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Figure 3  Consistent association of diet responsive taxa with different measures of frailty, cognitive function and inflammation. (A) Heatmap 
showing the variation of the association patterns (obtained using Spearman rhos) of the adherence associated marker Operational Taxonomic Units 
(OTUs) (arranged from top to bottom in increasing order of their correlations with the adherence scores) with the selected measures of frailty, 
cognitive function and the pro/anti-inflammatory cytokine levels. For each cell, colours indicate the Spearman rho values (as shown). **Significant 
association with FDR-corrected p value <0.15. *Marginal association with nominal p value <0.05. The DietPositive and DietNegative OTUs are also 
demarcated. Specific differences could be observed between the association pattern of the different measures and the DietPositive and DietNegative 
OTUs. For certain measures such as high-sensitivity C reactive protein (hsCRP) levels, interleukin 17 (IL-17) levels and gait speed time, DietPositive 
OTUs were observed to have significantly more negative correlations as compared to DietNegative OTUs. For the other measures associated with 
reduced frailty and improved cognitive function, as well as adiponectin and sGP130 levels, an exact opposite trend was observed. (B) Heat plot 
showing the replication of these trends individually within each of the country-specific cohorts. Brown indicates those cases where the correlations of 
the DietPositive OTUs were significantly more negative than the DietNegative group, green indicates those cases with the opposite trend and yellow 
indicates those cases of no significant change.

adherence to the NU-AGE MedDiet is associated with modu-
lation of the microbiome in a manner that is relatively consis-
tent (across the countries) and is in turn associated with reduced 
frailty, improved cognitive function and reduced inflammation.

Microbiome response, accompanied by specific beneficial 
changes in the gut metabolic profiles, is the key intermediate 
between dietary adherence and health
Based on the preceding findings, it seemed likely that a micro-
biome associated with dietary adherence was more important for 
improved health status than merely adherence to the diet itself. 
Testing this hypothesis required the computation of measurable 
‘microbiome scores/indices’ (analogous to the dietary adherence 
scores) that would take into account the variations associated with 
individual marker OTUs. Switching to the NU-AGE MedDiet is 
characterised by changes in the consumption pattern of specific 
dietary components—namely, an increase in the consumption 
of fibres (vegetables, fruits), carbohydrates (wholegrains), plant 
proteins (legumes), polyunsaturated fatty acids (fish) and vita-
mins such as vitamin C (fruits) and a concomitant decrease in 
the consumption of fats, alcohol, sodium and sugar (sweets).35 

We first validated the diet-responsive OTUs (identified based 
on their association with the overall NU-AGE FBDG scores) by 
checking their associations with the consumption patterns with 
the different food components (partial Spearman correlations 
taking into account age, body mass index, gender, country and 
polypharmacy as confounders). We observed that OTU markers 
with an increasing positive association with FBDG adher-
ence scores showed increasing positive correlations with fibre, 
vitamin C, vitamin D, plant proteins and carbohydrates and 
increasing negative associations with the components alcohol, 
fats and sugar whose consumption was decreased during the 
MedDiet change35 (see online supplementary figure 12). Thus, 
the above results indicate that the associations of the marker 
OTUs were not only with the overall FBDG scores, but also 
with individual dietary components whose modulations were 
associated with the NU-AGE MedDiet intervention (even after 
taking into account all host-associated confounding factors like 
age, body mass index, gender, country and polypharmacy). This 
validated the association of the dietary markers with the dietary 
intervention. Further, each of the diet-responsive OTUs had a 
specific degree of correlation with the dietary adherence scores 
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Figure 4  MedDiet microbiome index correlates with reduced frailty, improved cognitive function and reduced inflammation, independent of the 
adherence scores. Violin plot showing the association (partial Spearman correlations) of the different measures of frailty, cognitive function and 
inflammatory marker levels with the MedDiet-modulated microbiome index after taking into account the adherence scores as a confounder. The x 
axis shows the Spearman rho values and the y axis indicates the −log (base 10) of the p values. Most negatively associated measures are expected 
to be at the extreme left of the plot, the most positively associated measures are expected to be at the extreme right of the plot. Points are coloured 
based on the significance of the obtained associations (red indicates associations with FDR-corrected p<0.1, orange indicates associations with 
FDR-corrected p<0.2). The MedDiet microbiome index is observed to be associated with several measures associated with reduced frailty, reduced 
inflammation and improved cognitive function and this association is independent of the adherence scores.

