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A Randomized Block Subgradient Approach
to Distributed Big Data Optimization

Francesco Farina, Giuseppe Notarstefano

Abstract— This paper introduces a novel distributed algo-
rithm over static directed graphs for solving big data convex
optimization problems in which the dimension of the decision
variable can be extremely high and the objective function can
be nonsmooth. In the proposed algorithm nodes in the network
update and communicate only blocks of their current solution
estimate rather than the entire vector. The algorithm consists
of two main steps: a consensus step and a subgradient update
on a single block of the optimization variable (which is then
broadcast to neighbors). Agents are shown to asymptotically
achieve consensus by studying a block-wise consensus protocol
over random graphs. Then convergence to the optimal cost
is proven in expected value by exploiting the consensus of
agents estimates and randomness of the algorithm. Finally, as a
numerical example, a distributed linear classification problem
is solved by means of the proposed algorithm.

I. INTRODUCTION

Distributed coordination and control over networks have
gained increasing attention in recent years. In fact, many
problems arising in this scenario can be formulated as
optimization problems which need to be solved in a co-
operative way. In this distributed set-up agents in the network
typically do not know the entire optimization problem, but
rather perform local computations based on local objective
functions (and constraints) and communicate with neighboring
agents only. Many distributed optimization algorithms have
been proposed in recent years, some of which involving
nonsmooth objective functions. In such cases subgradient-
based algorithms have been designed. The first algorithms of
this type appeared in [1, 2], while recent advances involve
more sophisticated protocols, such as push-sum, to deal
with directed communication [3]. Recently, extensions to
the stochastic setting have also appeared, e.g., a stochastic
distributed mirror descent was proposed in [4]. Finally,
distributed algorithms over random networks are relevant
for this paper. In [5], consensus protocols were studied using
random row-stochastic matrices, while in [6] a distributed
subgradient method over random networks with underlying
doubly stochastic matrices has been proposed.

Applying the above algorithms to big data problems may
be hard to implement since many problems related to the high
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dimension of the decision variable may arise. For example,
a limited communication bandwidth may not allow nodes to
communicate the entire solution estimate. Thus, there is the
need to develop tailored distributed algorithms for big data
optimization problems in which only few blocks of the entire
(local) solution estimate are exchanged among the agents.

Block coordinate methods have a long history in the
centralized optimization literature (see, e.g., [7] for a survey).
They have been originally designed for solving smooth
problems. However, an increasing number of results for
dealing with nonsmooth objective functions have started to
appear in the last years. Blocks to be updated can be chosen
in various ways: cyclically, almost cyclically [8] or randomly.
In the last case, a randomized block coordinate descent
algorithm has been proposed in [9], while in [10] a stochastic
block mirror descent method with random block update is
proposed. Also parallel block coordinate methods have been
widely studied in the optimization literature (see, e.g., [11]).
Problems involving smooth convex functions are addressed
in [12], while composite optimization problems are studied
in [13, 14]. Moreover, [15] proposed a unified framework for
nonsmooth optimization using block algorithms, treating both
the centralized and the parallel case. Distributed algorithms
which are capable to deal with block communication started
to be studied only recently. In [16], nonconvex problems with
nonsmooth regularizers are addressed by means of a block
gradient tracking scheme, while in [17] an asynchronous
algorithm for nonconvex optimization based on the method
of multipliers, which is implementable block-wise have been
proposed. Smooth problems with common cost function
and linear constraints has been addressed in [18] through a
randomized block algorithm.

