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ABSTRACT 

In this paper, a novel numerical procedure is proposed for the force-displacement description of out-of-plane 

collapse in masonry structures. The numerical procedure herein proposed represents one first attempt to couple 

limit analysis-based solutions to displacement-based evolutive analysis strategies. Limit-analysis based 

solutions are considered trustworthy to investigate collapse mechanisms in masonry structures, even though 

they cannot be used in displacement-based seismic assessment procedures (e.g. pushover analysis), while 

displacement-based evolutive analysis strategies (e.g. block-based and anisotropic continuum approaches), 

which can undertake this last task, are typically computationally demanding and their mechanical 

characterization is often very challenging. In this research, a genetic algorithm NURBS-based adaptive 

homogenized upper bound limit analysis is firstly adopted to compute the collapse mechanism that the structure 

(of any geometrical complexity) experiences for a given loading condition. Then, the 3D geometry of the 

collapse mechanism is imported in incremental-iterative step-by-step evolutive analysis frameworks to 

perform pushover analysis. In particular, two numerical modelling approaches are conceived to this aim, both 

lumping all the mechanical nonlinearities into tight zones located in correspondence of the cracks defined in 

the collapse mechanism previously computed. The first one uses 3D plastic damaging strips governed by a 

standard nonlinear continuum constitutive law. The second approach adopts non-standard zero-thickness 

contact-based interfaces governed by a cohesive-frictional contact behaviour previously developed by the 

authors for the brick-to-brick mechanical interaction. A number of meaningful structural examples show the 

effectiveness of the numerical procedure proposed. Pushover curves obtained through different modelling 

strategies are also critically compared.  

 

Keywords: Unreinforced masonry; Limit analysis; Collapse mechanisms; Out-of-plane behaviour 

 

1 Introduction 

The relevance that European citizens attach to heritage structures proves their high societal value. One of the 

main actions which threaten the conservation of heritage structures is represented by seismic actions, especially 

in southern Europe [1]. Indeed, past and recent earthquakes clearly highlighted the high seismic vulnerability 

of historical buildings [2], which typically show cracks and partial (or even full) collapses.  

The evaluation of the seismic behaviour of a historical building is a difficult task, given the complex geometries 

which characterize heritage structures and the complex mechanics of masonry. Several numerical modelling 

strategies have been developed in the last decades to deal with collapse analysis of masonry structures [3]. The 

collapse or near-collapse response of masonry structures can be studied following two main analysis 

approaches: (i) limit analysis-based solutions and (ii) incremental-iterative evolutive analyses. 
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On the one hand, limit-analysis based solutions are typically based on the theoretical background proposed by 

Heyman [4], who firstly applied limit theorems of plasticity to masonry structures. Starting from this 

pioneering work [4], many researchers developed limit-analysis based numerical approaches for masonry 

structure using both the static theorem (lower bound limit analysis [5, 6, 7, 8]) and the kinematic theorem 

(upper bound limit analysis [9, 10, 11]). Technically, limit analysis procedures which uses finite elements 

(FEs) are typically based on the upper bound theorem, and for cohesive-frictional materials (e.g. masonry) the 

solution appears particularly reliable when dissipation relies on interfaces between contiguous elements, 

following the idea proposed in [12]. 

Limit analysis-based solutions are considered trustworthy to investigate collapse mechanisms and the ultimate 

load in masonry structures [3]. Nevertheless, in these analysis approaches no information is available on the 

ultimate displacement and/or post-peak response. This aspect appears essential in extensively employed 

displacement-based seismic assessment methods (based on pushover analysis). Indeed, these assessment 

methods should be preferred rather than force-based assessment methods as stated in [13] for masonry 

structures. 

On the other hand, incremental-iterative evolutive analysis procedures investigate step-by-step the evolution 

of the equilibrium conditions of a structure subjected to certain actions. The loading and the structural response 

are divided into a sequence of increments, and iterations are conducted to reach equilibrium within each 

increment. These procedures can account for mechanical and geometric nonlinearities, allowing the description 

of the force-displacement response (pushover curve) of the structure (and, so, they are employable in 

displacement-based methods). 

Overlooking macroelement models which are typically limited to ordinary masonry buildings (and generally 

non-applicable to monumental structures), incremental-iterative evolutive analysis can be used in (i) block-

based and (ii) continuum models. In block-based models, masonry is modelled in a block-by-block fashion 

accounting for the actual masonry texture [14]. The block behaviour can be considered rigid or deformable, 

whereas their interaction can be mechanically represented through various suitable formulations (i.e. interface 

element-based [15, 16, 17, 18], contact-based [19, 20], textured continuum-based [21, 22] and extended finite 

element-based approaches [23]). The main issue of these models lies in their huge computational demand, 

being their application to non-periodic masonry [24] and to full-scale monumental masonry structure still 

unlikely. 

In continuum models, masonry is modelled as a continuum deformable material, without distinction between 

bricks and mortar layers. The constitutive law adopted for the material can be defined either through (i) direct 

approaches [25, 26, 27, 28, 29], i.e. by means of anisotropic constitutive laws calibrated, for example, on 

experimental tests [30], or through (ii) homogenization procedures and multi-scale approaches [31, 32, 33], 

where the constitutive law of the material is deduced from a homogenization process which relates the 

structural-scale model to a material-scale model of a representative volume element (RVE) of the structure. 

However, many of these approaches are often computationally expensive, and their practical application is 

typically limited to panel-scale structures. Other computationally reduced simplistic continuum approaches, 

although not entirely consistent with the anisotropic nature of masonry (e.g. smeared crack [34], isotropic 

damage [35] and plastic-damage [36, 37] models), could be followed when dealing with large-scale 

monumental masonry structures. However, the pushover curves obtained with these approaches should be 

carefully considered, especially in the post-peak response, as the predicted cracks and damage are typically 

smeared on the structure and the development of collapse mechanism is generally not entirely clear or 

physically meaningful [3]. 

It has to be pointed out that force-displacement responses of masonry structures could be also analytically 

defined (see for example Godio & Beyer [38, 39]). Although employable in standard engineering practice, 

analytical approaches are typically restricted to standard and simple geometries, while the geometrical 

complexity is a peculiar feature of heritage structures. 

In this paper, a novel numerical procedure is proposed for the force-displacement description of out-of-plane 

collapse in masonry structures. The numerical procedure herein proposed represents one first attempt to couple 
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limit analysis-based solutions to incremental-iterative evolutive analysis strategies. Indeed, the idea at the base 

of this procedure, although simple, is original. 

Adaptive NURBS-based limit analysis is firstly adopted to compute the collapse mechanism that the structure 

(of any geometrical complexity) experiences for a given loading condition. This recently proposed approach 

[40, 41, 42] utilizes a meta-heuristic framework (genetic algorithm) and a homogenized upper bound limit 

analysis formulation.  