and specific trends of association with the dietary components 
(see online supplementary figure 12). Based on the overall 
correlations of the diet-associated marker OTUs with the adher-
ence scores as well as the abundances marker OTUs in a given 
sample, we calculated a sample-specific diet-modulated micro-
biome index (see Methods section; online supplementary figure 
2). As expected, the microbiome index was positively correlated 
with the overall adherence scores and also captured the overall 
association patterns of the individual marker OTUs (ie, positive 
associations with fibre, carbohydrate, plant proteins, vitamin C, 
polyunsaturated fatty acids and negative associations with fats, 
alcohol and sugar), indicating its validity as a proxy for the taxo-
nomic markers associated with consumption of the MedDiet (see 
online supplementary figures 12,13; online supplementary text 
8).

We then checked the association of this index with the 
different measures of frailty, cognitive function and inflamma-
tion (across the entire cohort), considering the adherence scores 
as a confounder. Ten of the 11 associations with measures of 
improved cognition, reduced frailty and inflammation could be 
reproduced. We also observed additional negative associations 
with the inflammation-related cytokines interleukin (IL)-2 and 
macrophage inflammatory protein (MIP)-1b, and positive asso-
ciations with verbal fluency (figure 4). These results show that 
the diet-modulated microbiome components are associated with 
frailty, inflammation and cognitive function independent of the 
adherence scores (ie, these are not indirect consequences of 
associations with dietary adherence). We had previously shown 
that these associations were stable across the different countries 
(figure  3B). We next checked the effect of confounders (such 
as age, body mass index, gender, disease pathophysiologies and 
medication intake) on the extent of diet–taxon associations. Indi-
viduals with multiple diseases, specifically those with diabetes, 
heart attack and inflammatory disorders, were observed to have 
significantly lower microbiome scores compared with non-
diseased controls (lower but marginally significant for cancer) 
(see online supplementary figure 14A–E; online supplementary 
text 9; online supplementary table 6). However, the pattern 
of association of the microbiome index with seven of the 10 
inflammatory markers and frailty indices (identified in figure 4) 

largely remained invariant, even after taking into account all 
confounders including age, body mass index, gender, polyphar-
macy and different disease pathophysiologies (see online supple-
mentary text 9; online supplementary figure 15).

Even with respect to the across time point changes, while 
change in dietary adherence scores were significantly associated 
with change in the microbiome index, it was the change in the 
microbiome index that was positively associated with improve-
ment in cognitive function, physical well-being and negatively 
associated with inflammatory markers like hsCRP (see online 
supplementary text 10; online supplementary figure 16). Positive 
changes in microbiome indices were also associated with positive 
changes in the levels of the anti-inflammatory cytokine IL-10 
and negative changes in the ratio of hsCRP to anti-inflammatory 
cytokine levels, further indicating the negative association of the 
diet-associated microbiome index with inflammatory cytokine 
levels (see online supplementary figure 16C and online supple-
mentary text 10).