In this paper, we propose a distributed algorithm for solving
(over networks) big data convex optimization problems with
nonsmooth objective function, in which, at each iteration, each
node exchanges with its neighbors only a single block of the
optimization variable. The communication network is modeled
as a directed graph admitting a doubly stochastic weight
matrix. At each iteration each agent performs a consensus step,
computes a subgradient at the computed point, and performs
a subgradient update on a randomly chosen block only. Then
it broadcasts to its neighbors only the updated block. The
local block-wise subgradient updates and the communication
of a single block of the decision variable at each iteration
require nontrivial analysis to show the convergence of the
algorithm. In fact, it is worth noting that, despite the double
stochasticity of the weight matrix, the consensus step on each
block turns out to be performed using a sequence of random



row-stochastic matrices. The analysis of the algorithm is
carried out in two parts. At first, it is shown that the agents
in the network asymptotically reach consensus in expected
value by studying block-wise, perturbed consensus dynamics
with random matrices. Then, convergence to the optimal cost
in expected value is proven by properly bounding errors due
to the block-wise update and exploiting the property that
blocks are uniformly drawn. The results presented in this
paper can be extended to deal with a more general problem
set-up involving stochastic objective functions and constraints.
This extension is the subject of an extended work in which
the complete convergence proofs will be provided for a more
general class of algorithms and for the extended set-up.

The paper is organized as follows. The considered problem
is introduced in Section II along with some preliminary results.
In Section III, the algorithm is presented and, then, analyzed
in Section IV. A numerical example is provided in Section V
and, finally, some conclusions are drawn in Section VI.

II. SET-UP AND PRELIMINARIES

A. Distributed optimization set-up

Consider the following unconstrained optimization problem

minimize
x∈Rn

f(x) =

N∑

i=1

fi(x) (1)

where the functions fi : Rn → R, n � 1, are convex and
possibly non smooth. We denote by x? ∈ Rn a solution of
problem (1). The optimization variable x ∈ Rn has a block
structure, i.e.,

x = [x[1]>, . . . , x[B]>]>,

where we have defined by x[`] the `-th block of x. Namely,
given a partition of the identity matrix U = [U1, . . . , UB ],
with U ` ∈ Rn×n` for all i and

∑B
`=1 n` = n, we can retrieve

x =
∑B
i=1 U

`x[`] and x[`] = (U `)>x. Let us define gi(x) ∈
∂fi(x) as a subgradient of fi computed at x. Similarly, g(x) ∈
∂f(x) denotes a subgradient of f computed at x. Then, we
make the following assumption on the functions fi.

Assumption 1 (Bounded subgradients). Given problem (1),
there exist constants Gi ∈ [0,∞) such that ‖gi(x)‖ ≤ Gi,
∀x and for all i = 1, . . . , N . �

Notice that, Assumption 1 implies that ‖gi(x)[`]‖ ≤ Gi
for all `. Moreover ‖g(x)‖ ≤ G =

∑N
i=1Gi and hence

‖gi(x)‖ ≤ G for all i.
Problem (1) is to be solved in a distributed way by a

network of N agents. The network is modeled through a
weighted strongly connected directed graph G = (V, E ,W)
with V = {1, . . . , N}, E ⊆ V × V and W ∈ RN×N being
a weight matrix. Each agent knows only a portion of the
entire problem, namely agent i is assigned the function fi.
We denote by N out

i the set of out-neighbors of node i, i.e.,
N out
i = {j | (i, j) ∈ E}. Similarly, the set of in-neighbors

of node i, is defined as N in
i = {j | (j, i) ∈ E}. We say that

a directed graph G = (V, E) contains a spanning tree if for
some v ∈ V there exists a directed path from the vertex v to

all other vertices u ∈ V . The following assumption holds on
the weight matrix W .

