however,
its core activity is to verify template consistency of different
alternative solutions; this usually entails replacing a finite
number of template placeholders with services that satisfy
service and template consistency rules.

Constraint Satisfaction Problem (CSP) techniques [30] aim
at solving the problem of assigning values (from a finite
set/domain of available values) to a finite number of vari-
ables, by granting the satisfaction of constraints over the
values of variables.

Consistency check may therefore be easily implemented as
a CSP problem in which a finite number of template place-
holders (variables) need to be filled with services (from a
large but finite catalogue), by satisfying service and template
consistency rules (constraints). Note here that rules may eas-
ily be intended as constraints on services to fill placeholders;
in fact rules expressed directly in terms of placeholders are
full-fledged constraints on our system variables (placehold-
ers), whereas rules expressed on roles may easily be turned
into constraints on placeholders by simply applying them to
each placeholder that declares the involved roles.

Given user requirements in terms of a template and a set
of rules, the main steps to translate them into one concrete
workflow (and also more than one) of services entails the
following main logical steps:

1) translate rules (coming both from template definition
and user requirements) into constraints, by replicating
rules for each declaring placeholder;

2) find solutions via usual CSP techniques;
3) if more solutions are found, score solutions;
4) if no solution is found, try recursive solutions.

Constraint satisfaction problems have long established
strategies and techniques to generate and verify correct
solutions [31]; some are extremely simple to implement
but quite naïve and resource-wasting whereas others are
extremely complex and sophisticated, and grant for better
performance [32].

The key aspects of any constraint satisfaction strategy
mainly relate to solution exploration (the strategy for finding
out solutions) and to algorithm completeness (i.e., how many
solutions to identify). Both aspects have a relevant impact on
performance of the CSP solution, hence both of them should
be carefully taken into account and optimized to realize effec-
tive constraint satisfaction strategies.

1) SOLUTION EXPLORATION
The brute-force solution exploration strategies (called ‘‘gen-
erate and test’’ strategies) typically blindly instantiate all
possible permutations of variable assignments and check
constraints ‘‘a posteriori’’, only when a complete solution is
generated.

The number of possible solutions heavily depends on the
number of available services and of placeholders to fill:
cardinality (S)cardinality(PH).

Obviously, this approach quickly becomes unmanageable
as the service and placeholder number increases, making it
almost infeasible even in limited and simple real deployment
scenarios.

Smarter solutions typically generate solutions by visiting
a solution tree where nodes represent variables to assign and
outgoing branches represent value assignments: this model
allows to easily evaluate partial assignments during the pro-
cess, hence allowing to ‘‘a priori’’ prune branches (excluding
even large sets of solutions) that represent wrong assign-
ments (assignments that conflict with constraints). Algo-
rithms described in the following pursue the latter approach.

2) ALGORITHM COMPLETENESS
A complete strategy typically explores the whole solution
tree and is therefore able to provide all possible solutions
for a CSP problem, whereas non-complete strategies usually
explore only portions of the tree and provide only a limited
set of solutions (sometimes only the first one).

As the complexity of the CSP grows (the increasing num-
ber of services, constraints, and placeholders to fill), the solu-
tion tree to explore may become very large, thus making the
choice between complete and non-complete strategies more
andmore relevant and the decision crucial. Furthermore, non-
complete strategies may not always be a viable option, since
some end-user Quality-of-Service policies may require to

VOLUME 6, 2018 33615



P. Bellavista et al.: Improved Adaptation and Survivability via Dynamic Service Composition

find out the best possible solution, instead of providing just a
good one.

Our implementation focuses on both ‘‘extremes’’
(complete and non-complete strategies) to give a full and
wide-range perspective of scalability and performance of our
platform and to evaluate upper and lower bounds in terms of
system performance. At this stage we are neither specifically
interested in implementing and testing a number of possible
optimizations for a given strategy nor in evaluating different
heuristics on service, variable, and constraint ordering during
the evaluation phase, even if research has showed that they
could increase the overall performance of the system.