The positive influence of the diet-modulated microbiome 
change on health status is likely to be driven by specific microbial 
metabolites. Given that faecal metabolomic data were unavail-
able for the individuals, we predicted the functional metabolic 
profiles of the gut microbiome using the corresponding 16S 
species composition profiles (see Methods section). Correlating 
the across time point changes in the abundances of these 
predicted metabolic profiles with the microbiome index change 
identified dramatic differences across the microbiome response 
landscape (see online supplementary figure 17). A positive 
microbiome change was associated with an increase in the micro-
bial consumption of fibre-associated non-starch polysaccharides 
(probably indicative of Mediterranean diet change). In contrast, 
a negative change was associated with an increase in microbial 
simple sugar consumption. A negative microbiome response 
was also accompanied by a predicted increase in the microbial 
consumption of tauro- and glyco- derivatives of bile acids (such 
as taurocholate or glycochenodeoxycholate) to secondary bile 
acids (lithocholate, deoxycholate) through cholate and cheno-
deoxycholate (see online supplementary figure 18A). Bile acid 
dysregulation is associated with different disease conditions,47 
specifically the increase in production of lithocholic and 
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deoxycholic acid has been associated with colorectal cancer.48 
In contrast, increased production of both branched chain fatty 
acids (BCFAs) and SCFAs are associated with a positive micro-
biome response. A positive association of SCFAs with host health 
is well recognised.49 Previous studies measuring the metabolomic 
changes associated with intake of a MedDiet have also observed 
a similar increase in SCFA levels,10 50 as well as an exactly similar 
link wherein MedDiet-like dietary modulations (increased fibre 
intake and decreased fat intake) were observed to be positively 
associated with faecal SCFA levels and negatively associated with 
faecal secondary bile acids.51 52 Furthermore, in the current study 
we had data for the measured plasma levels of cholic acid (CA), 
glycochenodeoxycholic acid (GDCDA) and chenodeoxycholic 
acid (CDCA) for a subset of individuals belonging to the Italian 
and Polish cohorts. For GCDCA and CDCA, correlating the 
plasma levels of these bile acids with the abundances of the diet-
associated markers revealed trends that the DietPositive OTUs 
had significantly more positive associations with GCDCA levels 
and more negative associations with CDCA levels compared 
with DietNegative OTUs (online supplementary figure 18B). 
By grouping this subset of individuals into three terciles based 
on their GDCDA/CDCA ratios, we observed that individuals 
with an increasing GCDCA/CDCA ratio were associated with a 
significantly positive change in their diet-associated microbiome 
index (online supplementary figure 18C). These results confirm 
the predicted metabolite profiles wherein individuals with 
increasing diet-associated microbiome indices were predicted 
to have decreased microbial conversion of GDCDA to CDCA 
(and thereafter to lithocholic acid (LCA) and deoxycholic acid 
(DCA)), thereby resulting in higher GDCDA/CDCA levels. Thus, 
some of the key global changes (in bile acid and SCFA levels) we 
detect and that we predicted to be linked with diet-associated 
microbiome response have been reported in the literature across 
multiple studies as well as the plasma level analysis. The only 
conflicting trend was with CA levels which were observed to 
show the pattern opposite to that expected. However, it could be 
because the measurements were on serum samples (in contrast to 
faecal levels) and CA/CDCA are produced by both the liver and 
the microbiota (see online supplementary figure 18C).

A negative microbiome response was also associated with other 
detrimental metabolites like p-cresol, ethanol and carbon dioxide, 
whose relative overproduction is associated with onset of colorectal 
cancer, insulin resistance, non-alcoholic fatty liver disease, cyto-
toxicity and small intestinal bacterial overgrowth.53–57 Notably, at 
baseline the diet-associated microbiome index was observed to be 
negatively associated with multiple diseases including hyperten-
sion, diabetes and cancer (online supplementary figure 14). Thus, 
although inferred rather than measured, the data indicate that 
metabolic change associated with a positive microbiome response 
beneficially impacts host health.

DietPositive OTUs are keystone species in the gut microbial 
community
Finally, we evaluated the role of the diet-responsive taxa in 
the overall microbiome community structure, represented 
by networks defined by the Reboot Approach (see Methods 
section).30 A co-occurrence network provides a representation 
of nodes and edges (interconnecting lines) between these nodes, 
wherein the nodes represent the taxa (in this case, the OTUs) 
and the edges between the nodes represent a significant co-oc-
currence relationship between them (across a provided set of 
observations or samples). The placement of the taxa within a 
co-occurrence network indicates the relative importance of the 

taxa in the stability of the community. We first obtained the 
co-occurrence network for all the samples across time points 
for both cohorts. The major component of the co-occurrence 
network is a conglomeration of clusters of taxa, with other taxa 
acting as interlinking hubs. However, the positioning of the 
majority of DietPositive and DietNegative taxa was strikingly 
different. The DietPositive taxa were either located centrally at 
the hubs of the network or as linking nodes within the major 
subnodes (figure 5A). This shows the centrality of these taxa in 
the gut community structure, a phenomenon termed 'keystone 
species'.58 In contrast, the majority of the DietNegative taxa were 
placed at the periphery of the network. We probed this obser-
vation by computing two centrality measures for each taxon in 
the network: 'degree centrality', which is the number of nodes 
connected to a given node, and 'betweenness centrality', which is 
the number of paths connecting any two nodes that pass through 
a given node. DietPositive taxa had a significantly higher degree 
of betweenness centrality compared with the DietNegative taxa 
or the non-associated markers (figure 5B,C). We regenerated the 
network within each of the different countries as well as across 
overlapping windows of samples of increasing dietary adherence 
(see online supplementary figure 19; online supplementary figure 
20; online supplementary figure 21A). Despite major differences 
in the overall structure of the individual networks, the placement 
patterns of the taxa as well as their relative importance within 
the gut microbial networks were invariant irrespective of the 
country. The DietPositive taxa had significantly higher centrality 
measures irrespective of the nationality and the dietary adher-
ence of the individuals. As expected, there were also distinct 
patterns of interactions for the DietPositive and DietNegative 
groups of taxa, specifically with respect to the iBBiG identified 
frailty-associated module C, which had negative co-occurrence 
propensities with the DietPositive group (figure  5D). Interest-
ingly, the strength of the co-occurrence propensities became 
significantly more negative with increasing adherence to the diet 
(figure 5E). This was not observed for any of the other taxo-
nomic modules (see online supplementary figure 21B).