Assumption 2 (Doubly stochastic matrix). For all i, j ∈
{1, . . . , N}, the weights wij of the weight matrix W satisfy

(i) wii > 0;
(ii) if i 6= j, wij > 0 if and only if j ∈ N in

i ;
(iii) there exists a constant η > 0 such that wii ≥ η and if

wij > 0, then wij ≥ η;
(iv)

∑N
i=1 wij = 1 and

∑N
j=1 wij = 1. �

B. Preliminary results

Consider a stochastic, discrete-time dynamical system
evolving according to

xt+1 = Atxt, ∀t, (2)

where {At}t≥0 is a sequence of random n×n row-stochastic
matrices. Let (Ω,F , P ) be a probability space, we assume the
sequence {At,St}t≥0 form an adapted process, i.e., {At}t≥0
is a stochastic process defined on (Ω,F , P ), {St}t≥0 is a
filtration (i.e., St ⊆ St+1 and St ∈ F for all t) and At is
measurable with respect to St. Given a sequence of matrices
{At}t≥0, let us define the transition matrix from iteration s
to iteration t as

Φ(t, s) =

{
AtAt−1 . . . As, if t > s,

At, if t = s.

Given a nonnegative matrix A and some δ ∈ (0, 1), we denote
by Aδ the matrix whose entries are defined as

[Aδ]ij =

{
δ, if Aij ≥ δ,
0, otherwise.

We say that A contains a δ-spanning tree if the graph induced
by Aδ contains a spanning tree. Moreover, given a vector
x ∈ Rn, we define d(x) = max1≤i≤n x[i] −min1≤i≤n x[i].
Then, the following result holds true for system (2).

Lemma 1 ([5, Theorem 3.1]). Consider system (2). If there
exist h > 0, δ > 0 such that E[

∑(m+1)h
t=mh+1A

t | Smh] contains
a δ-spanning tree for each m and At ≥ δI for each t, then,
for any x0 such that E[‖x0‖p] <∞ (which is independent
of {At}t≥0), and any p > 0, it holds

E[d(xt)p] = E[d(Φ(t, 0)x0)p]

≤ µtE[d(x0)p] ≤MµtE[‖x0‖p],

where M ∈ (0,∞) and µ ∈ (0, 1). �

The following corollary specializes the above result to the
case of i.i.d. random matrices whose expected value is a
doubly stochastic matrix.

Corollary 1. Consider the discrete system (2). Let {At}t≥0
be a sequence of independent and identically distributed
random row-stochastic matrices, such that At ≥ δI for all t
for some δ > 0, and E[At] is a doubly stochastic matrix. Then,



for any x0 such that E[‖x0‖p] <∞ (which is independent
of {At}t≥0), and any p > 0, it holds

E[d(xt)p] = E[d(Φ(t, 0)x0)p]

≤ µtE[d(x0)p] ≤MµtE[‖x0‖p],

where M ∈ (0,∞) and µ ∈ (0, 1). �

Finally, the following two results will be useful in the rest
of the paper.

Lemma 2 ([19, Lemma 3.1]). Let {γt}t≥0 be a scalar
sequence.

1) If limt→∞ γt = ξ and β ∈ (0, 1) then
limt→∞

∑t
s=0 β

t−sγs = ξ
1−β .

2) If γt ≥ 0 for all t,
∑∞
t=0 γt <∞ and β ∈ (0, 1), then∑∞

t=0

(∑t
s=0 β

t−sγs
)
<∞.

�

Lemma 3 (Tower property of conditional expectation). Let
X be a random variable defined on a probability space
(Ω,F , P ). Let Z ⊆ Y ⊆ F . Then, E[E[X | Y,Z] | Z] =
E[X | Z]. �

III. DISTRIBUTED BLOCK SUBGRADIENT ALGORITHM

The Distributed Block Subgradient method for solving
problem (1) in a distributed way is now presented. The
algorithm works as follow. Each agent i maintains a local
solution estimate xti, which is initialized at x0i . We assume that
the initial estimates are entirely shared among neighboring
agents. Then, at each iteration t, agent i performs two updates:

(i) it computes a weighted average of its in-neighbors’
estimates xtj , j ∈ N in

i and stores it in yt+1
i ;

(ii) it picks a random block `ti ∈ {1, . . . , B} (with uniform
probability) and computes xt+1

i by updating the `ti-th
block of xti by using the `ti-th block of a subgradient
of fi computed at yt+1

i and leaving the other blocks
unchanged.

