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Spin splitting and band broadening by static disorder with finite correlation length 

Here we analyze in more detail, how quasi-static magnetic fluctuations with different 

spatial correlations affect the electronic spectrum, going beyond the infinite range 

correlations discussed in the main text. We treat the magnetic fluctuations arising from 

the magnetic moments of the Eu 4f orbitals as follows. In the spirit of the Born-

Oppenheimer approximation, we model the magnetic fluctuations by a statistical 

ensemble of random energies B(x), such as Zeeman energies, say, with the Gaussian 

distribution  

 

𝐵(𝑥)̅̅ ̅̅ ̅̅ = 0                            (S1a) 

𝐵(𝑥)𝐵(𝑥′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐵∗
1𝑒−|𝑥−𝑥′|/𝜉                   (S1b) 

 

The disorder thus depends on two parameters, the standard deviation B* and the 

correlation length ξ, which is the correlation length below which the microscopic Eu 

spins are ferromagnetically aligned in three-dimensional space. For simplicity we assume 

correlations to be isotropic.  Note that ξ is bounded from below by the lattice spacing a. 

As a function of temperature T, ξ reaches a maximum above the antiferromagnetic 

ordering temperature TN and reaches the lattice spacing a upon approaching TN from 

above, as well as T → ∞. A ferromagnetic alignment of spins introduces a spin splitting 

of order B*. In momentum space the dispersion curves are split by ∆ks (denoted Ws in the 

main text), where  

 

∆𝑘𝑠 =
𝐵∗

ℏ𝑣𝐹
                            (S1c) 

 



For a gas of itinerant electrons for which spin is a good quantum number the Fermi 

energy εF is related to the Fermi wave number kF and the Fermi velocity vF through  

 

𝜀𝐹 = ℏ𝑣𝐹𝑘𝐹                             (S2) 

 

For a good metal, 1/kF is of the order of the lattice spacing a.  

Perturbing this spin-degenerate electron gas with random static magnetic fields results in 

the mean-free path l, i.e., the scattering length within the Born approximation. Its 

dependence on the dimensionless numbers B*/εF and kF ξ ≫ 1 is  

 

𝑙~(
𝜀𝐹

𝐵∗
)2 1

𝑘𝐹𝜉

1

𝑘𝐹
                           (S3)

 

 

(The factor kF ξ that enters the Born scattering time arises from having a multiplicative 

gain in forward or backward scattering by the number ξ
d
 of parallel spins in the correlated 

disordered region, divided by the factor ξ
d−1

 accounting for the fact that scattering is 

confined to small angles ∼ 1/kFξ. In other words, the problem reduces essentially to 1-

dimensional ray optics in the limit ξ ≫ 1/kF. For 1d problems the decrease of the mean 

free path ∼ 1/ξ is indeed well established.) According to Eq. (S3), the mean-free path 

decreases as B* or ξ increase, as long as the random magnetic energies can be treated 

perturbatively. If we define the length scale 

 

𝜉∗ ≡
ℏ𝑣𝐹

𝐵∗
≡

1

∆𝑘𝑥
≡

1

𝑊𝑠
                       (S4a) 

 

we may combine Eqs. (S2) and (S3) into   

 



𝑙~(
𝜉∗

𝜉
)𝜉∗                                                     (S4b) 

 

The spin splitting B* produced by a spatially homogeneous magnetic configuration should 

be compared to the energy uncertainty ℏ𝑣𝐹/ξ arising from confining a ballistic electron at 

the Fermi energy in a box of linear size ξ. The spin splitting becomes only important if  

 

𝐵∗ ≳
ℏ𝑣𝐹

𝜉
                            (S5a) 

 

i.e., 

 

𝜉 ≳ 𝜉∗.                             (S5b) 

 

In the regime  

 

𝑎 ≤ ξ ≪ 𝜉∗,                                                      (S6a) 

 

the effects of the static random magnetic energies is to give a small uncertainty to the 

single-particle dispersion of the unperturbed electron gas, i.e., the k-dependence of the 

electronic spectral function is a narrow Lorentzian of width 1/l instead of a delta function 

(see left inset in Fig. S8). No spin splitting can be resolved within this narrow Lorentzian. 

