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Summary

In this paper we propose a new design paradigm, which employing a post-processing
internal model unit, to approach the problem of output regulation for a class of
multivariable minimum-phase nonlinear systems possessing a partial normal form.
Contrary to previous approaches, the proposed regulator handles control inputs of
dimension larger than the number of regulated variables, provided that a controlla-
bility assumption holds, and can employ additional measurements that need not to
vanish at the ideal error-zeroing steady state, but that can be useful for stabilization
purposes or to fulfill the minimum-phase requirement. Conditions for practical and
asymptotic output regulation are given, underlying how in post-processing schemes
the design of internal models is necessarily intertwined to that of the stabilizer.

KEYWORDS:
Output Regulation, Multivariable Systems, Nonlinear Control, Internal Model, Stabilization

1 INTRODUCTION

Output regulation is the branch of control theory studying the design of control systems making the plant follow some desired
reference trajectories while rejecting at the same time unknown disturbances. The output regulation problem for linear systems
was elegantly solved in the mid 70s in the seminal works of Francis, Wonham and Davison1,2 under the assumption that the
all the exogenous signals, i.e. references and disturbances, are generated by a known autonomous linear process, called the
exosystem. The key result presented in that works was that a necessary1 and sufficient2 condition for a regulator to solve the
linear output regulation problem robustly (i.e. despite model uncertainties), is that the regulator must suitably embed, in the
control loop, an internal model of the exosystem. While the concept of internal model led to a definite answer to the linear
regulation problem, the situation is quite different when nonlinear systems are concerned3, and nonlinear output regulation is
still a quite open problem4. Without restrictive immersion assumptions5,6,7,8,9, indeed, the knowledge of the exosystem alone is
neither sufficient nor necessary for the solvability of the problem3,4,10, and its role in conditioning the asymptotic behavior of
the regulator mixes up with the plant’s residual dynamics, thus making the celebrated robustness property of the linear regulator
hard to imagine in a general nonlinear context11.
Under a control design perspective, nonlinear output regulation has reached a mature state, and many regulators have been

proposed in the last decades6,8,10,12,13,14. Nevertheless, the existing approaches that can guarantee an asymptotically exact regu-
lation mostly remain limited to minimum-phase single-input-single-output (partial) normal forms, and their immediate square
multivariable extensions15,16,17,18 (i.e. having the same number of inputs and regulation errors), where the only plant’s measure-
ments exploitable by the regulator are the regulation errors themselves. The source of such limitation was recently sought in
the common structure shared by the largest part of the nonlinear designs, which is somewhat complementary to those possessed
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FIGURE 1 Post-processing (a) and Pre-Processing (b) Internal Models.

by the original linear regulator of Davison2, and which induces some conceptual problems when extensions are sought. The
linear regulator2 is obtained by first augmenting the plant with a properly defined internal model unit, which is driven by the
regulation errors, and then by closing the loop by means of a stabilizer, which employs all the available measurements to stabi-
lize the resulting closed-loop system. Due to the fact that the internal model directly processes the regulation errors, this design
paradigm is called post-processing. Most of the nonlinear approaches, instead, show a complementary design paradigm, where
the internal model unit is driven by the control input produced by the stabilizer. A block-diagram representation of the two con-
trol structures is depicted in Figure 1. A part from their structural differences, pre and post-processing schemes also differ in
terms of “design philosophy”: in the post-processing paradigm the plant is augmented with the internal model unit, the stabi-
lizer is designed to stabilize the resulting cascade, so as to guarantee that the closed-loop system has a well-defined steady state
(not fixed in advance) and, finally, the properties of the steady-state regulation error are inferred by the structure of the inter-
nal model. In pre-processing regulators, instead, the internal model unit is designed in advance to be able to generate the ideal
steady-state control action needed to keep the regulation errors to zero (previously computed by exploiting the known structure
of the plant), and the stabilizer is then designed to ensure the asymptotic stability of such ideal steady state. Thus, while in pre-
processing schemes the ideal steady states of the internal model unit and of the stabilizer are fixed a priori on the basis of the
plant’s data, in post-processing regulators the ideal steady state for the internal model unit and for the stabilizer cannot be fixed
a priori. As a matter of fact, since the state of the internal model unit is used for stabilization purposes, and it is thus processed
by the stabilizer, its ideal steady state is strongly dependent on the choice of the stabilizer itself.
The pre-processing schemes have the interesting property that the roles of the internal model unit and the stabilizer are

neatly separated, and the ideal steady state of the closed-loop system is given by the problem statement. This larger conceptual
simplicity is, perhaps, the reason why most of the existing designs are of this kind. Nevertheless, pre-processing regulators have
some structural limitations that prevent their extension to larger classes of systems of those mentioned before. In particular, it
is not clear, at a conceptual level, how a pre-processing regulator could handle in a systematic way additional measured outputs
that are necessary to obtain closed-loop stability (or even minimum-phase), but that need not to vanish at the ideal error-zeroing
steady state, unless filtering them out at the steady state employing redundant internal models, as recently proposed by Wang
and Marconi19. On the other hand, there is not even a clear road map on how to handle systems having more inputs than errors.
If more inputs than errors are present, indeed, a pre-processing solution would lead to the employment of a number of internal
models equal to the input dimension, thus yielding a redundant design, not stabilizable by error feedback (as a simple linear
example would show).
These conceptual problems, in principle not present in regulators of the post-processing type, recently motivated the com-

munity to look for post-processing alternatives to the existing regulators. In particular, the fundamental designs of Byrnes and
Isidori12 and Marconi, Praly and Isidori10 were “shifted” to an equivalent post-processing design20,21. Nevertheless, no concep-
tual progress has been made in terms of extensions to larger classes of systems compared to their pre-processing counterparts.
A different approach to the design of post-processing regulators was recently pursued by Astolfi, Praly and Marconi22,23, where
the linear regulator is attached to a class of nonlinear systems. In particular, the authors have shown that the output regulation
problem can be solved robustly24 by a post-processing integral action whenever the steady state is made of equilibria23, and
then Astolfi, Praly and Marconi22 have extended the results to the case in which the steady-state signals are periodic, obtaining,
however, only an approximate result stating that the Fourier coefficients in the regulation errors corresponding to the frequencies
embedded in the internal model vanish at the steady state.
In this paper, for a class of nonlinear systems possessing a partial normal form, we investigate the existence of a post-

processing regulator handling additional non-vanishing measurements and input dimensions larger than the number of
regulation errors. We give conditions for asymptotic, practical and approximate regulation results of the same kind of those
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proved9 for the “regression-like” pre-processing regulator originally proposed by Byrnes and Isidori12. The proposed design
shows a feature that is characteristic of post-processing schemes (even if hidden by linearity in the linear case): the design of
the stabilizer and those of the internal model unit are intertwined, and the two modules need to be co-designed (this property
is known as the “chicken-egg dilemma” of output regulation4). Compared to previous multivariable approaches16,17,18, other
than handling non-vanishing outputs and additional inputs, we develop the result without the quite restrictive assumption of
the existence of a single-valued steady-state map defining the attractor of the zero dynamics, and we thus collocate in a broader
“non-equilibrium” setting3. The proposed design thus enlarge the class of multivariable systems for which the output regulation
problem can be solved. Nevertheless, as main drawbacks, the proposed approach still limits to a design procedure strongly based
on a high-gain perspective and on a minimum-phase assumption with respect to the full set of measured outputs, although the
latter requirement is mitigated by the availability of additional measurements. Furthermore, due to the chicken-egg dilemma
mentioned before, the proposed conditions for asymptotic regulation become easily not constructive when the complexity of the
problem increases. Nevertheless, the “structure” of the regulator remain fixed, and approximate, possibly practical, regulation
is guaranteed.