Then, the 3D geometry of the collapse mechanism is imported in incremental-iterative step-by-step evolutive 

analysis frameworks to perform pushover analysis. Two numerical modelling approaches, which lump all the 

mechanical nonlinearities into tight zones located in correspondence of the cracks defined in the collapse 

mechanism previously computed, are conceived to this aim. The first one uses 3D plastic damaging strips 

governed by a nonlinear continuum constitutive law (i.e. the so-called concrete damaged plasticity (CDP) 

model [43] implemented in the commercial FE software Abaqus [44]). The second approach adopts non-

standard zero-thickness contact-based interfaces governed by a cohesive-frictional contact behaviour 

previously developed by the authors in [45] for the brick-to-brick mechanical interaction. A number of 

meaningful structural examples are used to test the efficiency of the numerical analysis procedure proposed. 

The paper is organized as follows. Section 2 describes the numerical analysis procedure proposed for the force-

displacement description of collapse in masonry structures. Section 3 briefly recalls the adaptive NURBS-

based limit analysis approach. Section 4 briefly recalls the two incremental-iterative step-by-step evolutive 

analysis frameworks utilized in this research, i.e. plastic damaging strips (in the following named as CDP) and 

contact-based interfaces (in the following named as CONT). Section 5 shows some parametric analyses on a 

simple benchmark. Section 6 collects the results of structural examples, where the pushover curves obtained 

through different modelling strategies are also critically compared. Finally, Section 7 highlights the 

conclusions of this research work. 

 

2 Analysis procedure proposed 

The main steps of the analysis procedure proposed in this paper for the force-displacement description of 

collapse mechanisms in masonry structures are shown in Fig. 1. 

Firstly, the real structure is idealized into a 3D solid NURBS-based geometry (Fig. 1). This standard operation 

can be manually conducted on well-known commercial or open source computer-aided design (CAD) software 

packages, which typically use special approximating base function (i.e. NURBS) for the 3D modelling [40]. 

Of course, preliminary knowledge acquisition phases, which consist in archival historical background analyses 

and material-geometrical surveys, appear essential when dealing with heritage structures [46]. 

Then, loading conditions are applied to the structure to simulate, for example, the seismic action (Fig. 1), see 

[41]. Consequently, adaptive NURBS-based upper bound limit analysis [40, 41, 42] (briefly recalled in Section 

3) is carried out to investigate the collapse mechanism (Fig. 1) and the collapse load multiplier of the structure. 

The geometry of the collapse mechanism is automatically imported into incremental-iterative step-by-step 

evolutive analysis frameworks (Fig. 1) to perform pushover analysis (see Section 4). In this research, plastic 

damaging strips (CDP) and contact-based interfaces (CONT), which lump all the nonlinearities into tight zones 

located in correspondence of the cracks defined in the collapse mechanism, are used to this aim. Particularly, 

the CDP approach adopts finite-thickness 3D strips characterized by a plastic damage nonlinear behaviour 

(Section 4.1), while the CONT approach utilizes zero-thickness contact-based cohesive-frictional interfaces 

(Section 4.2). 

Consequently, pushover curves which describe the force-displacement evolution of collapse mechanisms are 

obtained and they can be used in displacement-based seismic assessment methods [13]. Moreover, a further 

assessment of the reliability of the approach can be achieved by comparing the collapse load multiplier 

obtained by means of adaptive limit analysis and the peak load of the pushover curve. 
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Fig. 1 – Analysis procedure proposed. 

 

 

3 Adaptive NURBS-based limit analysis 

In this section, the main features of the adaptive NURBS-based limit analysis, originally developed in [40] for 

masonry vaults and in [42, 41] for heritage structures, are briefly recalled. 

3.1 NURBS geometric description 

Any 3D solid geometry representing a masonry structure can be modelled within any free form 3D modeler 

using NURBS surfaces and a rigid block assembly can be defined on it, as sketched in Fig. 2. For instance, a 

Rhinoceros [47] 3D geometric model can be used, which interfaces to MATLAB® for the creation of a coarse 

NURBS mesh.  

The proposed approach begins with a representation of the geometry of the structure by means of NURBS 

surfaces in a CAD environment. NURBS surfaces are parametric surfaces in the 3D Euclidean space defined 

by a bidirectional net of control points, an equal number of weights, and a rational basis function built on B-

spline basis functions [48]. By exploiting the properties of NURBS functions, a mesh of the given geometry, 

which still provides an exact representation of the structure, can be obtained. Therefore, a given masonry 

structure with any geometry can be represented by very few NURBS parametric elements. Each NURBS 

element of the mesh is idealized as a rigid body (Fig. 3a-c). For NURBS geometries, B-spline basis functions 
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are piecewise polynomial functions defined by a knot-vector which is not uniform (i.e. knot-points are not 

equidistant). Starting from a knot-vector 𝛯 =  [𝜉1, 𝜉2, … 𝜉𝑛+𝑝+1  ], where 𝑝 and 𝑛 denote respectively the 

polynomial order and the total number of basis functions, a given set of weights 𝑤𝑖 ∈ ℝ and the i-th B-spline 

basis function (𝑁𝑖,𝑝), the NURBS basis function 𝑅𝑖,𝑝 is defined as follows:  

𝑅𝑖,𝑝(𝜉) =
𝑁𝑖,𝑝(𝜉)𝑤𝑖

∑ 𝑁𝑗,𝑝(𝜉)𝑤𝑗
𝑛
𝑗=1

 ( 1 ) 

Given a bidirectional net of control points 𝐁𝑖,𝑗, a set of weights 𝑤𝑖,𝑗 and two separate knot-vectors in both 𝑢 

and 𝑣 directions, a NURBS surface of degree 𝑝 in the 𝑢-direction and 𝑞 in the 𝑣-direction is defined as:  

𝑆(𝑢, 𝑣) =  ∑∑𝑅𝑖,𝑗(𝑢, 𝑣)𝐁𝑖,𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 ( 2 ) 

More details on the theory of NURBS applied to limit analysis are provided in [40], where the reader is referred 

for further details. Here, it is only worth mentioning that such surfaces are commonly used in computational 

graphics, so they can be found in all CAD-based software (e.g. AutoCAD, Rhinoceros and SolidWorks). The 

main advantage is the possibility of dealing with complex geometries, i.e. curved geometries of any shape and 

openings, with few surfaces. Therefore, an accurate representation of the three-dimensional geometry can be 

realized with negligible computational efforts. Moreover, a NURBS model requires less computational 

memory in comparison with traditional three-dimensional CAD models, turning out to be much easier to build, 

handle and modify.  

   

(a) (b) (c) 

Fig. 2 - From Rhinoceros to MATLAB: (a) NURBS surface in Rhinoceros, (b) NURBS model in MATLAB 

and (c) mesh of NURBS element.  