Finally, it broadcasts xt+1
i [`ti] to its out-neighbors. A pseu-

docode of the method is reported in Algorithm 1.

Algorithm 1 Distributed Block Subgradient
Initialization: x0i
Evolution: for t = 0, 1, . . .

UPDATE
yt+1
i =

∑

j∈N ini

wijx
t
j (3)

PICK `ti ∈ {1, . . . , B} with P (`ti = `) = 1
B , ∀`

UPDATE

xt+1
i [`] =

{
yt+1
i [`]− αtgi(yt+1

i )[`] if ` = `ti
xti[`] else

(4)

BROADCAST xt+1
i [`ti] to j ∈ N out

i

It is worth noting that, although node i receives from each
j ∈ N in

i only block xtj [`
t−1
i ], the consensus step (3) can be

performed using the entire xtj since the other blocks have
not changed since the last time they have been received.

As for the block-wise subgradient update (4), notice that
the `ti-th block of the whole subgradient computed at yt+1

i

is used. This is due to the fact that computing a subgradient
with respect to the `ti-th component only is, in general, not
equivalent to picking the `ti-th block of the whole subgradient.
This will turn out to be a fundamental property in the
algorithm analysis. There are two cases in which the `ti-th
block of the subgradient can be directly computed. If functions
fi are separable on the blocks, then the `ti-th block of the
(sub)gradient can be directly computed as the (sub)gradient
with respect to that block. Also, if functions fi are smooth,
the same happens. In these cases, the algorithm can be further
simplified.

The last important feature of the Distributed Block Subgra-
dient algorithm that we want to highlight involves consensus
step (3). Define zt` as the vector stacking the `-th component
of all the xti, i.e., zt` = [(xt1[`])>, . . . , (xtN [`])>]>. Define the
matrix U t` as a diagonal matrix in which the i-th element of
the diagonal is set to 1 if `ti = ` and it is set to 0 otherwise,
i.e.

[U t` ]ij =

{
1, if i = j and ` = `ti,

0, otherwise.

Finally, let U t−` = I−U t` . Now, consider a consensus protocol
associated to the update (3) in Algorithm 1, i.e., a system
evolving according to

xt+1
i =

∑

j∈N ini

wijx
t
j , (5)

for all i and t. Then, (5) can be rewritten in terms of z` as

zt+1
` = W̃ t

` z
t
`,

where W̃ t
` = U t−` + U t`W . It can be easily seen that, for all

` and t, the matrix W̃ t
` is row-stochastic but, in general, no

more doubly-stochastic.

Remark 1. In [16] a block-wise dynamic push-sum consensus
algorithm has been used, which guarantees average tracking.
In this paper, we are not designing a block-wise average
tracking scheme, but just to a protocol guaranteeing conver-
gence of the optimization scheme. Thus, we are able to deal
with row-stochastic matrices without resorting to push-sum
protocols, by building on properties of sequences of random
row-stochastic matrices [5]. �

IV. ALGORITHM CONVERGENCE

In this section, the convergence of the Distributed Block
Subgradient algorithm is proven. The proof is split in two
parts: the first showing consensus of the agents’ solution
estimates, and the second proving convergence to the optimal
cost. In both cases, convergence is to be intended in expected
value.

The following two assumptions are required for the stepsize
sequence and the random variables `ti.



Assumption 3 (Diminishing stepsize). The sequence {αt}
satisfies ∞∑

t=0

αt =∞,
∞∑

t=0

α2
t <∞.

Moreover, αt+1 ≤ αt for all t, with α−1 = α0. �

Assumption 4 (i.i.d. draws). The random variables `ti are
independent and identically distributed for all i = 1, . . . , N .

A. Consensus

In this section it is shown that the sequences {xti}t≥0 and
{yti}t≥0 computed by each agent in the network asymptoti-
cally achieve consensus in expected value.