Notation: ℝ denotes the set of real numbers, ℕ the set of naturals and ℝ≥0 ∶= [0,∞). With r > 0, Br(ℝn) denotes the open
ball of radius r on ℝn. If n is clear, we omit ℝn and we write Br. If S ⊂ ℝn (n ∈ ℕ) is a set, we denote by S◦ its interior, by S is
closure, and we let |S| ∶= sups∈S |s|. With x = (x1,… , xn) ∈ ℝn and 1 ≤ i < j ≤ n, we let x[i,j] ∶= (xi,… , xj). If A1,… , An
are matrices, we let col(A1,… , An) and diag(A1,… , An) be their column and block-diagonal concatenations, whenever they
make sense. If S is a closed set, |x|S ∶= inf s∈S |x − s| denotes the distance of x ∈ ℝn to S. If f is a function defined on
ℝn, f |S denotes the restriction of f on S. 1 denotes the set of continuously differentiable functions. A continuous function
f ∶ ℝ≥0 → ℝ≥0 is of class-K if it is strictly increasing and f (0) = 0. It is of class-K∞ if f is of class-K and f (s) → ∞ as
s → ∞. A continuous function � ∶ ℝ2

≥0 → ℝ≥0 is of class-KL if �(⋅, t) is of class-K for each t ∈ ℝ≥0, and �(s, ⋅) is strictly
decreasing to zero for each s ∈ ℝ≥0. With ℎ ∶ ℝn → ℝ a 1 function in the arguments x1,… , xn, and f ∶ ℝn → ℝ, for each
i ∈ {1,… , n} we denote by L(xi)f ℎ the map

x → L(xi)f (x)ℎ(x) ∶=
)ℎ(x)
)xi

f (x).

If x ∶ ℝ → ℝn is a locally bounded function, we let |x|[0,t) ∶= sups∈[0,t) |x(s)|. In this paper we consider differential equations
of the form

Σ ∶ ẋ = f (x), x ∈ ℝn.
With X ⊂ ℝn and � ∈ ℝ≥0, we define the �-reachable set from X as

�
Σ(X) ∶=

{

� ∈ ℝn ∶ � = x(t), x(0) ∈ X, t ≥ �
}

. (1)

Clearly, �1 ≥ �2 implies�2
Σ (X) ⊆ �1

Σ (X), so that the (possibly empty) Ω-limit set

ΩΣ(X) ∶= lim
�→∞

�
Σ(X) =

⋂

�≥0
�
Σ(X)

is well-defined. The following theorem3, which follows directly by the definition of ΩΣ and the group property of the solutions
of (1), summarizes the main properties of ΩΣ(X).

Theorem 1. ΩΣ(X) exists and is closed. If there exists � ≥ 0 such that�
Σ(X) is bounded, then Ω

�
Σ(X) is compact, non empty,

invariant and uniformly attractive fromX. If in additionΩΣ(X) ⊂ X◦, thenΩΣ(X) is stable, and hence it is asymptotically stable.

2 THE FRAMEWORK

We consider nonlinear systems of the form
ẇ = s(w)
ẋ = f (w, x) + b(w, x)u

y =
(

e
ya

)

=
(

ℎe(w, x)
ℎa(w, x)

) (2)

where x ∈ ℝnx is the state of the plant, y ∈ ℝny the measured output, u ∈ ℝnu is the control input, with nu ≥ ny, and w is
an exogenous signal modeling disturbances acting on the plant and references to be tracked (as customary in the literature of
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output regulation we refer to the subsystem w as the exosystem). The output y is subdivided into two components, e ∈ ℝne and
ya ∈ ℝna (ny = ne + na). The outputs e are called the regulation errors, and they represent the quantities that we aim to drive to
zero asymptotically. The outputs ya represent instead additional measurable outputs that need not to vanish at the steady state,
but that are available for stabilization purposes. More precisely, we consider the problem of approximate output regulation for
system (2), which consists in finding an output-feedback regulator ensuring boundedness of the closed-loop trajectories and that

lim sup
t→∞

|e(t)| ≤ ",

with " ≥ 0 possibly a small number. In particular, we say that the problem is solved asymptotically if " = 0, or practically if
" > 0 can be made arbitrarily small by opportunely tuning the regulator.
In the following we construct a regulator dealing with the problem of output regulation for (2) under a number of assumption

detailed hereafter. We first assume that there exists a compact setW ⊂ ℝnw which is forward invariant for the exosystem, and
we limit our analysis to the set ofw originating (and thus staying) inW . We also assume that the functions s, f and b are locally
Lipschitz, and sufficiently smooth so that there exist r > 0, a set of integers p1,… , pr > 0 satisfying p1 +⋯ + pr = ny, a set of
integers N1,… , Nr > 0 satisfying p1N1 +⋯ + prNr =∶ N ≤ nx, and, for i = 1,… , r, a set of ℝpi-valued smooth functions1
{�i1(w, x),… , �iNi−1

(w, x), � i(w, x)} with linearly independent differentials, such that, by letting � ∶= col(�1,… , �r) ∈ ℝN−ny ,
�i ∶= col(�i1,… , �iNi−1

) ∈ ℝpi(Ni−1), and � ∶= col(�1,… , � r) ∈ ℝny , we have that

L(x)b(w,x)�(w, x) = 0

for all (w, x) ∈ ℝnw ×ℝnx and that, along the solutions to (2), � and � satisfy

�̇ = F� +H� (3a)
�̇ = q(w, x) + B(w, x)u (3b)
y = TC�, (3c)

for some locally Lipschitz functions q ∶ ℝnw × ℝnx → ℝny and B ∶ ℝnw × ℝnx → ℝny×nu with q(0, 0) = 0, and in which
C ∶= diag(C1,… , Cr) with Ci ∶=

(

Ipi 0pi×pi(Ni−2)
)

, T ∈ ℝny×ny is a known permutation matrix, and F ∈ ℝ(N−ny)×(N−ny) and
H ∈ ℝ(N−ny)×ny are block lower-triangular matrices whose diagonal blocks are given respectively by

Fii ∶=
(

0pi(Ni−2)×pi Ipi(Ni−2)
0pi 0pi×pi(Ni−2)

)

, Hii ∶=
(

0pi(Ni−2)×pi
Ipi

)

.

According to the partition y = col(e, ya), we let Ce ∈ ℝne×(N−ny) and Ca ∈ ℝna×(N−ny) be such that

TC =
(

Ce
Ca

)

.

For simplicity, we develop here the case in which T = Iny , i.e. we assume that

e = Ce� = col(�i1 ∶ i = 1,… , re)
ya = Ca� = col(�i1 ∶ i = re + 1,… , r)

where re is such that p1 +⋯ + pre = ne and ra ∶= r − re (we also let Ne = p1N1 +⋯ + preNre and Na = N −Ne). We note
though, that the result can be easily extended to arbitrary transformations T by means of more involved technical treatise. In the
following we also let

�e ∶= col(�i ∶ i = 1,… , re), �a ∶= col(�i ∶ i = re + 1,… , r),
� e ∶= col(� i ∶ i = 1,… , re), �a ∶= col(� i ∶ i = re + 1,… , r).