The obtained model can be automatically imported into the structural analysis program (e.g. MATLAB®) 

through the IGES (Initial Graphics Exchange Specification) standard format [49]. Thickness and offset 

properties can be assigned to each surface. NURBS properties can be manipulated to define a NURBS mesh 

of the masonry mid-surface, in which each element is a NURBS surface itself. More specifically, assuming a 

certain NURBS surface indicated as 𝑆(𝑢, 𝑣), a certain point on the parametric domain is described by its 

parametric coordinates (𝑢0, 𝑣0). The corresponding point in the three-dimensional Euclidean space is obtained 

as 𝑆(𝑢0, 𝑣0); therefore, if a curve is defined on the parametric domain the corresponding three-dimensional 

curve belonging to the NURBS surfaces can be identified. Similarly, isocurves, or isoparametric curves, can 

be defined on the surface by fixing one parameter in the parameter space and letting the other vary: by fixing 

𝑢 =  𝑢0 the isoparametric curve 𝑠(𝑢0, 𝑣) is defined on the surface 𝑆, whereas by fixing 𝑣 =  𝑣0 the isocurve 

𝑠(𝑢, 𝑣0) is obtained. Therefore, a NURBS mesh can be defined through a lattice of isocurves, which are 

obtained merely by subdividing the parametric domain with horizontal and vertical lines. By modifying the 

NURBS lines in the parametric domain (for example, by changing slopes or parametric coordinates of 
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intersection points), adjustment of the NURBS mesh can be performed and elements of different shapes can 

be obtained.  

3.2 Upper Bound NURBS limit analysis 

Starting from the obtained rigid bodies assembly, an upper bound limit analysis problem with very few 

optimization variables has been derived in [40], assuming dissipation allowed only along element edges. The 

same approach is utilized here. In particular, given an initial NURBS mesh, each element is idealized as a rigid 

body and its kinematics is thus determined by the six generalized velocity components 𝐮𝑖 =

[𝑢𝑥
𝑖 , 𝑢𝑦

𝑖 , 𝑢𝑧
𝑖 , 𝛷𝑥

𝑖 , 𝛷𝑦
𝑖 , 𝛷𝑧

𝑖] of its center of mass, expressed in a global reference system 𝑂𝑥𝑦𝑧. A configuration of 

dead loads 𝐟𝐃 and live loads 𝐟𝐋 is defined. The plastic dissipation is allowed only along element edges. In the 

evaluation of plastic dissipation energy, integrals are numerically evaluated by subdividing each interface in a 

series of points 𝑃𝑗 and applying on each one an associated flow rule. According to the hypotheses of the limit 

analysis theorems, rigid plastic behaviour is assigned to masonry material. Therefore, the plastic dissipation at 

each interface is linear and, if we define as 𝐩 the vector of all plastic multipliers at the interface points, the 

total dissipation can be readily calculated. A local reference system (𝐧, 𝐬, 𝐭) is defined at each point, where 𝐧 

is the unit vector normal to the interface, 𝐬 is the tangential unit vector in the longitudinal direction and 𝐭 is the 

tangential unit vector in the transversal direction, as sketched in Fig. 3(d). In this way, elements interfaces 

assume the meaning of possible fracture lines.  

a b c  

d e f 

Fig. 3 – Adaptive NURBS-based limit analysis: (a) example of NURBS model, (b) initial subdivision, (c) 

final GA-modified subdivision, (d) planar interface between NURBS elements, (e) 3D linearized failure 

surface and (f) 2D section. 

 

A homogenized three-dimensional failure surface is adopted, which includes tension cut-off, Mohr-Coulomb 

frictional behaviour and a linear cap in compression; an example of 3D failure surfaces with the nomenclature 

of the parameters involved is shown in Fig. 3(e-f). The adoption of suitable homogenization techniques is 

preferred in comparison with traditional isotropic no-tension material, as recommended for instance by Milani 

and co-workers [50, 51, 52]. It is clear that the traditional Heyman model for masonry can be represented by 

setting zero value in tension and with high values of compression strength and cohesion. 

The NURBS-based upper bound limit analysis procedure is implemented as a linear programming problem 

that includes: (a) geometric and compatibility constraints, (b) non-negativity of plastic multipliers and (c) 
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normalization condition of the work done by live loads. The resultant linear programming problem is therefor 

quite standard, characterized by very few optimization variables and can be written as follows:  

Min 𝜆 =  
𝐜 ∙ 𝐩 − 𝐟𝐃 ∙ 𝐮

𝐟𝐋 ∙ 𝐮
  

   

subjected to 𝐀 ∙ 𝐮 − 𝐂 ∙ 𝐩 = 0 (a) 

 𝐩 ≥ 0 (b) 

 𝐟𝐋 ∙ 𝐮 = 1 (c) 
 

( 3 ) 

Where, apart the symbols already introduced, other symbols have the following meaning: 

- 𝐀 and C are assembled rectangular matrices of geometric coefficients entering in the geometric and 

compatibility constraints; 

- 𝐩 and u are respectively the assembled vectors of plastic multiplier rates and elements generalized 

velocities; 

- 𝐜,  𝐟𝐃 and 𝐟𝐋 are vectors of coefficients for the internal dissipated power, that dissipated by external 

loads 𝜆 independent and that dissipated by external loads 𝜆 dependent. 

The solution is found through the MATLAB toolbox for optimization over symmetric cones SeDuMi (Self-

Dual-Minimization [53]). 

Due to the very limited number of rigid elements used, the quality of the collapse load so found depends on 

the shape and position of the interfaces, where dissipation is allowed. Mesh adjustments are therefore needed, 

and a specific Genetic Algorithm is adopted, as described in what follows.  

3.3 Genetic algorithm 

Mesh adjustments can be carried out by adopting a simple meta-heuristic approach of mesh adjustment, e.g. 

genetic algorithm (GA) [54]. In this way, each individual which composes the population is constituted of a 

mesh. Typically, each iteration requires the solution of a linear programming problem for each individual.  

The objective function of the genetic algorithm is represented by the internal power dissipated minus the power 

expended by the loads independent upon the load multiplier. Considering the so-called normalization 

condition, which equates to the unitary value the power expended by loads dependent upon the load multiplier 

assumed equal to one, the objective function turns out to be equal to the load multiplier. Within the upper 

bound theorem of limit analysis, such quantity must be minimized when subjected to equality and inequality 

constraints. 

Given the very reduced number of NURBS elements used in the discretization, the computational demand 

needed in each iteration appears practically negligible. After each generation, the GA typically works on a 

population of potential failure mechanisms, applying the principle of survival of the fittest to produce better 

and better approximations to a solution [54], i.e. moving the interfaces towards the actual failure mechanism. 

At each generation, a new set of approximations is generated by choosing individuals according to their level 

of fitness (i.e. the value of the collapse load) in the problem domain and breeding them together using operators 

borrowed from natural genetics (crossover, mutation and reproduction). This process typically leads rapidly to 

the evolution of populations of individuals that are better suited to their environment than the individuals that 

they were created from, with a very accurate estimation of both collapse loads and failure mechanisms after 

few generations. Accordingly, even if the mesh is made of very few elements (which therefore require a 
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practically negligible computational time to have the assessment of collapse load), accurate load multipliers 

and failure mechanisms can be obtained.  