The non-complete strategy relies on a standard backtrack-
ing approach: this algorithm explores a solution tree where
each node represents a variable to assign (placeholder to
fill) and each outgoing branch represents a possible assign-
ment in the variable domain (available services). Thus, one
solution is a path from the root of the tree to a leaf that
identifies one assignment for each variable. The standard
backtracking algorithm explores the solution tree depth-first
and, at each level checks whether constraints are satisfied by
current assignments. If it is so, the algorithm may go down
one level and proceed with next assignments; if not satisfied,
the algorithm tries to assign another value in the domain. If no
valid assignment can be found at a given level N (for a given
variable), then assignments from level 0 to level N-1 should
be revised: the algorithm then steps back to level N-1 and tries
another assignment and so on.

The complete strategy relies on an extension of the stan-
dard backtracking algorithm; this strategy again explores the
solution tree depth-first, but does not stop once the first
solution is found, and keeps visiting the solution tree until
all possible constraint-consistent assignments are explored.

Both solutions represent a major improvement with respect
to brute-force ones that blindly evaluate all possible permuta-
tions of variable assignments; in fact, checking constraints at
each level allows to detect and prune (early in the algorithm
execution) all of the branches of the solution tree (e.g., set of
possible assignments) that will not lead to feasible solutions.

VI. EXPERIMENTAL RESULTS
In order to prove the feasibility of our approach, we realized a
number of concrete deployments for real usage scenarios and
challenged our service composition platform against them.
These deployments also allowed us to distill useful hints
about the level of complexity average end users are able to
tame. Typically, in fact, users seem to use templates with three
to five placeholders andwe perceived that more complex tem-
plates require a lot more effort on them (e.g., more constraints
to specify) and ultimately tend to be less intuitive and usable
for average end users. As for servicemetadata, over-described
services (e.g., high number of metadata properties) again tend
to be confusing and users rather focus on simple, limited, and
understandable properties.

The aforementioned guidelines from real-life scenar-
ios, allowed us to devise suitable testbeds (reported in

the following) to intensively test our implementation under
real operating conditions. The reference implementation and
all tests ran on a single computation node equipped with
commodity hardware (Pentium4 3 GHz core, 2 GB RAM,
Linux kernel 2.6.27) and the prototype has been developed
in Java (Java JDK 1.6).

A. CONSISTENCY PHASE EVALUATION
Since the template consistency phase (i.e., the CSP solution)
is the most complex task in the process of our service compo-
sition platform, we have first evaluated average service times
for both the standard (non-complete) backtracking strategy
and for the complete one. Specifically, we were interested
in evaluating variations of the average response time when
varying two main coordinates of the system: the number of
available services and the complexity of the template (specif-
ically, the number of placeholders to fill in).

Fig. 10 shows that the number of template placeholders
has a huge impact on the overall performance of the system:
reification of simple templates (e.g., with three placehold-
ers) can be resolved both with complete and non-complete
strategies, and still keeps reasonable average execution times,
even for large sets of available services. When the number
of placeholders increases, complete strategies quickly tend
to become less performing and average execution times may
‘‘explode’’ to dozens of seconds (with very large service
sets). Given this evaluation, we have devised some adaptive
algorithms that may runtime switch between complete and
non-complete solutions based on current system status (the
number of available services) and user requirements (specif-
ically, which template and how many placeholders in the
template).

FIGURE 10. Average consistency execution times.

B. RECURSION EVALUATION
Our platform adopts recursion to handle limited and well-
known consistency failures.We evaluated the impact of recur-
sion on execution times in a typical test case (similar to the
one described in Section IV.E). Specifically, users require
to reify a template (made up of three placeholders) whose
first to steps are constrained (among other consistency rules)
by a link consistency rule. In our testbed, no services can
be found to directly satisfy this requirement; hence, our
algorithm is forced to recursively insert an adaptation tem-
plate in between and tries to recalculate service consistency.
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Different implementation strategies for recursion may be
devised: the most naïve (and less performing) implementa-
tion recomputes the novel and more complex problem (more
placeholders to fill in) from scratch. Other strategies may
be optimized, for instance by restarting from the portion of
reification sets that, even if failing to satisfy the original
problem, may still be promising (e.g., reification sets that fail
only for the target link consistency rule).