Discussion
The current results provide a systemic view of the effect of 
consuming the NU-AGE MedDiet on the microbiome and subse-
quently on biomarkers of health in the elderly. A significant chal-
lenge for the current study was the high level of microbiome 
variability across individuals in five countries, resulting in a 
low signal-to-noise ratio which translated to weaker taxonomic 
signals for association with metadata. Analysis using traditional 
methodologies are useful and provide statistical rigour, even if 
the assumption of independent variables is not a true reflection 
of the community structure in the microbiota. However, due to 
the multitude and disparate nature of the microbiota structure 
configurations across individuals, combined with the relatively 
small effect of diet over a year of life in an established gut micro-
biota community as well as other aspects such as the subjec-
tive nature of the dietary measurements that is expected for 
community-dwelling individuals and the assumption that dietary 
measurements accurately measure the actual dietary change, the 
traditional statistical methodologies are unable to identify the 
taxa associated with the statistically significantly lower loss of 
diversity associated with adherence to the MedDiet. To establish 
the diet-responsive taxa and generate a diet-associated micro-
biome index, we applied a novel leave-one-out-cross-validation 
machine-learning methodology to predict the adherence score 
for each individual with good accuracy and used these predictive 
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Figure 5  Bacterial taxa that respond positively to Mediterranean diet intervention occupy keystone interaction nodes for peripheral frailty-
associated taxa in microbiome networks. (A) Representation of the Operational Taxonomic Unit (OTU) co-occurrence network obtained for all the 
samples across the time points and cohorts with the DietPositive, DietNegative and non-correlated OTUs shown in green, red and grey colours, 
respectively. The network shows two distinct characteristics of the DietPositive and DietNegative markers (or OTUs). While the DietNegative markers 
(barring a few exceptions) are observed to occur as the peripheral nodes in the network, the DietPositive markers mostly act as either the centrally 
connected hub nodes or as interconnecting nodes between the hubs, indicating their centrality to the microbiome. This is also reflected in the 
comparison of the degree and betweenness centrality measures shown as boxplots in (B) and (C), respectively. (D) Relative co-occurrence propensity 
(calculated as the logged ratio of the number of positive edges to the number of negative edges) between the DietPositive and DietNegative OTUs 
with those belonging to the different iterative Binary Bi-clustering of Gene-sets (iBBiG) modules. It was observed that, specifically for the frailty-
associated longstay-like module C, while the DietNegative markers showed a positive co-occurrence, the DietPositive markers showed a negative 
association, further indicating that taxa that respond positively to the diet negatively associate with those that are associated with frailty. (E) The 
negative association was further investigated by building networks for the five overlapping windows of samples W1–W5 (see Methods section), with 
increasing adherence to the diet. Relative co-occurrence propensity between the DietPositive and the module C across networks obtained for the 
overlapping windows of samples with increasing adherence to the diet. With increasing adherence to the diet, the relative co-occurrence propensity 
between the DietPositive OTUs and those belonging to the module C becomes increasingly negative. The p values of the significance of association 
are indicated as ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

models to probe and identify the specific taxonomic signals that 
best predict increased adherence to the MedDiet.

We observed that increased adherence to the MedDiet 
modulates specific components of the gut microbiota that 
were associated with a reduction in risk of frailty, improved 
cognitive function and reduced inflammatory status. For 
reasons described above, these associations for some of the 
diet-modulated microbiome markers could only be observed 
at relatively weaker thresholds (rho <−0.09 and rho >0.07, 
FDR-corrected p values <0.2). This allowed for the visual-
isation and re-examination of the most predictive OTUs. 
However, the striking observation was the consistency of 
associations of the diet-modulated microbiome markers with 
biological markers of ageing (independent of nationality). The 
formulation and calculation of a single sample-specific micro-
biome index clarified these associations even further. For a 
single sample, this index provided a quantitative summary of 
the abundance patterns of the diet-responsive markers (the 
higher the value, the higher the abundance of DietPositive 
taxa and vice versa), thereby addressing the sample-specific 
variability associated with the individual markers. We showed 