 

 

4 Force-displacement description of collapse mechanisms 

Two numerical modelling approaches (CDP and CONT, see Fig. 4) are used to obtain the force-displacement 

description of collapse mechanisms (previously computed through adaptive limit analysis). These approaches 

need as input the geometry of the collapse mechanism and give as output the pushover curve (Fig. 4). 

In the first approach with plastic damaging strips (Fig. 4, top), once the geometry of the collapse mechanism 

is imported (the geometry can be automatically imported into the software Abaqus [44] by means of a 

MATLAB® .fig file generated from adaptive limit analysis), manual partitioning of the geometry is needed to 

define the finite thickness of the strips. Some suggestions about the thickness of the strip to adopt in the 

simulations are given in Section 5. The material of the strips (CDP) is then distinguished from the material of 

the remaining structure (assumed linear elastic). A brief description of the plastic-damage constitutive law 

adopted for the strips is given in Section 4.1. After standard meshing operations and loading condition 

definitions, an incremental-iterative evolutive analysis is conducted by means of a quasi-static implicit 

dynamic algorithm [44] to investigate the collapse behaviour of the structure. Accordingly, the potential 

softening behaviour can be described in the structural response. 

In the second approach with contact-based interfaces (Fig. 4, bottom), the geometry of the collapse mechanism 

is imported analogously to the previous approach. No manual partitioning of the geometry is here requested as 

zero-thickness interfaces are adopted. A fully automatic contact detection algorithm [44] is used to define the 

interactions between the geometrical portions (which defines the collapse mechanism). Standard meshing 

operations are carried out on the geometrical portions. In general, conforming mesh are considered on the 

domain of each geometrical portion, i.e. the mesh of each geometrical portion is not conforming with the 

adjacent ones. Node-to-surface contact definitions are implemented to compute the interactions between 

adjacent geometrical portions. Linear elastic isotropic material behaviour is supposed for the 3D solid FEs, 

while a cohesive-frictional contact definition is adopted for the zero-thickness interfaces (briefly described in 

Section 4.2). 

Geometric nonlinearity is accounted for in the incremental-iterative evolutive analyses, as large-displacement 

effects evidently arise in the force-displacement description of collapse mechanisms. A quasi-static direct-

integration dynamic analysis algorithm has been adopted to compute the solution up to the collapse of the 

structure. This algorithm permits to simulate quasi-static responses in which inertia effects are exclusively 

introduced to regularize unstable behaviours. The Authors experienced a better performance of this algorithm, 

specifically in terms of convergence, with respect to more common arc length procedures. 
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Fig. 4 – Force-displacement description of collapse mechanisms through plastic damaging strips (CDP) and 

contact-based interfaces (CONT). 

 

4.1 Plastic-damage constitutive law 

The continuum plastic-damage constitutive model, originally developed in [43] and herein utilized for the 

nonlinear strips, is characterized by a yielding function with multiple-hardening variables and two independent 

scalar damage variables, one for the tensile damage (0 ≤ 𝑑𝑡 < 1) and the other for compressive damage (0 ≤
𝑑𝑐 < 1). The stress-strain relations in uniaxial tension, 𝜎𝑡, and compression, 𝜎𝑐, are: 

𝜎𝑡 = (1 − 𝑑𝑡)𝐸(휀𝑡 − 휀𝑡
𝑝
), 𝜎𝑐 = (1 − 𝑑𝑐)𝐸(휀𝑐 − 휀𝑐

𝑝
), ( 4 ) 

where 𝐸 is the initial Young’s modulus of the material, 휀𝑡 and 휀𝑐 are the uniaxial tensile and compressive 

strains, and 휀𝑡
𝑝

 and 휀𝑐
𝑝
 are the uniaxial tensile and compressive plastic strains). A multiple-hardening Drucker-

Prager type surface, which is eventually smoothed towards a Mohr-Coulomb criterion type through the shape 

constant 𝜌, is adopted as yield surface in the plastic-damage constitutive law. 

Being the model formulated in the context of nonassociated plasticity [43], the plastic potential is defined by 

the dilatancy angle 𝜓, generally assumed equal to 10° for masonry [36], as well as by a smoothing parameter 

𝜖 usually assumed equal to 0.1 [36]. In addition, the strength domain is specified by the ratio 𝑓𝑏0/𝑓𝑐0 between 

the biaxial 𝑓𝑏0 and uniaxial 𝑓𝑐0 initial compressive strengths, typically assumed equal to 1.16 [36], and by the 

shape constant 𝜌, normally assumed equal to 2/3 [43]. The general parameters for the plastic damaging 

behaviour are collected in Table 1. It has to be pointed out that in this constitutive model the shear behaviour 

is not directly defined, whereas it depends on both the tensile and compressive uniaxial responses. Linear 

softening is supposed in both tensile and compressive responses after reaching the tensile (𝑓𝑡) and compressive 

(𝑓𝑐) uniaxial strengths. 
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Finally, it has to be pointed out that the shear behaviour in this plastic-damage constitutive law is indirectly 

described by specifying the tensile and compressive uniaxial behaviours. Although the ultimate shear depends 

on the level of confinement, a direct control of shear is not pursuable in CDP strips. 

 

Table 1. General parameters for the plastic damaging behaviour. 

𝜖 𝜓 𝑓𝑏0/𝑓𝑐0 𝜌 

0.1 10° 1.16 2/3 

 

4.2 Contact-based cohesive-frictional interfaces 

The zero-thickness contact-based interfaces with linear degradation of cohesion utilized in this research are 

based on a node-to-surface master-slave contact formulation (Fig. 5a). In the normal direction, the contact 

stress 𝜎 is computed by means of the Lagrange multiplier method in compression and the linear elastic 

relationship 𝜎 = 𝐾𝑛𝑛𝑢 in tension (valid until the tensile strength 𝑓𝑡 is reached), where 𝐾𝑛𝑛 is the cohesive 

stiffness in normal direction and 𝑢  is the normal displacement (Fig. 5b). In the shear direction, the tangential 

slip 𝛿 is linearly related to the contact shear stress 𝜏 (i.e. 𝜏 = 𝐾𝑠𝑠𝛿) where 𝐾𝑠𝑠 is the cohesive stiffness in shear. 

This relation is valid until the contact shear stress equals the shear strength 𝑓𝑠 (Fig. 5c), which is assumed to 

be dependent on the contact stress 𝑓𝑠(𝜎) = −tan𝜙 𝜎 + 𝑐, where 𝑐 is the cohesion and tan𝜙 is the initial 

friction of the shear response. Therefore, contact failure is supposed when the contact stresses at a point 

intersects a Mohr-Coulomb failure surface with tension cut-off. This criterion, implemented through an 

automatic subroutine ad-hoc written by the authors, can be expressed as max {
〈𝜎〉

𝑓𝑡
,

𝜏

𝑓𝑠(𝜎)
} = 1, where the symbol 

〈𝑥〉 = (|𝑥| + 𝑥)/2 denotes the Macaulay bracket function, highlighting that masonry crushing is not accounted 

for in the contact response.  

