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Abstract. Simple and robust data analysis methodologies are crucial to learn insights from measured data and 
reduce the performance gap in building stock. For this reason, continuous performance monitoring should become 
a more diffuse practice in order to improve our design and operation strategies for the future. The research 
presented aims to highlight potential links between experimental approaches for test-facilities and methods and 
tools used for continuous performance monitoring, at the state of the art. In particular, we explore the relation 
between ISO 9869:2014 method for in-situ measurement of thermal transmittance (U) and regression-based 
monitoring approaches, such as co-heating test and energy signature, for heat load coefficient (HLC) and solar 
aperture (gA) estimation. In particular, we highlight the robustness and scalability of these monitoring techniques, 
considering relevant issues in current integrated engineer design perspective. These issues include, among others, 
the necessity of limiting the number of a sensors to be installed in buildings, the possibility of employing both 
experimental and real operation data and, finally, the possibility to automate and perform monitoring at multiple 
scales, from single components, to individual buildings, to building stock and cities. 

1. Introduction 
Simple and robust data analysis methodologies are crucial to learn insights from measured data and 
reduce the performance gap in building stock [1], considering also the relevant impact of human 
behaviour [2]. For this reason, continuous performance monitoring should become a more diffuse 
practice in order to improve our design and operation strategies for the future [3, 4] and to handle the 
energy transition in existing buildings [5]. The research presented aims to highlight potential links 
between experimental approaches for test-facilities and methods and tools used for continuous 
performance monitoring, at the state of the art, considering also possible extensions with advanced 
computing tools [6]. Linking transparently design phase performance estimates and measured data in 
operation is a major challenge today [7], requiring a careful consideration of the underlying 
uncertainties. Furthermore, energy retrofitting strategies driven by detailed modelling and comparison 
with benchmarks is still not common practice, creating in some cases increased operation cost [8] and 
lack of trust in building performance simulation tools. Data analysis techniques can offer deeper insights 
of building performance and their effects on occupants [9] as well as indoor microclimatic conditions 
[10], including aspects such as lighting and acoustics [11], among others. In this paper we concentrate 
on energy monitoring, with respect to indoor/outdoor temperature and solar radiation conditions. At 
present Building Energy Management Systems (BEMS) can be used to evaluate building performance 
dynamically, acting when the control variables reach target values, and basically collecting data on a 
continuous base. A typical case is energy system control linked to external temperature to lower energy 
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consumption by means of technologies such as heat pumps [12] or more complex hybrid systems [13]. 
Control logic behind BEMS is essential in managing renewable energy effective integration in terms of 
direct use [14] or when interacting with storage facilities to achieve optimal operation strategies [15]. In 
all these cases, the ability to define a robust underlying model for optimization is crucial. While black-
box approaches are possible [16], we consider more appropriate the choice of grey-box (i.e. physical-
statistical) approaches, to learn useful insights from data and to link current state of the art approach for 
component scale [17] and building scale analysis [18]. 

2. Overview on building performance monitoring techniques 
In this research we aim to explore in particular the relation between ISO 9869 [19] method for in-situ 
measurement of thermal transmittance (U), as well as its extensions [20], together with regression-based 
monitoring approaches, such as co-heating test [21] and energy signature [22, 23], for heat load 
coefficient (HLC) and solar aperture (gA) estimation [24, 25]. All these approaches are already 
consolidated at the state of the art but further efforts are necessary for their seamless integration, in 
particular with respect to the comparability of measurements with design phase simulations. The 
importance of creating standardized procedure for large scale statistical analysis of building data has 
been stressed by institutions such as NIST (National Institute of Standards and Technology) in the US 
[26]. In fact, in the next few years, the possibility of collecting and processing data at large scale will be 
crucial for informing future policies for built environment [27]. 

3. Modelling research developments 
In the previous Section we highlighted a certain degree of continuity in the monitoring approaches for 
buildings, basically following a bottom-up logic, from individual construction components (U value), 
to building fabric assembly (HLC), up to the meter level (energy signature). In the following sections 
we will describe first (Section 3.1) the analogies among methods from U value estimation up to energy 
signature, including some potential advances to enhance comparability of results across multiple scales 
of analysis. After that (Section 3.2) we will present an example of visual representation of the integration 
of different monitoring methodologies. The general goal of this discussion on modelling research 
developments is highlighting the potential scalability of monitoring techniques and the need for 
harmonization of experimental procedures to increase robustness of estimates (which dependents 
critically on the amount and quality of data collected) and reduce cost. In fact, modelling research 
developments can help limiting the number of sensors to be installed in buildings, and can exploit the 
possibility of employing both measurements in experimental phase (production/commissioning) and 
operation (continuous commissioning). 

3.1. From in situ measurement to regression-based approaches 
In this section briefly the steps necessary to link U value estimation, HLC estimation and energy 
signature. First of all we consider the averaging method proposed by the standard is reported in 
Equation 1: 
 

𝑈𝑈 =
∑ 𝑞𝑞𝑛𝑛
𝑡𝑡=0 𝑖𝑖𝑛𝑛,𝑛𝑛

∑ ∆𝑇𝑇𝑛𝑛
𝑡𝑡=0 𝑛𝑛

 (1) 

 
where U (W/m2K) is thermal transmittance experimentally determined using ISO 9869, qin (W/m2) is 
the heat flux entering in the wall, n is the number of data points, ΔT= Ti - Te, Ti (°C) is internal air 
temperature, Te (°C) is external air temperature. 
 