Currently, we are interested in proving that recursion is a
viable option when no solution for the original problem can
be found, rather than providing a deep and detailed review
of recursion optimization strategies. Thus, we tested and
reported results for the simplest and worst performing imple-
mentation (i.e., restarting service consistency from scratch)
and we are currently working on implementing and evaluat-
ing more sophisticated solutions.

Fig. 11 provides evaluation results of service consistency
execution times, for both complete and non-complete strate-
gies, and reports execution times for both a non-recursive case
(e.g., available services can directly reify the template) and a
recursive one (e.g., available services do not directly reify the
template, and hence require recursion adoption).

FIGURE 11. Recursive vs. non-recursive cases (average execution times in
ms). (A) - Non-complete strategy (3 placeholders). (B) - Complete strategy
(3 placeholders).

Results show that overall execution times remain rea-
sonable and limited, especially for non-complete strategies.
On the contrary, complete strategies obviously impose amuch
higher overhead on execution times than non-complete ones,
since they basically compute a novel and more complex (at
least one more placeholder to fill in) composition problem
from scratch, hence needing to explore all the novel and more
complex solution trees to find all possible solutions. In case
recursion needs to be adopted, a simple optimization strategy
to limit execution times could be to force the adoption of
a non-complete solution strategy for the novel (recursive)
problem.

We then focused on a recursive case and estimated the
impact of the recursive phase in the overall execution times:
Fig. 12 reports the percentage of time spent in the recursive
phase of the algorithm with respect to the total amount of
execution time.

Results show that the recursive phase costs more than the
original problem solution phase and employs from 64% up

FIGURE 12. Recursive phase execution time (percentage with respect to
total execution time).

to 74% of the whole execution time. This again is a result
of our first naïve implementation of the recursion phase that
basically solves a new and more complex problem from
scratch.

C. MEMORY FOOTPRINT
To better estimate the footprint and impact on computational
resources of our algorithm, we evaluated the average memory
consumption during the overall composition phase. Again,
we tested our platform by varying two main coordinates of
the system: the number of available services (abscissae axes),
the complexity of the template (specifically, the number of
placeholders to fill in), and the type of strategy (complete
and non-complete). Since our tests involve a large number
of services (up to 50000), a non-negligible portion of the
overall used memory is reserved to handle them; this is why
in Fig. 13 we reported both the overall memory consumption
and the memory portion reserved for test services.

FIGURE 13. Memory footprint. (A) - Non-complete strategy
(5 placeholders). (B) - Complete strategy (5 placeholders).
(C) - Non-complete strategy (3 placeholders).
(D) - Complete strategy (3 placeholders).

Results show that memory consumption grows almost
linearly with the number of services (ordinate axis reports
memory usage in MB). For limited sets of services (up to
thousands), themost relevant portion ofmemory usage relates
to services themselves. When the number of services grow
to dozens of thousands, it is memory consumption other
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than services that becomes more relevant (i.e., data structures
involved in the algorithm become larger and more complex)
but still grows linearly with the number of services, hence
remaining viable and manageable even for very large set of
services.

Comparison of graphs A, B, C, and D shows that memory
consumption is very similar even when varying the strategy
and the number of template placeholders: this allows to state
that memory consumption of our algorithm is neither influ-
enced by strategy completeness nor by template complexity.

D. SCORING PHASE EVALUATION
We have also evaluated the composition scoring phase and,
as we expected, it proved to be the least relevant and time-
consuming part of the algorithm, with average scoring times
of hundreds of microseconds (at least three orders of magni-
tude below average CSP solution times).

This is rather obvious as a result because scoring usually
takes place on a very limited number of solutions (in our
test scenarios, up to a dozen) with respect to the consistency
phase that evaluates large portions of huge solution trees.
Nevertheless, this result suggests that trying to provide users
with the ‘‘best’’ solution (either out of all possible solutions in
complete cases, or out of a limited subset of solutions in case
of non-complete strategies) to fit their needs is not a costly
task and can always be pursued without imposing relevant
overhead on the overall process.