The maximum value of the stress in the post-peak regime, in a contact point, is described by the relationships: 

𝜎 = (1 − 𝐷)𝑓𝑡, 𝜏 =  (1 − 𝐷)𝑓𝑠(𝜎) + 𝐷𝜇〈−𝜎〉 ( 5 ) 

where the degradation scalar variable 𝐷 is defined as: 

𝐷 =

{
 
 

 
 

0,  with 𝑢 ≤ 𝑢0 and 𝛿 ≤ 𝛿0

max

{
 

 
𝑢𝑀𝐴𝑋 − 𝑢0
𝑢𝑘 − 𝑢0

,  with 𝑢0 < 𝑢 < 𝑢𝑘

𝛿𝑀𝐴𝑋 − 𝛿0
𝛿𝑘 − 𝛿0

,  with 𝛿0 < 𝛿 < 𝛿𝑘

1,  with 𝑢 ≥ 𝑢𝑘 or 𝛿 ≥ 𝛿𝑘  

, 

( 6 ) 

being 𝜇 the residual friction (which is assumed in this paper equal to the initial friction tan𝜙, for simplicity), 

𝑢0 and 𝛿0 the separation and the slip at the limit of the linear elastic behaviour in tension and shear, 

respectively, 𝑢𝑀𝐴𝑋 and 𝛿𝑀𝐴𝑋 the maximum separation and the maximum slip ever experienced by the contact 

point, respectively, 𝑢𝑘 and 𝛿𝑘 the ultimate separation and the ultimate slip of the cohesive behaviour, 

respectively (Fig. 5). Particularly, in this research the value of 𝑢𝑘 is assumed to obtain a prescribed value of 

fracture energy in tension 𝐺𝑡. Accordingly, it is also assumed 𝑐 = 𝑓𝑡 and 𝑢𝑘 = 𝛿𝑘 for simplicity. 
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a b c  

Fig. 5 – Contact-based interfaces: (a) node-to-surface contact definition, (b) tensile cohesive and (c) shear 

cohesive-frictional contact responses. 

 

4.3 Some remarks 

In this subsection, some remarks on the numerical modelling approaches (upper bound limit analysis, CDP 

and CONT) utilized in this research are provided. Particularly, the three modelling approaches show substantial 

differences which is herein worth to highlight. 

On the one hand, upper and lower bound limit analysis permits to thoroughly bracketing the exact collapse 

load and mechanism for a perfectly plastic structure. On the other hand, CDP and CONT accounts for the 

quasi-brittle structural response, which is concentrated in the strips or interfaces. Therefore, they allow the 

degradation of cohesion, which is not supposed in limit analysis frameworks. 

Masonry typically exhibits rather high values of friction angle (for historic masonry it generally varies from 

22° to 30°). In a plasticity framework, by assuming valid the normality condition (and so assuming an 

associative flow rule and a Mohr-Coulomb failure surface, as in the limit analysis framework for masonry [50, 

40]) high values of dilatancy are supposed, whose effects are, however, typically considered negligible. 

Conversely, a nonassociated plastic flow rule is supposed in the plastic damage constitutive law (CDP), where 

a dilatancy angle can be specified (lower than the friction angle). Even, in the contact-based interfaces (CONT) 

no dilatant behaviour is supposed. 

Failure in compression (i.e. crushing) is supposed in the upper bound limit analysis model implemented and 

in the CDP model, which implements compressive softening through a damage scalar variable in compression. 

Conversely, no crushing is supposed in the contact-based cohesive-frictional interfaces herein adopted, 

although compressive failure could be accounted for in the constitutive law of the 3D solid FEs as carried out 

in [20]. 

Even though the substantial differences highlighted between the three modelling approaches here considered, 

they are commonly used for the numerical analysis of masonry structures [40, 41, 42, 36, 45]. 

 

5 Preliminary and parametric analyses 

Some preliminary and parametric analyses are here carried out to assess the effectiveness of the incremental-

iterative evolutive analysis approaches (CDP and CONT). The geometry of the benchmark of the collapse 

mechanism (which ideally comes from the outcomes of adaptive limit analysis) is shown in Fig. 4. The 

benchmark, whose overall dimension are 15 × 16 × 1.35 m, is horizontally loaded with a uniform load 

distribution in the upper geometrical portion only. Examples of deformed contour plots (for both CDP and 

CONT) are depicted in Fig. 4. The mechanical properties used for the preliminary benchmark are collected in 

Table 2. In this subsection and in the following, hexahedral and tetrahedral FEs are considered with linear 

shape functions. 
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Table 2. Mechanical parameters used in the simulations. 

 Preliminary benchmark S. Coppito church Two-way bending panel 

Compressive strength 𝑓𝑐  [N/m2] 2.00 2.00 8.00 

Tensile strength 𝑓𝑡 [N/m2] 0 – 0.2 0 – 0.05 0 – 0.32 

Cohesion 𝑐 [N/m2] 𝑓𝑡  𝑓𝑡  𝑓𝑡  

Friction angle 𝜙 [\] 30° 30° 30° 

Compressive fracture energy 𝐺𝑐 [N/m] 1000 1000 4000 

Tensile fracture energy 𝐺𝑡 [N/m] 200 0 – 400 0 – 400 

Young’s modulus 𝐸 [N/m2] 2500 2500 14000 

Poisson’s coefficient 𝜐 [\] 0.2 0.2 0.2 

Material density 𝑤 [kg/m3] 1850 1850 1850 

Contact cohesive stiffness 𝐾𝑛𝑛 = 𝐾𝑠𝑠 [N/m3] 1010 1010 1011 

 

Firstly, the influence of the height of the strip has been investigated for the CDP approach (Fig. 6). According 

to the results (in terms of force-displacement curves) and the Authors’ experience, a height of the strip 

comprised in between the 18.5% and the 25% of the thickness of the wall appears the best compromise (Fig. 

6). Indeed, in order to keep the nonlinear hexahedral FEs of the strip with a reasonable aspect ratio (Fig. 6) 

and to prevent a too refined discretization, the height of the strip should not exceed the 25% of the thickness, 

and it should not be thinner than the 18.5% of the thickness. In the analyses collected in Fig. 6, a discretization 

with four FEs in the thickness is considered (Fig. 7). It should be pointed out that, rigorously, the strip should 

be barycentric on the crack of the collapse mechanism (from limit analysis). In cases alike the benchmark 

where the crack intercepts an opening, however, the strip unlikely can be barycentric (e.g. a nonlinear lintel 

would show damage even for dead load), and so the height of the strip could also alter the lever arm of the 

horizonal resultant (Fig. 6).  
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Fig. 6 – Influence of the height of the strip (CDP). The height of the strip is considered as a thickness 

percentage. 