Indeed, the electronic motion cannot be confined to a correlation volume, and thus 

averages over the random magnetic field. However, once  

 

ξ~𝜉∗,                              (S6b) 

 



 the effect of the static random magnetic energies on the single-particle dispersion of the 

spin-degenerate electron gas is non-perturbative. The k-dependence of the electronic 

spectral function still has a broad single peak as a function of k, but with a width of order 

1/ξ* = ∆ks (see right middle inset in Fig. S8). In the regime  

 

ξ ≫ 𝜉∗ ,                                     (S6c) 

 

because the electrons travel in sufficiently large regions in which the magnetic field is 

uniform, the energy gain B* resulting from splitting the Kramers’ degeneracy in the bulk 

of these correlated regions is much larger than the energy uncertainty due to scatterings at 

their (random) boundaries. The k-dependence of the electronic spectral function becomes 

a double Lorentzian with the two peak maxima separated by ∆ks ≡ Ws, which is larger 

than the width 1/ξ of either one of the two peaks (see right inset in Fig. S8). Hence, the 

splitting of the Kramers’ degenerate bands now can be resolved. The resolution increases 

with increasing ξ. In particular, the mean free path is not anymore given by Eq. (S3), but 

simply tracks ξ. The qualitative dependence on ξ of the mean-free path in the regimes (6a) 

and (6c) is shown in Fig. S8 assuming that the random magnetic energies can be treated 

perturbatively around the limiting cases ξ → a (no spin splitting of the bands) and ξ → ∞ 

(two spin split bands).  

  



 

 

 

Fig. S1. Band splitting in EuCd2Sb2. (A,B) The ARPES spectrum and its curvature 

intensity plot along -K. The data was collected at 15K with photon energy hv = 65 eV. 

The red arrows indicate the split bands. The red curve in (A) is the momentum 

distribution curve (MDC) along the constant energy cut indicated by the straight line 

below the MDC. The double peak pointed out by the vertical arrows results from the 

splitting of the outer band, as indicated by the red arrows. (C) A stack of MDCs extracted 

at different energies from the spectrum in (A). For clarity the MDC curves are offset 

successively. (D) The ARPES spectrum along -K, the data was acquired using soft X-

rays with hv = 350 eV. The band splitting was observed using both VUV-light and soft 

X-rays, which provide compelling evidence that band splitting is an intrinsic feature of 

the bulk states rather than a kz broadening effect. 

  



 

Fig. S2. Temperature effects on the band splitting in EuCd2Sb2. (A to D) The ARPES 

spectrum along -K, as a function of temperature from 15 K to 121 K, recorded with hv = 

63 eV. The two arrows in (A) indicate the band splitting at low temperature. Upon 

increasing the temperature, the split bands become blurred and are hard to distinguish 

above 100 K. (E to H) The curvature intensity plots of the spectra in (A to D). 

  



 

 

Fig. S3. Electronic structure of BaCd2As2. (A,B) The ARPES spectrum along K--K at 

two different energy scales. (C) Curvature intensity plot of the spectrum in (B). (D) A 

stack of MDCs extracted from the spectrum in (A) at different energies. For clarity the 

MDC curves are increasingly offset with increasing energy. The blue line indicates the 

Fermi level. No band splitting is observed in this non-magnetic compound, neither in the 

raw ARPES data nor in the curvature intensity plots or the MDC plots as indicated by the 

green dashed lines that trace the three doubly degenerate bands. 

  



 

Fig. S4. Comparison of band structures below and above Néel temperature. (A) 

Calculated band structure along K--K in the FM phase. (B) Calculated band structure 

along K--K in the AFM phase. (C) Curvature intensity of band structure along cut0 as 

shown in Fig. 2A recorded at T=11K. (D) The same as C but recorded at T = 2 K. For the 

FM calculation shown in A, there are six singly degenerate As 4p bands near the Fermi 

level with their band top above -0.6 eV. These six bands organize into three spin-split 

pairs, as indicated with green ellipses. In the AFM calculation, shown in B, the six As 4p 

bands collapse into three bands indicated with green ellipses. Moreover, since the unit 

cell in the AFM phase is doubled along the z direction with respect to the FM phase, the 

BZ of the AFM is folded. The folding from the A point to the  point results in additional 

bands at , as indicated by the black ellipse in B. It should be noted that, even though 

time reversal symmetry (T) is broken in the AFM phase, the double degeneracy of the 

bands is protected by the combination of parity symmetry (P), time reversal symmetry (T) 

and translation symmetry (L) by one unit along the z-axis. More details can be found in 

(36). The ARPES data in the PM phase agrees well with the FM band calculation, as we 

discuss in the main text. As we cool below the Néel temperature, we observe three hole-

like bands near the Fermi level with their band top above -0.4 eV. Moreover, a few 



shallow bands appear between -0.5 to -1.0 eV (region indicated by the green box) which 

we interpret as the folded bands discussed in the AFM calculation. These folded shallow 

bands cannot be observed in the PM phase above TN. 