Let us start by defining xt = [(xt1)>, . . . , (xtN )>]> and

x̄t =
1

N

N∑

i=1

xti. (6)

Moreover, we define St as the state of the network at iteration
t and S[t] = [St,St−1, . . . ,S0].

Then, the following result provides a bound on the expected
distance between xti and x̄t at iteration t, conditioned to S0.

Lemma 4. Let Assumptions 1, 2 and 4 hold. Then, there
exist constants M ∈ (0,∞) and µM ∈ (0, 1) such that

E[‖xti − x̄t‖ | S0]

≤MB

(
µt−1M ‖x0‖+G

t−2∑

s=0

µt−s−2M αs +Gαt−1

)
(7)

for all i ∈ {1, . . . , N} and all t.

Proof. For the sake of space we provide only a sketch of
the proof with the main steps and leave all the derivations
to a forthcoming document in which the convergence of
a more general class of algorithms is proved for a more
general optimization set-up. Assume for simplicity that
the number of blocks is equal to the dimension of the
optimization variable, i.e., B = n. Moreover, define gt` =
[g1(yt+1

1 )[`], . . . , gN (yt+1
N )[`]]>. Now, Algorithm 1 can be

rewritten with respect to z` as

zt+1
` = W̃ t

` z
t
` + et, (8)

where W̃ t
` = U t−` + U t`W and et = −αtg̃t`, with g̃t` = U t`gt`.

By building on the structure of the matrices U t` and U t−`, the
expected value of W̃ t

` can shown to be, for all t,

E[W̃ t
` ] =

B − 1

B
U +

1

B
W

which is doubly stochastic and such that E[W̃ t
` ] > 1

B ηI
(see Assumption 2). Thanks to this, it can be shown that by
combining (8) with Corollary 1 and Assumption 1, one has

E[d(zt+1
` ) | S0] ≤M

(
µt`‖z0` ‖+G

t−1∑

s=0

µt−s−1` αs +Gαt

)
.

The derivation is omitted for the sake of space. The proof
can be completed by defining z̄t` = 1

N

∑N
i=1 z

t
`[i] and by

noticing that |zt`[j] − z̄t`| ≤ maxi z
t
`[i] − mini z

t
`[i], for all

j ∈ {1, . . . , N}, and, by definition, xti[`] = zt`[i] and x̄t[`] =
z̄t`. �

The following lemma is a direct consequence of Lemma 4
under Assumption 3 and it shows that asymptotic consensus
is achieved.

Lemma 5. Let Assumptions 1, 2, 3 and 4 hold. Then,

lim
t→∞

E[‖xti − x̄t‖ | S0] = 0

for all i ∈ {1, . . . , N}. �

We conclude this section by providing three results that
will be used to prove the convergence of the algorithm.

By using Lemma 4, the expected value of the distance
between yti and xti can be bounded, by exploiting the
convexity of the norm.

Lemma 6. Let Assumptions 1, 2 and 4 hold. Then,

E[‖yt+1
i − xti‖ | S0] ≤ 2E[‖xti − x̄t‖ | S0] (9)

for all i ∈ {1, . . . , N} and all t. �

Moreover, the following two results show that the series∑∞
τ=0 ατE[‖xτi − x̄τ‖] and

∑∞
τ=0 ατE[‖yτ+1

i − xτi ‖] are
summable for all i ∈ {1, . . . , N}.
Lemma 7. Let Assumptions 1, 2, 3 and 4 hold. Then,

lim
t→∞

t∑

τ=0

ατE[‖xτi − x̄τ‖ | S0] <∞

for all i ∈ {1, . . . , N}.
Proof. The proof is based on using Lemma 4 and the fact
that, by Assumption 3, one has αt+1 ≤ αt. By doing so it
can be shown that

t∑

τ=0

ατE[‖xτi − x̄τ‖ | S0] ≤MB

(
‖x0‖

t∑

τ=0

µτ−1M ατ

+G

t∑

τ=0

τ−2∑

s=0

µτ−s−2M α2
s

+G

t∑

τ=0

α2
τ−1

)
.