If we consider then the daily average heat flux (instead of instantaneous measurements for a single 
component) to maintain a thermal zone in constant internal temperature conditions, we can formulate a 
simplified representation of the energy balance of the zone as shown in Equation 3. This equation 
corresponds to simplification used in co-heating test method [21]: 
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𝑞𝑞ℎ = 𝐻𝐻𝐻𝐻𝐻𝐻∆𝑇𝑇 − 𝑔𝑔𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑖𝑖𝑛𝑛𝑡𝑡 (2) 

 
where qh (kW) is average daily heat flux, HLC (W/K) is heat loss coefficient, gAsol (m2) is solar aperture, 
Isol is the average daily solar irradiation (on horizontal or south plane), qint (kW) is average daily heat 
flux due to internal gains (people, light, appliances). gAsol parameter is a very approximated estimation 
of the actual solar geometry of the building, as it is highly dependent on the orientation chosen for Isol 
(horizontal or south). 
 
Assuming the possibility of performing measurement without internal gain (qint=0), we can reduce 
Equation 2 to Equation 3, which may be fit with a linear bivariate regression with intercept equal to 0. 
 

𝑞𝑞ℎ = 𝐻𝐻𝐻𝐻𝐻𝐻∆𝑇𝑇 − 𝑔𝑔𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠  (3) 

 
If we then divide both sides of Equation 3 by ΔT we obtain Equation 4, which represents an alternative 
formulation of co-heating test. The left side of this equation is similar in principles to Equation 1. This 
property has been exploited in recent research [24, 25] to estimate the value of HLC with a dynamic 
averaging method conceptually similar to the one proposed by ISO 9869 for individual components. 
 

𝑞𝑞ℎ
∆𝑇𝑇

= 𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑔𝑔𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠
∆𝑇𝑇

 (4) 

 
Finally, we can use the same measurements to obtain an energy signature model [22], represented in 
Equation 5: 
 

𝑞𝑞ℎ = 𝑎𝑎�𝑇𝑇 − 𝑇𝑇𝑏𝑏𝑏𝑏� (5) 

 
where a is the slope of the linear regression (negative for heating), Te represent daily average external 
air temperature and Tbp represent balance-point temperature (qh = 0). 
 
Energy signature uses regression, without assuming internal air temperature as an input, and can be used 
for inexpensive long term monitoring. For this approach also an approximated physical interpretation of 
the coefficients can be found in literature [18]. Therefore, energy signature can essentially complement 
(for long-term monitoring) co-heating test, which needs measures of indoor air temperatures as an input 
and short term measurements under controlled conditions. Further, extensions of this methodology can 
be achieved by means of integration with variable-base degree-days method, as shown in recent 
literature [28], potentially extending the applicability for large scale energy system planning [27].  
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3.2. An example of visual representation of the integrated modelling methodology 
In order to give a practical example of the integration of the different models reported above, we take 
simulation data of heating energy demand (energy needs) from a simulation model previously calibrated 
on measured data [7]. We use these data (daily average heat flux need to maintain the thermal zone in 
constant operating conditions) to create two plots against ΔT and Isol, respectively in Figure 1 and 2, to 
highlight correlations. The range of daily average outdoor air temperatures consider is between 8 and 
13 °C, with corresponding average daily solar flux data. 
 

 
Figure 1. Daily average heat flux with respect to difference between internal and 

external air temperature 
 

 
Figure 2. Daily average heat flux with respect to average daily solar radiation flux 

 
This model representation corresponds to the simplified energy balance in Equation 3. In this case we 
consider two separate scatter-plots with a univariate regression to highlight the basic trends in data, but 
the actual model is a multivariate regression with q expressed as a function of ΔT and Isol. Indeed, this 
model can represented with 3D graph as a plane. Finally, for the same data we plot daily average flux 
against external air temperature in Figure 3. This approach corresponds to Equation 5 where Tbp is the 
intercept on the x axis (daily average heat flux = 0). 
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Figure 3. Daily average heat flux with respect to external air temperature 

 
In this way, we can think about these modelling techniques as different steps of a unified approach for 
performance monitoring across life cycle phases. Of course, the approach proposed can be improved, in 
particular, in terms of identification of daily dynamic components of energy balance in regression 
formulations [29], extension to hourly regression models and, finally, by linking this approach 
transparently with surrogate modelling techniques to be used already in the design phase [7] to fit 
multiple possible building design and operation conditions. 

4. Conclusion 
In this research we presented an overview of building performance monitoring methodologies, following 
a bottom-up perspective, from individual components up to the system level. We highlighted a potential 
continuity among different methodological approaches acting on different scales. However, further 
research efforts should be devoted to harmonization and experimental analysis, as all these approaches 
depend critically on the quantity and quality of data, essentially providing boundaries for reliable 
estimation of design and operation performance. This can lead to an integrated strategy for continuous 
performance improvement based on a constant feed-back from data at multiple levels. Clearly, in order 
to exploit the potential advantages, it is necessary to automate data acquisition and processing 
procedures (in terms of computing tools and rules) at multiple scales, from single components, to 
individual buildings and to building stock and cities. 
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