that they were not only associated with dietary compliance 
but were consistently associated with frailty and inflammatory 
markers, thereby confirming their importance for health main-
tenance independent of other anthropometric confounders 
like age, body mass index and gender. In fact, the apparent 
lack of a direct link of the adherence score with frailty further 
hints that the response of an individual to the diet could be 
mediated by the change in the microbiome. Besides these 
associations, the keystone nature of the DietPositive markers 
within the gut microbiome remains remarkably stable across 
multiple nationalities. These keystone properties of the Diet-
Positive markers add support to the so-called Anna Karenina 
principle59 of microbiomes which posits that microbiomes of 
healthy individuals are similar and the unhealthy individuals 
are each aberrant in their own way. By protecting the ‘core’ 
of the gut microbial community, adherence to the diet could 
facilitate the retention of a stable community state in the 
microbiome, providing resilience and protecting from changes 
to alternative states that are found in unhealthy subjects.

The positive impact of these microbial taxa on host health 
was further indicated by predictive metabolite profiling, where 
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increasing adherence to the diet specifically selects for taxa 
that are enriched in the production of SCFAs/BCFAs, while 
selecting against those associated with bile acid dysregula-
tion and production of proposed deleterious metabolites like 
acetone, p-cresol, ethanol and carbon dioxide. Although this 
is an in-silico prediction, an increase of SCFA production 
with MedDiet consumption (or with specific components of 
the MedDiet) has been previously shown.10 50–52 The study by 
Pagliai et al, which compared the microbiome and metabo-
lome changes on MedDiet and vegetarian diets, reported a 
significant positive association of carbohydrate consump-
tion (which is increased in the MedDiet) with faecal levels 
of SCFA butyrate and a significant negative association of 
lipid and fat intake (decreased in the MedDiet) with levels 
of the SCFAs propionate and acetate. Negative associations 
of the SCFAs were also observed with levels of the inflam-
matory cytokine IL-17.50 Although the study by Pagliai et al 
observed no significant differences in the levels of BCFAs on 
the MedDiet (in contrast to the in-silico predictive metabolite 
analysis performed in our current study), a negative associ-
ation of the BCFA levels with fat intake was also observed 
(in line with our current findings). The links between the 
MedDiet-associated microbiome modulation, SCFA produc-
tion and the carcinogenic secondary bile acid production are 
precisely in line with findings from two previous studies on 
African Americans and rural Africans.51 52 Interestingly, across 
the secondary bile acid production landscape, while the faecal 
metabolome results from the study by O’Keefe et al confirmed 
the predicted metabolite changes with respect to CA and the 
carcinogenic secondary bile acids DCA and LCA, the plasma 
metabolite levels (in the current study) confirm the predicted 
changes with respect to CDCA and GCDCA (although plasma 
metabolite levels are not expected to exactly reflect the faecal 
metabolome). Thus, results obtained from these studies largely 
complement each other and resonate with our current find-
ings, and the predicted downregulation of the other poten-
tially detrimental metabolite production provides an informed 
list of candidate compounds that can be further verified by 
targeted metabolomic profiling in future studies.

The interplay of diet, microbiome and host health is a complex 
phenomenon influenced by several factors. It is also probably a 
multistep process dictated by specific mechanistic rules. While 
the results of this study shed light on some of the rules of this 
three-way interplay, several factors such as age, body mass index, 
disease status and initial dietary patterns may play a key role in 
determining the extent of success of these interactions. Interest-
ingly, the beneficial effects of MedDiet intervention mediated 
through the microbiome are not restricted to elderly subjects, as 
evidenced by the study by Meslier et al60 (this volume; co-sub-
mitted to Gut for back-to-back publication) showing that a similar 
intervention in obese subjects resulted in multiple health-related 
shifts in the gut microbiome and metabolome independently of 
energy intake. Notwithstanding this theoretical and practical 
reinforcement, the strategy of promoting health in the elderly 
by maintaining a long-term MedDiet (or supplementation of 
specific ingredients) may be impractically expensive or logisti-
cally impossible in many countries where these ingredients are 
neither staple nor available year-round. In some older subjects 
with problems like dentition, saliva production, dysphagia or 
irritable bowel syndrome, adapting a MedDiet may not be a 
realistic option. Our definition here of MedDiet-responsive taxa 
that correlate with health, plus our recent identification of taxa 
associated with healthy ageing in a large metacohort of 2500 
subjects,61 provides a short list of candidate taxa for development 

as live biotherapeutic agents for direct administration to older 
subjects to reduce onset of frailty.
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