which leads to (9), by using Assumption 3 and Lemma 2. �

Corollary 2. Let Assumptions 1, 2, 3 and 4 hold. Then,

lim
t→∞

t∑

τ=0

ατE[‖yτ+1
i − xτi ‖ | S0] <∞

for all i ∈ {1, . . . , N}. �

B. Optimality

The main result of this paper is provided in this section.
A bound on the expected distance from the optimal cost at
iteration t is given. Moreover, it is shown that such a distance
goes to 0 as t→∞.



Theorem 1. Let Assumptions 1, 2, 3 and 4 hold. Then,

min
τ≤t

(E[f(x̄τ ) | S0]− f(x?))

≤
(

t∑

τ=0

ατ

)−1(
B

2

N∑

j=1

‖x0j − x?‖2 +

t∑

τ=0

α2
τNBG

2

2

+

t∑

τ=0

ατ

N∑

j=1

GjE[‖yτ+1
j − xτj ‖ | S0]

+

t∑

τ=0

ατ

N∑

j=1

GjE[‖xτj − x̄τ‖ | S0]

)
. (10)

Moreover,

lim
t→∞

min
τ≤t

(E [f(x̄τ ) | S0]− f(x?)) = 0. (11)

Proof. For the sake of space we provide only a sketch of
the proof with the main steps and leave all the derivations
to a forthcoming document in which the convergence of a
more general class of algorithms is proved for a more general
optimization set-up. From the convexity of f we have that,
at a given iteration t,
(

t∑

τ=0

ατ

)
min
τ≤t

(E[f(x̄τ ) | S0]− f(x?))

≤
t∑

τ=0

ατ (E[f(x̄τ ) | S0]− f(x?)) . (12)

(a)

≤
t∑

τ=0

ατ

N∑

j=1

(
E[fj(y

τ+1
j ) | S0]− fj(x?)

)

+

t∑

τ=0

ατ

N∑

j=1

GjE[‖yτ+1
j − xτj ‖ | S0]

+

t∑

τ=0

ατ

N∑

j=1

GjE[‖xτj − x̄τ‖ | S0]. (13)

where (a) can be shown by using the convexity of f and the
subgradient boundedness Assumption 1. We do not report
the steps to show (a) for the sake of space.

The rest of the proof is mainly base on bounding the term∑t
τ=0 ατ

∑N
j=1

(
E[fj(y

τ+1
j ) | S0]− fj(x?)

)
in the above

inequality. In order to simplify the notation, let us denote by
gτi = gi(y

τ+1
i ) and by gi,`τi = gi(y

τ+1
i )[`τi ]. From (4), one

has

‖xτ+1
i [`τi ]− x?[`τi ]‖2 = ‖yτ+1

i [`τi ]− ατgi,`τi − x
?[`τi ]‖2

= ‖yτ+1
i [`τi ]− x?[`τi ]‖2

− 2ατ 〈U `
τ
i gτi , y

τ+1
i − x?〉

+ α2
τ‖gi,`τi ‖

2. (14)

Hence, by definition,

‖xτ+1
i [`]−x?[`]‖2 =

{
(14), if ` = `τi ,

‖xτi [`]− x?[`]‖2, otherwise.
(15)

Now, by taking the expected value conditioned to S[τ ], and
using the fact that

∑B
`=1 U

`gτi = gτi and ‖gi,`‖ ≤ Gi for all
`, it can be shown that

E[‖xτ+1
i − x?‖2 | S[τ ]]

≤ B − 1

B
‖xτi − x?‖2 +

1

B
‖yτ+1
i − x?‖2

− 2
ατ
B
〈gτi , yτ+1

i − x?〉+ α2
τG

2
i . (16)

By summing over i, one has

N∑

i=1

E[‖xτ+1
i − x?‖2 | S[τ ]] ≤

N∑

i=1

‖xτi − x?‖2 + α2
τNG

2

− 2
ατ
B

N∑

i=1

(
fi(y

τ+1
i )− fi(x?)