(4)

Remark 1. The class of systems considered includes multivariable normal forms and partial normal forms25, with the latter
that always exist locally whenever (possibly after a preliminary feedback) the system (2) is a) strongly invertible in the sense of
Hirschorn and Singh26,27, and b) input-output linearizable2. The dimension nu of the input is not constrained to be equal to the
dimension ne of the regulation errors nor the dimension ny of the overall measured outputs, i.e. we consider possibly non-square
systems in which nu ≥ ny.

1With slight abuse of notation, in the following we will call with the same symbols � and � both the functions �(w, x) and � (w, x) and the functions t → �(w(t), x(t))
and t → � (w(t), x(t)).

2That is 28, there exists a state-feedback control of the form u = �(w, x) + G(w, x)v, with v ∈ ℝnu an auxiliary input and G full rank, such that the resulting system
has linear input-output behavior from v to y.
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On system (22) we then make the following strong minimum-phase and controllability assumptions.

Assumption 1. There exist a class-KL function �, and class-K functions �0 and �1, with �1 locally Lipschitz, such that all the
solution pairs (w, x, u) to (2), with u locally bounded, satisfy

|x(t)| ≤ �(|x(0)|, t) + �0
(

|w|[0,t)
)

+ �1
(

|(�, �)|[0,t)
)

,

for all t ∈ ℝ≥0 for which they are defined.

Assumption 2. There exists a 1 map  ∶ ℝnw ×ℝnx → ℝny×ny , constants �, �̄ > 0, and a full-rank matrix ∈ ℝnu×ny such that:

a. for all (w, x) ∈ W ×ℝnx

�I ≤ (w, x) ≤ �̄I.

b. For all (w, x) ∈ W ×ℝnx and all u ∈ ℝnu ,
L(x)b(w,x)u(w, x) = 0.

c. for all (w, z) ∈ W ×ℝnx

⊤B(w, x)⊤(w, x) + (w, x)B(w, x) ≥ I.

Remark 2. As in the context of normal forms and partial normal forms, � and � are combinations of derivatives of the output
y. Hence, Assumption 1 can be seen as an uniform (in u) “output-input stability” (OIS) property29,30 of x, that here plays the
role of a minimum-phase assumption. Similar minimum-phase assumptions appeared in many state-of-art frameworks31,17,18,
in which, however, the OIS property is asked with respect to a compact attractor for (w, x), typically coincident with the graph
of a single-valued steady-state map � ∶ ℝnw → ℝnx whose existence must be assumed. We stress, moreover, that here the
minimum phase is asked with respect to the whole set of outputs (included those that do not need to vanish at the steady state)
and, thus, Assumption 1 is milder than usual minimum-phase assumptions, and it can be possibly obtained by adding further
measurements.

Remark 3. Assumption 2 is a controllability condition needed here to employ the proposed high-gain stabilization technique.
We underline that, while  will be used in the definition of the regulator,  needs only to exist, and it needs not to be known by
the designer. As shown in Section 6 below, this assumption is implicated by many customary assumptions made in the context
of regulation and stabilization of partial normal forms15,16,17,18,31,32,33.

3 A POST-PROCESSING REGULATOR

3.1 The Regulator Structure
With d ∈ ℕ an arbitrary index, the proposed regulator is a system with state � ∈ ℝdne whose dynamics is described by the
following equations

�̇ = Φ(�) + Ge
u = 

(

�� +�� +��1
)

,
(5)

with Φ and G having the form

Φ(�) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 Ine 0 ⋯ 0
0 0 Ine ⋯ 0
⋅ ⋅ ⋅ ⋯ ⋅
0 0 0 ⋯ Ine

�(�)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, G ∶=

⎛

⎜

⎜

⎜

⎜

⎝

G1
G2
⋮
Gd

⎞

⎟

⎟

⎟

⎟

⎠

in which � ∶ ℝned → ℝne is a Lipschitz function satisfying

|�(�1) − �(�2)| ≤ L�|�1 − �2|, ∀�1, �2 ∈ ℝdne (6)

for some L� > 0, and in which Gi ∈ ℝne×ne , � ∈ ℝny×(N−ny), � ∈ ℝny×ny and � ∈ ℝny×ne are control gains to be designed,
with � that has the form

� =
(

′
�

0na×ne

)

, (7)
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for some′
� ∈ ℝne×ne . All these degrees of freedom have to be fixed according to the forthcoming Proposition 1 and Theorem 2.

Remark 4. We give here a partial state feedback result employing the auxiliary variables � and � (i.e. combinations of derivatives
of the measured output y). We note, however, that a purely output-feedback regulator can be easily obtained by augmenting (5)
with a partial-state observer31,34,35.

As mentioned in the introduction, the chicken-egg dilemma4 prevents a sequential design of the different parts of regulator,
leading us to a more complicated construction. Since the ideal choice of � in (5) depends on the actual choice of the matrices
, � , � and � , before discussing the choice of �, we state a preliminary uniform boundedness result, which allows us to
individuate a class of possible steady-state trajectories on which � can be tuned.

3.2 Existence of a Steady State
The closed-loop system reads as follows

Σcl ∶

⎧

⎪

⎨

⎪

⎩

ẇ = s(w)
ẋ = f (w, x) + b(w, x)

(

��(w, x) +�� (w, x) +��1
)

�̇ = Φ(�) + Gℎe(w, x).
(8)

The following proposition, proved in Section 5.1, shows that the parameters of the regulator (3) can be chosen to ensure (semi-
global) uniform boundedness of the closed-loop trajectories, and hence the existence of a steady state.

Proposition 1. Suppose that Assumptions 1 and 2 hold and consider the regulator (5), with d > 1 and � satisfying (6) for some
L� > 0 and  given by Assumption 2. Then there exists a class-K functions �cl and, for each pair of compact setsX ⊂ ℝnx and
H ⊂ ℝdne , a class-KL function �cl and matrices � , � , � and G, with � of the form (7) with ′

� invertible, such that all
the solutions to Σcl originating inW ×X ×H are complete and satisfy

|(x(t), �(t))| ≤ �cl(|(x(0), �(0))|, t) + �cl(|w|[0,t)), (9)

for all t ≥ 0.

The claim of Proposition 1 shows that, despite the particular � implemented in (5), if it satisfies (6), then for each compact
set of initial conditions the other degrees of freedom of the regulator can be chosen to ensure that the closed-loop system Σcl is
uniformly bounded3 fromW ×X ×H and hence, by Theorem 1, there exists a compact invariant attractor

 ∶= ΩΣcl (W ×X ×H) (10)

which is invariant and uniformly attractive from W × X × H . Moreover, since �cl does not depend on X and H , the latter
sets can be thought, without loss of generality, to be large enough so that  ⊂ (W × X ×H)◦, which implies that  is also
asymptotically stable.