 

Secondly, the influence of the through-thickness discretization (i.e. the number of FEs in the thickness of the 

wall) is shown in Fig. 7 for the CDP approach. A height of the strip equal to the 18.5% of the thickness has 

been assumed (Fig. 6). Then, various meshes with an increasing number of elements along the thickness (as 

the collapse process involves out-of-plane overturning) have been tested, keeping a suitable aspect ratio in the 

elements. As a result, three hexahedral linear FEs in the through-thickness discretization appear sufficient to 

guarantee a reliable solution (Fig. 7). This consideration appears valid for structures subjected mainly to simple 

bending, as the benchmark analysed. When the plastic damaging strip is subjected to more complex stress 

states, further considerations should be contemplated (see Appendix A for torque and compression).  

  

Fig. 7 – Influence of the through-thickness discretization (CDP). The notation mesh_n referrers to n as the 

number of FEs in the through-thickness discretization. 

 

The influence of the through-thickness discretization is also investigated for the CONT approach (Fig. 8), as 

the node-to-surface contact formulation is adopted (and, so, the number of nodes in the slave face could have 

a role in the structural response). As can be noted in Fig. 8, the REF discretization (which shows at least four 

through-thickness nodes) appears the best compromise between accuracy and computational effort, and it is 

used in the following simulations. 

As expected, the base shear becomes null, after the softening phase, for horizontal displacements generally 

greater than the thickness of the wall (see the graph of Fig. 8). This outcome is mainly due to the deformability 

of the geometrical portions, which are, conversely, considered rigid in nonlinear kinematic analyses [13]. 
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Fig. 8 – Influence of the through-thickness discretization (CONT). 

 

The influence of load distribution on the force-displacement curves is highlighted in Fig. 9a. Rigorously, by 

changing the load distribution in the procedure proposed in Fig. 1, the adaptive limit analysis outcomes (e.g. 

collapse mechanisms) would, in general, change. Despite the load distribution changes, the collapse 

mechanism is kept the same (Fig. 9a) to let the reader notice the increment of base shear and displacement 

capacity (for both CDP and CONT approaches) that can be reached when the structure is wholly-forced (WF). 

This example further highlights the importance of utilizing in the CDP and CONT approaches the same loading 

conditions and the collapse mechanism considered and experienced in adaptive limit analysis. This key aspect 

is the core of the numerical procedure proposed in Fig. 1. 

Fig. 9b shows the results of a parametric analysis regarding the influence of cohesion on force-displacement 

curves. In all the analyses, a constant value of fracture energy in tension 𝐺𝑡 = 200𝑁/𝑚 has been considered 

(Table 2), except for the cases “CONT_0MPa” and “Analytical” where null cohesion and, so, null fracture 

energy in tension have been considered. As can be noted in Fig. 9, CDP outcomes show lower peak loads 

rather than CONT outcomes (typically between 10% and 20%). A no-tension model has been supposed in the 

CONT approach (“CONT_0MPa”, where only friction has been considered in the contact-based interfaces), 

whereas a case with a very small value of tensile strength “CDP_0.01MPa” has been supposed in the CDP 

framework. This assumption of non-null tensile strength has been undertaken given that a 3D elastic isotropic 

no-tension continuum would collapse even under dead load. It has to be highlighted that convergence becomes 

problematic for very small values of tensile strength (Fig. 9b). The difference in peak loads between null (and 

almost-null) tensile strength and 𝑓𝑡 = 0.1MPa appears greater in CDP rather than CONT, while it is greater in 

CONT rather than CDP between 0.1 and 0.2 MPa (Fig. 9b).  

By comparing these results with an analytical solution based on the Heyman’s hypotheses [4] (i.e. rigid bodies 

with no-slipping no-tension interfaces), the analytical collapse load appears slightly greater than the 

“CONT_0MPa” case, alike to the “CONT_0.1MPa” case and lower than the “CONT_0.2MPa” case, whereas 

all the CDP peak loads (even the one with 𝑓𝑡 = 0.2MPa) are sensibly lower than the analytical solution (Fig. 

9b). 

In general, CDP and CONT solutions, which account for the deformability of the geometrical portions, give 

more conservative results (i.e. lower peak loads) with respect to Heyman-based analytical solutions. Moreover, 

CDP and CONT are also able to describe the force-displacement evolution of the collapse mechanism. 

Therefore, CDP and CONT appears, from these preliminary analyses, effective tools for the force-

displacement description of collapse mechanism in masonry structures. 
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a b 

Fig. 9 – Parametric analyses: (a) influence of the load distribution and (b) influence of the cohesion. 
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6 Structural examples 

Two structural examples are shown and discussed in this section. The first one, i.e. the façade of the S. Pietro 

in Coppito church, substantially consists in a masonry wall (with a complex geometry) subjected to one-way 

bending [41, 55]. The second one is a well-known masonry wall subjected to out-of-plane two-way bending, 

already analysed experimentally in [56] and numerically in [50, 57, 58, 41]. 

In this section, the mechanical properties have been assumed as much as consistent with the ones used in limit 

analysis [41] in order to provide coherent outcomes and comments (Table 2). Accordingly, the values of tensile 

strength, cohesion and friction angle for CONT and tensile and compressive strengths for CDP have been 

adopted according to the ones used in limit analysis. Indeed, different mechanical properties in limit analysis 

could lead, in general, to different collapse mechanisms, as already investigated in [41]. 

 

6.1 Façade of the S. Pietro in Coppito church 

The church of San Pietro di Coppito in L’Aquila dates back to the 13th century, and it has been gradually 

transformed up to the 19th century and then restored to its initial appearance in 1969-1972. The façade of the 

church and its geometry, characterized by complex openings of circular and semi-circular shapes, are shown 

in Fig. 1. The NURBS description of the façade has been found particularly facilitated, as the NURBS 

description allows for a precise representation of openings of randomly complex geometries (Fig. 10). The 

loading conditions applied (non-uniform horizontal load), and the collapse mechanism resulted from adaptive 

limit analysis [41] are shown in Fig. 10. In this example, an initial population of 20 individuals has been chosen 

in the genetic algorithm and 10 generations have been needed to reach the optimal solution [41]. As can be 

noted in Fig. 10, the collapse mechanism appears quite complex. Both CDP and CONT approaches have been 

utilized for the force-displacement description of the collapse mechanism depicted in Fig. 10, see Fig. 1. The 

adopted mechanical parameters (Table 2) have been mainly taken from [41, 59]. The CDP and CONT meshes 

for the façade of the S. Pietro in Coppito church have been built following the indications given in Section 5. 

 

Fig. 10 – Geometry, loading conditions and collapse mechanism, from [41]. 