)
,

(17)

where we do not report the derivation of the above condition
for the sake of space. It requires to use the definition of yτ+1

i

and the double stochasticity of W . Now, by using Lemma 3,
one gets

2

N∑

i=1

ατ
B

(
E[fi(y

τ+1
i ) | S0]− fi(x?)

)

≤
N∑

i=1

E[‖xτi − x?‖2 | S0]−
N∑

i=1

E[‖xτ+1
i − x?‖2 | S0]

+ α2
τNG

2. (18)

which, by summing over τ , and noting that the previous
relation is a telescopic series, leads to

t∑

τ=0

ατ

N∑

i=1

(
E[fi(y

τ+1
i ) | S0]− fi(x?)

)

≤ B

2

N∑

i=1

‖x0i − x?‖2 +

t∑

τ=0

α2
τNBG

2

2
. (19)

By combining (13) and (19) one obtains (10). The proof
can be completed by taking the limit for t→∞ and using
Lemma 7 and Corollary 2 in (10). �

The following corollary follows immediatelly from
Lemma 5.

Corollary 3. Let Assumptions 1, 2, 3 and 4 hold. Then,

lim
t→∞

min
τ≤t

(E [f(xτi ) | S0]− f(x?)) = 0 (20)

for all i ∈ {1, . . . , N}.

V. NUMERICAL EXAMPLE

Consider a network of N agents. Each agent i ∈
{1, . . . , N} has mi training samples ai,1, . . . , ai,mi ∈ Rd
each of which is associated a binary label bi,j ∈ {−1, 1}
for all j ∈ {1, . . . ,mi}. The goal of the network is to build
a linear classifier from the training samples, i.e., to find a
hyperplane of the form {z ∈ Rd | 〈θ, z〉 + θ0 = 0} where
θ ∈ Rd and θ0 ∈ R. Let us define x = [θ>, θ0]> ∈ Rd+1
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and âi,j = [a>i,j , 1]>. Then, the solution of such problem can
be determined by solving the following convex optimization
problem in which a regularized logistic loss is used as cost
function

minimize
x∈Rd+1

N∑

i=1

mi∑

j=1

log (1 + exp(−bi,j〈x, âi,j〉)) + λ‖x‖1,

(21)
where λ > 0 is the regularization weight. The behavior of
the Distributed Block Subgradient method is tested in this
scenario with N = 20 agents, x ∈ R11 and B = 11 (i.e.,
one block per coordinate). A synthetic dataset of 200 points
belonging to two different (non separable) clusters has been
created and 10 points has been assigned to each agent, i.e.
m1 = · · · = mN = 10. Agents communicate according
to an undirected, connected graph generated according to
an Erdős-Rènyi random model with connectivity parameter
p = 0.2. The corresponding weight matrix is built by using
the Metropolis-Hastings rule. Finally, we set λ = 1 and
the stepsize αt = 0.1

t0.51 . The evolution of the cost and
the consensus errors is reported in Figure 1 and Figure 2
respectively.

VI. CONCLUSIONS

In this paper, we presented the Distributed Block Subgra-
dient algorithm for solving, in a distributed fashion, big data
convex optimization problems in which the dimension of
the decision variable is very high and the cost function may
be nonsmooth. The algorithm is particularly well suited for

big data optimization problems since agents in the network
can communicate a single block of the optimization variable
per iteration. It is shown that the agents in the network
asymptotically agree on a common solution which is shown
to be cost-optimal in expected value. As a numerical example,
the Distributed Block Subgradient algorithm is tested on a
linear classification problem with regularized logistic loss.
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