3.3 Tuning the Internal Model
If (6) holds, Proposition 1 ensures the existence ofG,� ,� ,� , such that there exists a compact attractor for the trajectories
closed-loop system Σcl originating inW ×X ×H . In this section, we consider the restriction of Σcl on, i.e. the system4

Σ
cl ∶

⎧

⎪

⎨

⎪

⎩

ẇ = s(w)
ẋ = f (w, x) + b(w, x)

(

��(w, x) +�� (w, x) +��1
)

�̇ = Φ(�) + Gℎe(w, x)
(w, x, �) ∈ , (11)

and we investigate the conditions that � must satisfy on to guarantee a given asymptotic performance, expressed in terms of
the bound (ideally zero) on the regulation error e = ℎe(w, x) along the solutions to (11). This conditions are then used in the
forthcoming Theorem 2 to complement the claim of Proposition 1 with an asymptotic bound on the regulation error depending
on “how well” the function � is chosen.

3That is, there existsM > 0 such that every trajectory (w, x, �) of the closed-loop system (2), (5) originating inW ×X ×H satisfies |(w(t), x(t), �(t))| ≤M for each
t ∈ ℝ≥0.

4We remark that, being invariant, all the solutions to Σ
cl are complete.
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Substituting the expression of u into (3b) yields

�̇ = q(w, x) + B(w, x)(�� +�� +��1). (12)

Let us define the projected set  as
 ∶=

{

(w, x) ∈ W ×ℝnx ∶ (w, x, �) ∈ 
}

,

let qe and qa be functions with values in ℝne and ℝna respectively such that q(w, x) = col(qe(w, x), qa(w, x)), and let denote for
brevity

D(w, x) ∶= B(w, x) ∈ ℝny×ny .
Let partition D(w, x), � and � as:

D ∶=
(

De,e De,a

Da,e Da,a

)

, � ∶=

(

e,e
� e,a

�
a,e
� a,a

�

)

, � ∶=

(

e,e
� e,a

�
a,e
� a,a

�

)

(13)

for some Di,j(w, x),i,j
� ,

i,j
� ∈ ℝni×nj , i, j ∈ {e, a}. Then, in view of (7), equation (12) gives

�̇ e = qe(w, x) +De,e(w, x)
(

e,e
� �

e+e,a
� �

a+e,e
� �

e+e,a
� �

a+′
��1

)

+De,a(w, x)
(

a,e
� �

e+a,a
� �

a+a,e
� �

e+a,a
� �

a
)

. (14)

In view of (14), the regulation error e, along with its derivatives, vanish on the attractor of and only if �e = 0, � e = 0 (both
implying �̇e = 0), and

0 = qe(w, x) +De,e(w, x)
(

e,a
� �

a +e,a
� �

a +′
��1

)

+De,a(w, x)
(

a,a
� �

a +a,a
� �

a
)

(15)

for all (w, x) ∈ . By solving (15) for �1, we thus obtain an ideal steady-state value for �1, given by the function �⋆1 ∶  → ℝne

satisfying

De,e(w, x)′
��
⋆
1 (w, x) = −q

e(w, x)−De,e(w, x)
(

e,a
� �

a(w, x)+e,a
� �

a(w, x)
)

−De,a(w, x)
(

a,a
� �

a(w, x)+a,a
� �

a(w, x)
)

(16)

for all (w, x) ∈ . Since �1 is the first component of the internal model unit � of (5), and since in the ideal condition in which
e = 0 the system � coincides with the autonomous equation

�̇ = Φ(�), (17)

then for each solution to Σ
cl , (16) individuates an ideal steady-state value for � given by

�⋆(t) ∶= col
(

�⋆1 (t), �̇
⋆
1 (t), ⋯ , �⋆1

(d−1)(t)
)

(18)

in which we denoted for brevity �⋆1 (t) = �⋆1 (w(t), x(t)). In view of the structure of the map Φ in (5), such an ideal steady state
trajectory �⋆ may be a solution of (17) only if �⋆1 (t) satisfies

�⋆1
(d)(t) = �

(

�⋆1 (t), �̇
⋆
1 (t), … , �⋆1

(d−1)(t)
)

(19)

almost everywhere. Condition (19) expresses indeed the internal model property, that is, the property of the regulator to generate
all the ideal steady-state control actions �⋆1 (t) needed to keep the regulation error e to zero. We also observe that the chicken-egg
dilemma is strongly present in (19), since �⋆1 and its derivatives, and thus the correct value of � to be implemented, depend on
the closed-loop trajectories and thus, in particular, on stabilization gains� ,� , and� , the latter dependent from the Lipschitz
constant L� of �.

Remark 5. We observe that in the linear case the chicken-egg dilemma is broken by the fact that, no matter how the stabilization
gains are chosen, if a compact attractor exists then all the closed-loop trajectories have the same modes of the exosystem (the
closed-loop system (8), indeed, is a linear stable system driven by the exosystem). Therefore, a function � satisfying (6) and (19)
can be fixed a priori according to the knowledge of the exosystem dynamics. A similar situation also takes place in a nonlinear
setting if ẇ = 0. If d and � are taken as d = 1 and �(�) = 0, and if the closed-loop system Σcl can be made “contractive”
via stabilization, then the steady-state trajectories (i.e. the solutions to Σ

cl) are constant, and thus (19) holds. This is in fact the
well-known integral action23.

The existence of a functions �⋆1 (w, x) solving (16) in  and such that �⋆1 (t) is d-times differentiable, and thus the existence
of the ideal steady-state �⋆ for �, follows by the assumptions below as stated in the forthcoming Remark 7.

Assumption 3. The functions s, f and b are d .
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Assumption 4. There exists a map ∶ ℝnw ×ℝnx → ℝne×ne , 1 on an open set including , such that:

a. (w, x) > 0 in .

b. For all (w, x) ∈  and all u ∈ ℝnu ,
L(x)b(w,x)u(w, x) = 0.

c. for all (w, x) ∈ 
De,e(w, x)⊤(w, x) +(w, x)De,e(w, x) ≥ I.

Remark 6. Assumption 4 is a controllability condition resembling those of Assumption 2, but limited to the submatrixDe,e(w, x)
inside the attractor . In addition to Assumption 2, this condition ensures that the regulation error contracts to zero when the
internal model reaches its ideal steady-state. While in the case in which y = e this condition is directly implicated by Assumption
2, in general it is not and it has to be assumed. We stress that, as it is the case for  in Assumption 2, the matrix  is not used
in the construction of the control law, and it is thus not required to be known by the designer. In the forthcoming Section 6, we
complement this assumption by showing that it holds, together with Assumption 2, in many state-of-art relevant frameworks of
high-gain regulation and stabilization of multivariable systems.

Remark 7. Assumption 4 implies that De,e(w, x) is non-singular in . This, together with Assumption 3 and the fact that ′
�

can be taken invertible, implies that (16) admits a unique solution in  such that �⋆1 (t) is C
d for each solution (w, x, �) of Σ

cl .

3.4 Asymptotic Performances
Apart from the chicken-egg dilemma, fulfilling condition (19) in general requires a very precise knowledge of the function �⋆1
and its derivatives, which strongly depend on the plant and exosystem dynamics. Therefore, uncertainties in the model of the
plant and exosystem strongly reflect into uncertainties in the right internal model function to implement, potentially ruining the
asymptotic performance of the regulator24. This motivates introducing, for each solution (w, x, �) to Σ

cl , the following quantity

�(t) ∶= �
(

�⋆(t)
)

− �⋆1
(d)(t),

representing the internal model mismatch along (w, x, �), i.e. the error that the system � of (5) attains in modeling the process
that generates the ideal control action �⋆1 (t). We also define the worst-case mismatch as the quantity

�̄ ∶= sup
{

|�|∞ ∶ (w, x, �) solution to Σ
cl

}

, (20)

which, we stress, in general depends also on the control gains � , � and � .
The following theorem, which represents the main result of the paper, characterizes the asymptotic properties of the proposed

regulator (5) and, in particular, relates the worst-case internal model mismatch (20) to the asymptotic bound on the regulation
error.