 

Given that the value of fracture energy in tension 𝐺𝑡 was not available in previous literature [41], it has been 

parametrically assumed to vary between 0 and 400 N/m (typical values of 𝐺𝑡 in masonry are comprised 

between 100 and 400 N/m), as shown in Fig. 11 in terms of force-displacement curves. The displacement time-

history has been recorded on the top-right node of the structure (Fig. 10), i.e. where the horizontal load 

distribution shows the peak (Fig. 10). A no tension contact-based solution “CONT_no-tension” has been 

considered for the sake of comparison. It has to be pointed out that no convergence problems have been 

experienced in “CONT_no-tension” as in this case the cohesive contact behaviour has been deactivated and, 

so, a simple contact behaviour with friction has been implemented. Interestingly, the no tension CONT peak 

load is greater than the CDP with 𝐺𝑡 =100 N/m. Indeed, also in this case CDP peak loads are systematically 

lower than CONT ones (e.g. “CONT_Gt=50 N/m” and “CDP_Gt=400 N/m” show akin peak loads). By 

inspecting Fig. 11, considerable variations of 𝐺𝑡 lead to small variations in the peak loads and in the post-peak 
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response. Basically, the post-peak response (i.e. the softening regime) is not sensibly influenced by the values 

of 𝐺𝑡, and both CDP and CONT show similar behaviours. 

The reference solution collected in Fig. 11 (“Limit analysis”) comes from adaptive limit analysis [41], which 

considers, differently from the reference solution in Fig. 9b, non-zero cohesion (0.05 MPa). In this case, even 

though the CDP solutions seem to underestimate the peak load, CONT solutions with different values of 𝐺𝑡 

give peak loads ranging around the reference solution. In particular, the reference peak load is particularly well 

represented by the solution contact-based solution with 𝐺𝑡 =100 N/m. 

Fig. 12 shows the failure modes of the S. Pietro in Coppito church façade for the CDP (Fig. 12a) and CONT 

(Fig. 12b) approaches, for the case with 𝐺𝑡 = 400 N/m. Even though failure modes are somehow forced on the 

structure, it is interesting to notice that substantially each strip/interface experiences damage in the ultimate 

condition (Fig. 12). Fig. 12 also shows the damage contour plots in correspondence of peak load for CDP (Fig. 

12a left) and CONT (Fig. 12b left). Interestingly, the main sub-horizontal crack in the lower part of the 

structure shows different damage degrees in the two modelling approaches. Particularly, the damage level in 

this crack extends more through-thickness in CDP (Fig. 12a left) than in CONT (Fig. 12b left), in agreement 

with the lower peak load recorded in CDP with respect to CONT (Fig. 11). One reason of this outcome can be 

addressed to the excursion in the nonlinear regime of the compressed part of the CDP strip, which is already 

slightly recorded in correspondence of the peak load.  

 

  

Fig. 11 – Force-displacement curves for the S. Pietro in Coppito church façade. 
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      a 

      b 

Fig. 12 – S. Pietro in Coppito church façade damage contour plots for the case with 𝐺𝑡 = 400 N/m: (a) CDP 

tensile damage contour plots in correspondence of peak load (left) and in ultimate condition (right), and (b) 

CONT contact status contour plots for plots in correspondence of peak load (left) and in ultimate condition 

(right). 
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6.2 Masonry panel in two-way bending 

Experimental tests on solid clay panels (5615 × 2475 × 102 mm) with and without openings were performed 

in [56]. Only the panels without openings (SB01 and SB05) are considered in this subsection. The panels were 

built in stretcher bond between two stiff abutments with the vertical edges simply supported (allowing the in-

plane displacements) and the top edge free. The panels were loaded by airbags until failure. During the tests, 

the air pressure and the displacement for the middle point of the free edge was recorded. Both CDP and CONT 

approaches have been utilized for the force-displacement description of the collapse mechanism from adaptive 

limit analysis in [41]. In adaptive limit analysis, an initial population of 20 individuals has been chosen and 40 

generations have been needed to reach the optimal solution [41]. The adopted mechanical parameters for the 

panel, shown in Table 2, have been taken from the literature [56, 41, 58, 50]. The CDP and CONT meshes for 

masonry panel in two-way bending have been built following the indications given in Section 5. 

The force-displacement curves for the masonry panel in two-way bending obtained with CDP and CONT with 

various values of 𝐺𝑡 are collected in Fig. 13. As can be noted, the influence of the value of 𝐺𝑡 is much more 

significant than the previous case (Section 6.1). Indeed, by passing from a value of 100 N/m to 400 N/m the 

collapse load increases of about 50% for both approaches (CDP and CONT). Once again, the CDP peak loads 

are systematically lower than CONT ones. Even, the no-tension case (so with contact-based frictional 

interfaces) shows a peak load which is about 10 times lower than the case with 𝐺𝑡 =100 N/m. This outcome, 

observed on a masonry panel in two-way bending, highlights a substantial difference from the previous case 

which mainly shows simple bending.  

  

Fig. 13 – Force-displacement curves for the panel in two-way bending. 

 

The force-displacement curves obtained following the proposed procedure are compared in Fig. 13 with the 

experimental curves (from [56]), an anisotropic continuum solution (from [58]), and a limit analysis solution 

(from [41]). As can be noted, the peak loads of the reference solutions are comprised in between the ones 

obtained with CDP and CONT with the border values of 𝐺𝑡 (100 – 400 N/m). However, the CDP solution with 

𝐺𝑡 =100 N/m appears to sensibly underestimate the actual collapse load of the structure, while the CONT 

solution, although characterized by a lower peak load with respect to the actual one, appears closer to the 

experimental outcomes and to the other numerical solutions. It could be also noted in Fig. 13 that the CDP and 
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CONT solutions are slightly stiffer than the experimental ones, although the same value of Young’s modulus 

suggested in [58] has been adopted in both approaches (and, indeed, the elastic branch is very close to the one 

predicted in [58]. Finally, it has to be noted that the curves (CDP and CONT) with the value 𝐺𝑡 =100 N/m 

show a force-displacement behaviour, characterized by an elastic branch, a peak load and a softening regime 

with a slow decrease of the load, which can be considered reasonably in agreement with the “SB05” 

experimental curve [56] and the numerical curve obtained in [58]. 

The collapse mechanism of the masonry panel computed by adaptive limit analysis is sketched in Fig. 14a 

(from [41]), while the deformed contour plots for CDP and CONT are shown in Fig. 14b and Fig. 14c, 

respectively. Fig. 14b also shows the conforming mesh adopted in the CDP approach, which resulted quite 

refined aiming at having at least three through-thickness FEs. Even though failure modes are somehow forced 

on the structure, it is interesting to notice also in this case that substantially each interface clearly experienced 

failure (Fig. 14c), as well as each strip exhibited damage (as evidenced in Fig. 15 for both tensile and 

compressive damage). 

 

 a b 

c 

Fig. 14 – Failure modes for the panel in 2-way bending: (a) adaptive limit analysis, (b) plastic-damaging 

strips, (c) contact-based interfaces. 
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Fig. 15 – Tensile (top) and compressive (bottom) damage contour plots (CDP). 