  



 

 

Fig. S5. Calculated band structures of EuCd2As2 with magnetic moments oriented 

along the c axis, as a function of onsite Coulomb interaction U. (A) Band dispersions 

along high-symmetry lines, calculated with U = 0 eV. (B to I) bands along K-Γ-A with U 

values from 0 to 7 eV. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6. Calculated band structure of EuCd2As2 along high-symmetry lines, deeply 

within the PM phase. Here, we set random directions for the Eu magnetic moments in a 

4 by 4 by 1 enlarged unit cell (with a negligible average magnetization) in order to 

describe slow, but uncorrelated magnetic fluctuations. The results are unfolded to the 

single-formula-unit primitive cell. The six previously spin-split As 4p bands essentially 

collapse into three hole-like bands, as indicated in the figure for one of the three bands, 

and no discernible spin splitting is observed.  

  



 

Fig. S7. Band structures with different magnetic backgrounds differing in size of 

FM clusters. Here, we consider an enlarged unit cell with different magnetic 

backgrounds, that differ in their average magnetization and clustering properties (or 

correlations): (A) Completely random spin configuration. (B) to (E) Structures containing 

small ferromagnetic clusters. (F) Ferromagnetic configuration. For each magnetic 

background we calculate the band structure along KA. We observe a spin splitting, 

which increases with the size of the included ferromagnetic clusters, and/or 

magnetization. However, to compare with the setting of an ARPES experiment, one 

should generate all possible magnetic structures, weighted with the Boltzmann weight of 

the associated spin patterns and average the resulting spectra. As explained in the main 

text, we expect this average to wash out the spin splitting of the bands, unless the 

correlation length is larger than the inverse of Ws. More details please see following 

discussion part. 

  



 

 

Fig. S8. The mean free path as a function of the FM correlation length. 

  



Table S1. Positions of the Weyl points in EuCd2As2 depending on the spin 

orientation. 𝜃 is the angle between the spin orientation and the c-axis. 𝜑 is the angle 

between the projection of the spin orientation onto the a-b plane and the b axis. 

 

θ φ = 0°, Weyl point position: kx (Å
-1

), ky (Å
-1

), kz (Å
-1

)) 

0° (0.0000, 0.0000, 0.0438), (0.0000, 0.0000, -0.0438) 

30° (0.0001, 0.0001, 0.0423), (0.0000, -0.0001, -0.0423) 

45° (0.0000, 0.00015, 0.0414), (0.0000, -0.00015, -0.0414) 

60° (0.0000, 0.00018, 0.0401), (0.0000, -0.00018, -0.0401) 

75° (0.0000, 0.0002, 0.0386), (0.0000, -0.0002, -0.0386) 

90° (-0.00008, -0.00015, 0.0335), (0.00008, 0.00015, -0.0335) 

θ φ = 90° 

30° (0.00016, 0.00004, 0.0423), (-0.00016, -0.00004, -0.0423) 

45° (0.00026, 0.00009, 0.0408), (-0.00026, -0.00009, -0.0408) 

60° (0.00037, 0.00016, 0.0394), (-0.00037, -0.00016, -0.0394) 

75° (0.00048, 0.00023, 0.0374), (-0.00048, -0.00023, -0.0374) 

90° (0.00014, 0.0007, 0.0316), (-0.00014, -0.0007, -0.0316) 

θ φ = 45° 

30° (0.00016, 0.00011, 0.0423), (-0.00016, -0.000011, -0.0423) 

45° (0.00029, 0.00018, 0.0408), (-0.00029, -0.00018, -0.0408) 

60° (0.00043, 0.00024, 0.0394), (-0.00043, -0.00024, -0.0394) 

75° (0.00058, 0.00033, 0.0374), (-0.00058, -0.00033, -0.0374) 

90° (0.00011, 0.0002, 0.0330), (-0.00011, -0.0002, -0.0330) 
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