E. SUMMARY AND ONGOING IMPROVEMENTS
To summarize, our service composition algorithm is basically
made of two main parts: template consistency exploits typi-
cal CSP-based techniques (both complete and non-complete
ones) to generate feasible solutions, and template scoring
allows to rank these solutions for given criteria; in case no
solutions can be found, our algorithm may selectively apply
recursion strategies to overcome specific service composi-
tion violations; our tests showed that recursion comes at a
non-negligible but reasonable cost. We stress that algorithm
completeness (i.e., finding all possible solutions) may heavily
impact on execution times, especially with increasing service
number and complex templates; therefore, our algorithm is
able to dynamically inspect current runtime conditions and
force non-complete approaches, such as in case service num-
ber surpasses a given threshold.

Even though, the very basic strategies for solution genera-
tion and checking have proven to perform well under non-
trivial execution conditions (high number of services and
templates), we felt the need to estimate whether our model
and implementation left room for improvements and, in case,
to evaluate the degree of optimization that could potentially
be reached.

Heuristics and optimizations for CSP problems are a long-
debated field and usually, powerful and sophisticated heuris-
tics tend to be extremely tailored to very limited and specific
sets of problems (e.g., some heuristics behave extremely well

for over-constrained CSP problems, whereas others largely
improve scenarios with limited variable cardinality).

We implemented and evaluated a very simple and general-
purpose heuristic for service selection; for each placeholder,
such heuristic basically filters out all candidate services (from
the set of available ones) that do not satisfy service consis-
tency rules expressed on that placeholder. Service consistency
rules, in fact, constrainmetadata properties of serviceswilling
to replace a given placeholder, and therefore represent a
convenient way to shrink out the set of candidate services
before the algorithm tries to instantiate that placeholder. That
results in a relevant reduction of the solution tree, hence in
faster exploration strategies.

As reported in Table 1 (left sub column for each service
number group), results show a relevant speedup of average
execution times, ranging from 1.09 up to 3.72.

TABLE 1. Execution time speedup/filtering time (% of total exec.ltime).

We also estimated the cost of adopting this heuristic and
we reported (see Table 1 - right sub column for each service
number group) the percentage of time spent during service
filtering out of the overall process time. Results show that
service filtering requires a non-negligible but always limited
percentage of the overall execution time. Service filtering
clearly depends on the size of the explored solution tree,
since service filtering occurs at any instantiation of a variable
(placeholder). For complete strategies, tests show that service
filtering time, as expected, grows as the number of services:
in fact, the consistency evaluation phase visits the whole
solution tree, which gets larger with the number of services.
For non-complete strategies, this kind of correlation is no
longer recognizable since the visited solutions (hence the
occurrences of filtering steps) are only subportions of the
whole solution tree and their size does not necessarily depend
on the number of available services; for instance, some larger
instantiations may find the first solution earlier than smaller
ones, and therefore require less filtering iterations.

VII. CONCLUSION
Ubiquitous computing scenarios and the fragility of emerg-
ing highly heterogeneous wireless networks stress the need
for flexible and user-friendly service-oriented support mid-
dleware. This work proposes both an open and extensible
composition model for reliable ubiquitous computing, and a
concrete, user-friendly, and effective implementation of that
model. To prove the viability of our approach we deployed
our platform and evaluated its usability in several different
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scenarios, with large and heterogeneous groups of users and
services. Obtained results showed that the platform is intu-
itive, easily usable by average end users, and easily extensible
to cope with new application scenarios.

We also extensively tested and benchmarked our platform
and we observed that our implementation scales well even
for very large and complex deployment scenarios, by keep-
ing reasonable execution times able to grant fast recovery
and survivability of service provisioning. We are currently
working on optimizations of the composition algorithm and
preliminary results show remarkable improvements in aver-
age execution times. That grants our platform directions of
evolution and allows focusing our future work on even more
complex, different, and challenging scenarios.
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