Theorem 2. Suppose that Assumptions 1, 2, 3 and 4 hold, and consider the regulator (5) with d > 1 and� satisfying (6) for some
L� > 0, and with  given by Assumption 2. Then, for each pair of compact sets X ⊂ ℝnx and H ⊂ ℝdne of initial conditions
and each " > 0, there exist matrices � , � , � and G, and a compact set  of the form (10), such that every solution to the
closed-loop system Σcl originating inW ×X ×H is uniformly attracted by  and satisfies

lim sup
t→∞

|e(t)| ≤ "�̄ (21)

uniformly in the initial conditions.

Theorem 2, proved in Section 5.2, claims that the stabilization parameters in (5) can be chosen to ensure the existence of
a compact attractor for the closed-loop system (8), and that the asymptotic bound on the regulation error is proportional to
the worst-case internal model mismatch on the attractor. The claim of Theorem 2 is thus an approximate regulation result.
Furthermore, if the worst-case internal model mismatch (20) does not depend on the control parameters , � , � , � and G,
then the asymptotic bound on the error can be reduced arbitrarily by opportunely choosing the control parameters to lower the
proportionality constant " in (21). This, in turn, makes the claim of the theorem a practical output regulation result. Since X
and H are arbitrary, moreover, the result is semiglobal in the plant’s and internal model’s initial conditions. We remark that,
as evident in (16), in the canonical “square” setting in which b(w, x) = 0, na = 0 (i.e. y = e) and nu = ne, the map �⋆1 (w, x),
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its derivatives, and hence �̄, can be always bounded uniformly in the control parameters, thus making the result of Theorem 1
always practical.
Finally, we observe that if the worst-case internal model mismatch (20) is zero, i.e. the internal model includes a copy of the

process generating the ideal steady-state �⋆ for (5), then asymptotic regulation is achieved, that is

lim
t→∞

e(t) = 0.

holds uniformly. The intertwining between internal model and the stabilizer and the possible presence of model’s uncertainties
make �̄ = 0 very difficult to satisfy, thus making the conditions of asymptotic regulation de facto not constructive. Nevertheless,
Theorem 2 individuates a clear sufficient condition for asymptotic regulation, given by equation (19), which expresses in this
setting the nonlinear version of the internal model principle: the regulator must embed a copy of the process that generates the
ideal steady state control action (i.e. �⋆1 above) that makes the set in which the error vanishes invariant.
Finally, we observe that this chicken-egg dilemma is way more evident when non-vanishing outputs are used for stabilization,

as they need to be compensated at the steady state by the output of the internal model (see (16)). In this respect we also note
that, as it is the case of the linear regulator, the feedback of auxiliary outputs might also have a simplifying effect on the internal
model.

4 EXAMPLE

In this section we present an example showing how the post-processing paradigm presented in the previous sections can be used
to approach a problem for which no solution of the pre-processing type is known. We consider the system

ẇ = s(w)
ẋ1 = f1(x1) + 
1(w, x2) + x3
ẋ2 = 
2(w, x) + u1 + u2
ẋ3 = 
3(w, x) − b(w)u1 + (1 − b(w))u2

(22)

with regulation error
e ∶= x2,

in which all the functions f1, 
i and b are smooth, and where w ranges in a compact invariant setW ⊂ ℝnw . We observe that if
the function 
2 satisfies )
2(0)∕)xi = 0 for i = 1, 3, the linear approximation of (22) at 0 is not detectable from e. Thus, e is not
enough to stabilize (22), and additional outputs are needed. We specifically assume to have available for feedback the other two
variables, i.e. the additional output

ya ∶= col(x1, x3).
We observe that ya does not necessarily vanish at the ideal steady state in which e = 0. We also observe that a control strategy
based on a preliminary “pre-stabilizing” inner-loop employing ya to reduce to a canonical case in which the pre-stabilized plant
is stabilizable from e is hard to imagine. In fact the inputs u1 and u2 affect both the equations of ẋ2 and ẋ3, and x3 has no relative
degree with respect to any of the two inputs, since both b(w) and 1 − b(w) may vanish. Therefore, both u1 and u2 must be used
in case x3 is pre-stabilized, thus leaving no further degree of freedom to deal with e. As a consequence, this case does not fit
into any of the previous pre-processing frameworks in which only e can be used for feedback.
In the rest of the section we build a regulator of the form (5) dealing with this case. For, we suppose to know a function �

such that5
s
(

f1(s) − �(s)
)

≤ 0, ∀s ∈ ℝ (23)
and we define the variable � ∶= col(�1, �2) as

�1 ∶= x2, �2 ∶= x3 + x1 + �(x1),

which satisfy
�̇ = q(w, x) + B(w, x)u (24)

with
q(w, x) ∶=

(


2(w, x)

3(w, x) +

(

1 + �′(x1)
)(

f1(x1) + 
1(w, x2) + x3
)

)

, B(w, x) ∶=
(

1 1
−b(w) 1 − b(w)

)

.

5We observe that if f1 is locally Lipschitz, then � can be taken linear over compact sets.
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Hence, (22)-(24) has the form (2), (3b). We further notice that |(x2, x3)| ≤ |� | + |x1 + �(x1)|, with x1 that fulfills

ẋ1 = −x1 + f1(x1) − �(x1) + 
1(w, �1) + �2.

In view of (23), simple computations show that the x1 subsystem is input-to-state stable relative to the origin and with respect
to the input 
1(w, �1) + �2, and hence Assumption 1 is fulfilled.
With � > 0 satisfying 4� > 1 + supw∈W (1 + b(w))2, let

0 ∶=
(

�2 0
0 �

)

, (w, x) ∶=
(

1 + b(w)2 b(w)
b(w) 1

)

.

Then the high-frequency matrix B(w, x) fulfills

⊤0B(w, x)
⊤(w, x) + (w, x)B(w, x)0 =

(

2�2 �(1 + b(w))
�(1 + b(w)) 2�

)

=∶M(w).

As 2�2 > 0 and

detM(w) = 4�3 − �2(1 + b(w))2 = �2(4� − (1 + b(w))2) > 4�2 + �2
(

4 sup
w∈W

(1 + b(w))2 − (1 + b(w))2
)

> 4�2,

M(w) is positive definite and there exists m > 0 such that, for all x ∈ ℝ2,

x⊤M(w)x ≥ m|x|2. (25)

Therefore the pair (,), with  ∶= 0∕m, satisfy Assumption 2 for each compact subset X ⊂ ℝnx .
Moreover, Assumption 3 holds by construction, and Assumption 4 holds with = 1, since the quantityD(w, x) = B(w, x)

defined as in (13) satisfies
De,e(w, x) = �2.