 

6.3 Computational effort 

Given the substantially positive results previously shown, the comparison of the computational effort required 

in the numerical simulations for the different numerical approaches could be particularly interesting. To this 

aim, the computational effort needed in the numerical simulations is collected in Table 3 for the two structural 

examples analysed in Section 6. As can be noted, the use of contact-based interfaces (CONT) appears more 

computationally efficient rather than the use of plastic damaging strips (CDP), see Table 3. Particularly, the 

computational effort between CONT and CDP increases by passing from the façade of the S. Pietro in Coppito 

church (simple bending) to the masonry panel in two-way bending, also due to the small thickness which 

characterizes the masonry panel (Section 6.2) and leads to a considerably fine mesh for the CDP case (Fig. 

14b). 

Conversely, it is worth noting that is not possible to provide a precise computational burden for the adaptive 

limit analysis. As a matter of fact, such quantity depends on the parameters adopted in the GA, the most 

important being the population size. Furthermore, the number of iterations required by the GA to converge to 

an optimal solution depends on the individuals generated at the initial population, so two runs on the same 

example with the same GA parameters and mesh refinement may require different computational times. In this 

context, it may be pointed out that in the majority of the cases, for the examples analyzed in the paper, the 

converged solution was reached -assuming an initial population of 40 individuals- within 3 minutes on a PC 

equipped with 8Gb RAM and CPU Intel Core i7 under Matlab (Table 3). 

 



Computers & Structures 

23 

 

Table 3. Computational effort required in the numerical simulations. 

 Definition of the collapse 

mechanism* 

Force-displacement description of the collapse mechanism** (for 

the cases with Gt=100N/m) 

 Adaptive NURBS-based 

limit analysis 

Plastic damaging strips 

(CDP)(hh:mm:ss) 

Contact-based interfaces 

(CONT) (hh:mm:ss) 

Façade of the S. Pietro in 

Coppito church 
<3 minutes 01:09:22 00:12:33 

Masonry panel in two-way 

bending 
<3 minutes 03:51:01 00:21:25 

* performed on a PC equipped with 8Gb RAM and CPU Intel Core i7 under Matlab. Computational time dependent upon the GA 

parameters adopted. Average processing times for populations smaller than 40 individuals. 

** performed on a commercial laptop equipped with a processor Intel®Core™ i7-6500U CPU @ 2.50 GHz and 16 GB RAM. 

 

 

7 Conclusions 

In this paper, a novel numerical procedure has been proposed for the force-displacement description of out-of-

plane collapse in masonry structures, representing one first attempt to couple limit analysis-based solutions to 

displacement-based evolutive analysis strategies.  

In this way, the limitations of limit analysis-based solutions, which cannot contemplate the force-displacement 

description of collapse mechanisms and, so, they cannot be used in displacement-based seismic assessment 

procedures (e.g. pushover analysis), and the limitations of displacement-based evolutive analysis strategies 

(e.g. block-based and anisotropic continuum approaches), which are typically computationally demanding, are 

overcame.  

Particularly, adaptive NURBS-based limit analysis is firstly adopted to compute the collapse mechanism that 

the structure (of any geometrical complexity) experiences for a given loading condition. Then, the geometry 

of the collapse mechanism is imported in incremental-iterative step-by-step evolutive analysis frameworks to 

perform pushover analysis.  

Two numerical modelling approaches, lumping the nonlinearities into tight zones located in correspondence 

of the cracks defined in the collapse mechanism, have been developed and tested. 

Plastic damaging strips governed by a standard nonlinear continuum constitutive law (CDP) and non-standard 

zero-thickness contact-based interfaces governed by a cohesive-frictional contact behaviour (CONT) have 

been implemented, tested and compared for a number of meaningful structural examples. Particularly, it has 

been systematically observed slightly lower peak loads in plastic damaging strips than in contact-based 

interfaces. One reason of this outcome can be addressed to the excursion in the nonlinear regime which can 

occur in the compressed part of plastic damaging strips, while the contact-based interfaces do not account for 

crushing. 

The procedure appeared significantly appealing and reliable for the force-displacement description of collapse 

in masonry structures. Contextually, the use of cohesive-frictional contact-based interfaces has been found to 

be especially efficient. In particular, contact-based interfaces appeared to be preferable than plastic damaging 

strips, given their more limited computational effort and the fully automatic model geometrical definition. In 

addition, the capability to directly define the shear behaviour of the contact-based interfaces appears another 

positive feature, whereas in plastic damaging strips the shear behaviour is indirectly described from tensile and 

compressive behaviours. 
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It should be highlighted that the numerical procedure proposed herein works effectively for out-of-plane 

collapse mechanisms only. The applicability of this numerical procedure for in-plane loaded masonry 

structures is currently under investigation by the authors, through the use of nonlinearities in the macro-blocks 

to account for masonry crushing as well. 

To conclude, it has to be pointed out that the numerical procedure proposed in this research appears particularly 

appealing also for large-scale heritage structures, i.e. characterized by a significant thickness of the walls. 

Indeed, the mesh size to be adopted in the models has been found to be related to the wall thickness, and, 

hence, larger thicknesses would lead to larger mesh sizes. Therefore, this allows to keep the computations 

affordable even when dealing with monumental buildings. 
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Appendix A 

A simple benchmark (1.0 × 1.0 × 4.2m, see Fig. 16) is herein adopted to show some issues on the mesh 

discretization of the plastic damaging strip (height equal to 0.2m) in the CDP framework, when simultaneously 

subjected to compression and torsion. The mechanical properties adopted for the nonlinear blue strip (Fig. 16) 

are collected in Table 2 (the same of “Preliminary benchmark”), while the other parts (grey, Fig. 16) are kept 

linear elastic. The vertical force-displacement and torsional moment-rotation curves are collected in Fig. 16 

for two mesh discretizations (coarse and fine as shown in Fig. 17). Particularly, the graphs on the right of Fig. 

16 (highlighted in light blue) represent an enlargement of the very first part of the graphs on the left of Fig. 16 

(small rectangles highlighted in light blue). As can be noted, the coarse mesh (Fig. 17) appears not able to 

properly catch the damaging phenomenon of the strip, showing an indefinite capacity to carry vertical 

compression and torque Fig. 16, even though the nonlinear strip of the benchmark (blue in Fig. 16) implements 

the plastic damage constitutive law discussed in Section 4.1. When the mesh of the nonlinear strip is further 

refined (Fig. 17), this issue appears resolved, and the structural response shows softening in both compression 

and torsion (Fig. 16). This example highlighted the need of paying particular attention on the mesh 

discretization of the plastic damaging strip in the CDP approach. 
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Fig. 16 – Benchmark simultaneously subjected to compression and torsion: vertical force-displacement and 

torsional moment-rotation curves. 

 

 

Fig. 17 – Benchmark simultaneously subjected to compression and torsion: particular of the coarse and fine 

meshes. 
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