According to Section 3, and by following the proof of Proposition 1 and Theorem 2, the regulator has the form (5), with the
stabilizing action given by

u = −l �
m

(

�(e − �1)
x3 + x1 + �(x1)

)

in which l > 0 is a design parameter to be taken sufficiently large and �1 is the first component of the internal model unit

�̇i = �i+1 + giℎie. i = 1,… , d − 1
�̇d = �(�) + gdℎde

in which the parameters ℎi are the coefficients of a Hurwitz polynomial, g > 0 is a high-gain parameter, and the dimension d
and the � are degrees of freedom to be fixed according to the available knowledge of s(w) and of the ideal steady-state of the
internal model given by (18). According to Proposition 1, for all sufficiently large l and g the closed-loop system has a compact
attractor, on which d and � must be tuned. In particular, �⋆1 is obtained as in (16) and by imposing in (22) e = 0 and � = �⋆,
thus obtaining

�⋆1 = −
m
l�2


2(w, (x1, 0, x3)) +
1
�
(x3 + x1 + �(x1))

ẋ1 = f1(x1) + 
1(w, 0) + x3
ẋ3 = 
3(w, (x1, 0, x3)) − b(w)
2(w, (x1, 0, x3)).

(26)

In the following simulations we set

nw = 2, s(w) =
(

0 1
−1 0

)

w, W = B3, f1(x1) = 0, �(x1) = 0,


1(w, x2) = 0, 
2(w, x) = q exp(2w2
1), 
3(w, x) = w2

1, b(w) = w1, � = 5

with q ≥ 0. Then (25) holds with m = 1, and equations (26) reduce to

�⋆1 = −
1
l�2

q exp(w2
1) +

1
�
(x3 + x1), ẋ1 = x3, ẋ3 = w2

1 − qw1 exp(2w2
1).

We first consider the case in which q = 0. It can be shown that, in this case, �⋆1 can be generated by a linear system of dimension
d = 5 and of the form (17) in which

�(�) = −4�4.
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FIGURE 2 The left plot shows the time evolution of the regulation error e(t) = x2(t) which is asymptotically vanishing. The
right plot shows the time evolution of the other two measurements ya(t) = (x1(t), x3(t)) that have a non-zero steady state.
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FIGURE 3 Time evolution of the regulation error e(t) = x2(t) for g = 5, 8, 10.

Figure 2 shows a simulation in this first case in which q = 0, d = 5 and � is chosen as above. The system originates at
w(0) = (1, 0), x(0) = (3, 5,−2) and �(0) = 0, and the control gains are chosen as g = 5 and l = 5.
In the second case in which q is set to 1, �⋆1 cannot be generated by a linear system of dimension 5 and thus asymptotic

regulation is not achieved. In this setting, however, the internal model mismatch (20) can be bounded uniformly in the control
parameters, and practical regulation is achieve. Figure 3 thus shows a simulation obtained with the same regulator in the case
in which q = 1 and g = 5, 8, 10, by showing that the asymptotic error can be reduced by increasing g.
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5 PROOFS

5.1 Proof of Proposition 1
Let partition � as � = col(�1,… , �d) and, for each �i ∈ ℝne , let partition �i as �i = col(�1i ,… , �rei ) with �

j
i ∈ ℝpj . Consider the

change of coordinates:

∀i = 1,… , re ∶

{

�i1 → � i1 ∶= �
i
1 + �

i
1,

�ij → � ij ∶= �
i
j , j = 2,… , Ni − 1

∀i = re,… , r ∶ �i → � i ∶= �i.
e → ē ∶= e + �1.

(27)

By letting � ∶= col(�1,… , � r), with � i ∶= col(� i1,… , � iNi−1
), the change of variables (27) can be compactly rewritten as

� ∶= � + C⊤
e �1

ē = Ce�.

From (5), and since by construction FC⊤
e = 0, we obtain

�̇ = (F + C⊤
e G1Ce)� +H� + C

⊤
e (�2 − G1�1). (28)

We state now the following lemma, proved in the Appendix.

Lemma 1. For any � > 0, there exists K ∈ ℝny×(N−ny), class-KL functions �� , �ē and a1 > 0, such that the system (28) with
output ē and with input � = �̄ +K� , being �̄ ∈ ℝny an auxiliary input, satisfies

|� i(t)| ≤ �� (|�(0)|, t∕�) + a1
(

|�̄[1,i]|[0,t) + |G1||�1|[0,t) + |�2|[0,t)
)

(29)

|ē(t)| ≤ �ē(|�(0)|, t∕�) + �|�̄ e|[0,t) + �
(

|G1||�1|[0,t) + |�2|[0,t)
)

(30)

for all i = 1,… , r and with �̄ e ∶= �̄[1,re].

Pick (ℎ1,… , ℎd) ∈ ℝd such that the polynomial �d + ℎ1�d−1 +⋯+ ℎd−1�+ ℎd has d roots with negative real part and, with
g > 0 a control parameter, let

Gi ∶= giℎiIne . (31)
Let Δ(g) ∶= diag(1, g,… , gd−1) and change variables as

� → � ∶= Δ(g)−1�.

In the new variables we obtain
�̇ = Δ(g)−1

(

AΔ(g)� + E�(Δ(g)�) + G(ē − Γ�1)
)

with A ∈ ℝdne×dne , E ∈ ℝdne×ne and Γ ∈ ℝnedne defined as

A ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0ne Ine 0ne ⋯ 0ne
0ne 0ne Ine ⋯ 0ne
⋮ ⋱ ⋮
0ne ⋯ Ine
0ne ⋯ 0ne

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, E ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0ne
0ne
⋮
0ne
Ine

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Γ ∶=
(

Ine 0ne ⋯ 0ne
)

.

Noting that:

Δ(g)−1AΔ(g) = gA, Δ(g)−1E = g1−dE, Δ(g)−1G = gR, with R ∶= col
(

ℎiIne ∶ i = 1,… , d
)

,

then, by lettingM ∶= A − RΓ, we obtain

�̇ = gM� + g1−dE�(Δ(g)�) + gRCe�. (32)

Let L� > 0 such that (6) holds. Then
|g1−dE�(Δ(g)�)| ≤ L�|�| (33)

holds for all � ∈ ℝdne . By definition of (ℎ1,… , ℎd),M is Hurwitz. Then, in view of (33), standard high-gain arguments36 can
be used to show that there exists g⋆ > 0, a class-KL function �� and a2 > 0, such that, for all g > g⋆, the system � fulfills

|�(t)| ≤ ��(|�(0)|, gt) + a2|ē|[0,t).
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for all t ≥ 0. Thus, by letting �� = gd−1��, using the fact that |�i| ≤ gi−1|�i|, we also obtain that the system � fulfills

|�i(t)| ≤ ��(|�(0)|, t) + a2gi−1|ē|[0,t) (34)

for all i = 1,… , d. With � be any small number so that

� < �⋆1 (g) ∶=
1

a2(|G1| + g)
,

being a2 the same as in (34), let K = K(g) be the corresponding matrix produced by Lemma 1, and change variables as

� → �̄ ∶= � −K�. (35)

Then, the bounds (29)-(30) hold with |�2|[0,t) ≤ g|�|[0,t) and, since �a2(g + |G1|) < 1, standard small-gain arguments37 imply
the existence of a class-KL function ��,� and a3 > 0 such that the following bound holds

|(�(t), �(t))| ≤ ���(|(�(0), �(0))|, gt) + a3|�̄ |[0,t). (36)

Moreover, since for any class-K function �, �(a + b) ≤ �(2a) + �(2b), Assumption 1 yields
|x(t)| ≤ �(|x(0)|, t) + �0(|w[0,t)|) + �1(|(�, �)|[0,t))

≤ �(|x(0)|, t) + �0(|w[0,t)|) + �1
(

(1 + |K|)|�|[0,t) + |�1|[0,t) + |�̄ |[0,t)
)

≤ �(|x(0)|, t) + �0(|w[0,t)|) + �′1
(

|(�, �)|[0,t)
)

+ �′′1
(

|�̄ |[0,t)
)

(37)

with �′1(s) ∶= �1(2(2 + |K|)s) and �′′1 (s) ∶= �1(2s). Thus, we conclude by (36) and (37) that there exist �x�� of class-KL and
�3 of class-K such that every solution of Σcl satisfies

|(x(t), �(t), �(t))| ≤ �x��(|(x(0), �(0), �(0))|, t) + �0(|w|[0,t)) + �3(|�̄ |[0,t)) (38)

for al t ≥ 0.
In view of (3b) and (28), �̄ fulfills

̇̄� = %(�, �, �̄ ) + q(w, x) + B(w, x)u (39)
where

%(�, �, �̄ ) ∶= −K
(

(F + C⊤
e G1Ce)� +H� + C

⊤
e (�2 − G1�1)

)

. (40)
With l > 0 a design parameter to be fixed, let in (5)

� ∶= lK, � ∶= −lIne , � ∶= lKC⊤
e . (41)

The fact that� can be taken of the form (7), with′
� invertible follows by the presence of C

⊤
e in (41), and by the construction

of K in Lemma 1. In the new coordinates we then have

u = l
(

K(� + C⊤
e �1) − �

)

= −l�̄

and thus (39) yields
̇̄� = %(�, �, �̄ ) + q(w, x) − lB(w, x)�̄ . (42)

We fix l on the basis of the following Lemma, whose proof is in the appendix.

Lemma 2. Consider an equation of the form (42), with % and q locally Lipschitz. Under Assumption 2 there exist ��̄ of class-KL
and, for each compact set X̄ ⊂ ℝnx , constants a4 > 0, l⋆0 (g,K) > 0 such that, for all l > l

⋆
0 (g,K) the following holds

|�̄ (t)| ≤ ��̄ (|�̄ (0)|,lt) +
a4
l

(

|(w, x, �, �)|[0,t)
)

, (43)

for all t ∈ ℝ≥0 such that (w(s), x(s)) ∈ W × X̄ for all s ∈ [0, t].

Pick a compact set of initial conditions for (x, �) of the form X ×H and let �1, �2 > 0 be such that (w, x, �) ∈ W ×X ×H
implies

|�| = |�(w, x) + C⊤
e �| ≤ �1

|�̄ | = |� (w, x) −K(�(w, x) + C⊤
e �)| ≤ �2.

Pick$1 > 0 so that

$1 ≥ 1 + max
{

max
(x,�)∈X×H

|(x, �)| + �1, sup
(x,�)∈X×H

�x��(|(x, �)| + �1, 0) + sup
w∈W

�0(|w|) + �3
(

��̄ (�2, 0) + 1
)

}

, (44)
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which can be fixed at this stage since, according to Lemma 2, ��̄ does not depend on X̄. With$2 > $1 define

X̄ ∶= B$2
. (45)

let l⋆0 (g,K) and a4 be given by Lemma 2 for X̄ chosen as in (45), and pick

l > l⋆1 (g,K) ∶= max
{

l⋆0 (g,K), a4
(

max
w∈W

|w| +$2

)}

.

Then, for any solution to Σcl originating inW ×X ×H it holds that

|�̄ (t)| ≤ ��̄ (�2, 0) + 1. (46)

for all t ≥ 0 such that |(x, �, �)|[0,t) < $2, as the latter condition implies x(s) ∈ X̄ for all s ∈ [0, t].
Now, suppose that a solution to Σcl exists that originates inW ×X ×H and for some t̄ > 0 satisfies |(x(t̄), �(t̄), �(t̄))| > $2.

By definition of$1, |x(0), �(0), �(0)| < $1 < $2, so that by continuity there exists s̄ ∈ (0, t̄) such that |x(s̄), �(s̄), �(s̄))| = $1
and |(x, �, �)|[0,s̄) ≤ $1. However, by (38), (44) and (46), this implies that

|�̄ |[0,s̄) ≤ ��̄ (�2, 0) + 1

and hence

$1 = |(x(s̄), �(s̄), �(s̄))|
≤ �x��

(

|x(0), �(0), �(0)|, 0
)

+ �0(|w|[0,s̄)) + �3(|�̄ |[0,s̄))
≤ sup
(x,�)∈X×H

�x��(|(x, �)| + �1, 0) + sup
w∈W

�0(|w|) + �3
(

��̄ (�2, 0) + 1
)

≤ $1 − 1

which is a contradiction. Thus, we claim that every solution to Σcl originating in W × X × H is complete and satisfies
(x(t), �(t), �(t))| ≤ $2 and |�̄ (t)| ≤ ��̄ (�2, 0)+1 for all t ≥ 0. As �3 is locally Lipschitz, then this implies that there exists a5 > 0
such that every trajectory originating inW ×X ×H satisfies

|(x(t), �(t), �(t))| ≤ �x��(|(x(0), �(0), �(0))|, t) + �0(|w|[0,t)) + a5|�̄ |[0,t)
for all t ≥ 0. In view of (43), which holds for every t ≥ 0, standard small-gain arguments show that there exists �cl of class-KL
such that, with �cl(⋅) = �0(⋅) + 1 and for all

l > l⋆(g,K) ∶= max{l⋆1 (g,K), a4a5},

the claim (9) of the proposition holds.

5.2 Proof of Theorem 2
By Proposition 1, there exist g⋆ > 0, K = K(g) ∈ ℝp×p(N−p) and l⋆(g,K) > 0 such that, for all g > g⋆ and l > l⋆(K, g),
the choices (31) and (41) guarantee that the claim (9) of the proposition holds, and in particular that there exists a compact
invariant attractor defined in (10). Pick now a solution (w, x, �) to Σ

cl and, define the signal �
⋆ according to (18), which under

Assumption 3 and 4 is well defined in view of Remark 7. With reference to the coordinates (27) and (35), consider the change
of variables

ē → ẽ ∶= ē − �⋆1
� → �̃ ∶= � − �⋆

� → �̃ ∶= � − C⊤
e �

⋆
1

�̄ → �̃ ∶= �̄ +KC⊤
e �

⋆
1 = � −K�̃.

Then
ẽ = Ce� − �⋆1 = Ce�̃ ,

and, in view of (28) and noting that FC⊤
e = 0 and CeC

⊤
e = Ine , we also have

̇̃� = (F + C⊤
e G1Ce +HK)�̃ +H�̃ + C

⊤
e (�̃2 − G1�̃1). (47)
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With Δ(g) ∶= diag(I, gI,… , gd−1I), let
�̃ ∶= Δ(g)−1�̃,

the same argument used in the proof of Proposition 1 in dealing with � show that �̃ satisfies
̇̃� = gM�̃ + g1−dE

(

�(Δ(g)�̃ + �⋆) − �⋆1
(d)) + gRCe�̃

withM , E and R defined as in (32).
Then, as � satisfies (6), for some L� > 0, it holds that

|�(Δ(g)�̃ + �⋆) − �⋆1
(d)
| ≤ |�(Δ(g)�̃ + �⋆) − �(�⋆)| + |�(�⋆) − �⋆1

(d)
|

≤ L�g
d−1

|�̃| + �̄.

where �̄ is defined in (20).
Standard high-gain arguments can be thus used to prove that for large enough g the following estimate holds

|�̃(t)| ≤ ��̃(|�̃(0)|, t) +
q1
gd
�̄ + q1|ẽ|[0,t). (48)

for some class-KL function ��̃ and some q2 > 0. We can thus assume without loss of generality that g is taken large enough to
guarantee this.
Since in view of (31), |G1||�̃1| + |�̃2| ≤ q2g|�̃|, for some q2 > 0 independent from g, then in view of Lemma 1 and (47), we

obtain that K can be chosen without loss of generality so that there exist ��̃ and �ẽ of class-KL, q3 > 0 and � < (2q1g)−1 for
which the following bounds hold

|�̃e(t)| ≤ �� (|�̃(0)|, t) + q3
(

|�̃ e|[0,t) + g|�̃|[0,t)
)

|ẽ(t)| ≤ �̃e(|�̃(0)|, t) + �
(

|�̃ e|[0,t) + g|�̃|[0,t)
)

,
(49)

in which �̃e and �̃ e are defined as in (4). Therefore, by small-gain arguments37 (48) and (49) imply the following bound

lim sup
t→∞

|(�̃(t), �̃e(t))| ≤ q4 lim sup
t→∞

|�̃ e|[0,t) + q4g−d �̄, (50)

for some q4 = q4(g) > 0.
In view of (41) and since

� = � − C⊤
e �1 = �̃ − C

⊤
e �̃1, � = �̄ +K� = �̃ +K�̃,

we obtain

u = 
(

�� +�� +��1
)

= 
(

�(�̃ − C⊤
e �̃1) +� (�̃ +K�̃) +�(�̃1 + �⋆1 (w, x))

)

= −l�̃ + ��
⋆
1 (w, x).

In view of the definition of �⋆1 in (16), and of the block-diagonal structure of K in Lemma 1, by letting

Q ∶=

(

Ine
0(ny−ne)×ne

)

,

we thus obtain
̇̃� e = %e(�̃e, �̃ e, �̃) + qe(w, x) +Q⊤B(w, x)

(

− l�̃ + ��
⋆
1 (w, x)

)

= %e(�̃e, �̃ e, �̃) − lQ⊤B(w, x)Q�̃ e

= %e(�̃e, �̃ e, �̃) − lDe,e(w, x)�̃ e

with %e a linear map that, in view of the lower-triangular structure of F and of the diagonal structure of H , only depends
on (�̃e, �̃ e, �̃) and satisfies %e(�̃e, �̃ e, �̃) = Q⊤%(�̃, �̃ , �̃ ), with % defined in (40). We now observe that, since �cl in the claim
of Proposition 1 does not depend on l, then in view of Assumption (4) and on the fact that (w(t), x(t)) ∈  implies the
existence of �′, �̄′ > 0 such that �′I ≤ (w, x) ≤ �̄′I , arguments similar to those of Lemma 2 applied with q = 0 and
X̄ = {x ∈ ℝnx ∶ (w, x) ∈ } to the Lyapunov candidate

Ve(w, x) ∶=
√

�̃ e⊤(w, x)�̃ e,

can be used to show that for large enough l, �̃ e satisfies

lim sup
t→∞

|�̃ e(t)| ≤
q5g
l
lim sup
t→∞

|(�̃e, �̃)|[0,t)



16 BIN AND MARCONI

for some q5 > 0 independent from l and g. Hence, in view of (50), and since l can be taken without loss of generality larger
enough so that

l > 2q5q4g, (51)
then we obtain

lim sup
t→∞

|(�̃(t), �̃e(t))| ≤
q4q5g
l

lim sup
t→∞

|(�̃(t), �̃e(t))| + q4g−d �̄

lim sup
t→∞

|�̃ e(t)| ≤
q4q5g
l

lim sup
t→∞

|�̃ e(t)| +
q4q5g
l

g−d �̄.

As (51) implies both
1
2
< 1 −

q4q5g
l

,
q4q5g
l

< 1
2
,

then we obtain
lim sup
t→∞

|(�̃(t), �̃e(t))| ≤ 2
(

1 −
q4q5g
l

)

lim sup
t→∞

|(�̃(t), �̃e(t))| ≤ 2q4g−d �̄

lim sup
t→∞

|�̃ e(t)| ≤ 2
(

1 −
q4q5g
l

)

lim sup
t→∞

|�̃ e(t)| ≤ g−d �̄.
(52)

Now, pick a point (w̄, x̄, �̄) in . Define arbitrarily a sequence {tn}n∈ℕ of positive scalars tn satisfying tn → ∞. As  is
invariant, it is backwards invariant. Hence, for each n ∈ ℕ, we can find a solution (wn, xn, �n) to Σ

cl which satisfies

(wn(tn), xn(tn), �n(tn)) = (w̄, x̄, �̄).

In view of (52), which holds for any solution of Σ
cl and thus in particular for each (wn, xn, �n), it follows that for each " > 0,

there existsN(") ∈ ℕ such that the quantities �̃n ∶= Δ(g)−1(�n − �⋆(wn, xn)) and �̃en ∶= �(wn, xn) − C⊤
e �

⋆
1 (w

n, xn) satisfy

|�̃en(tn)| + |�̃n(tn)| ≤ 4q4g−d �̄ + "

for all n ≥ N("). Let ē ∶= ℎe(w̄, x̄) denote the regulation error computed at (w̄, x̄, �̄). Then for each n ∈ ℕ it satisfies

|ē| = |Ce�̃
n(tn) − CeC⊤

e �̃
n
1(tn)| ≤ |�̃en(tn)| + |�̃n(tn)|,

so that, for all " > 0, by taking n ≥ N("), we obtain

|ē| ≤ 4q4g−d �̄ + ".

For the arbitrariness of " and (w̄, x̄, �̄) ∈  we thus conclude that

|e| = |ℎe(w, x)| ≤ 4q4g−d �̄

holds for all (w, x) ∈ . Then the claim (21) of the theorem follows from the continuity of ℎe and uniform attractiveness of 
fromW ×X ×H by assuming, without loss of generality, g > d

√

4q4∕".

6 ON THE CONTROLLABILITY ASSUMPTIONS

In this sectionwe complement Assumptions 2 and 4, by showing how they are implied bymany state-of-art assumptions routinely
used in the context of high-gain stabilization and regulation of multivariable systems, and thus also showing how the matrix 
can be constructed in the respective frameworks using only quantities that are known. In the following we assume that B(w, x)
is C1 and, for ease of notation, we let x ∶= (w, x).

6.1 Strong Invertibility in the Sense of Wang and Isidori 2015 Implies Assumption 2
Here we prove that the assumption of invertibility used, for instance, in recent papers by Wang, Isidori and Su31 and by Wang,
Isidori, Su and Marconi17 implies Assumption 2.

Lemma 3. Suppose that nu = ny (i.e. B(x) is square), B(x) is bounded, L
(x)
g(x)uB(x) = 0 for all x ∈ W × ℝnx , and there exists

� > 0 such that all its principal minors Δi(x), i = 1,… , r satisfy

|Δi(x)| ≥ �, (53)

for all x ∈ W ×ℝnx . Then Assumption 2 holds.
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Proof. It can be shown31 that if (53) holds and B(x) is bounded then B(x) can be written as

B(x) = EM(x)(I + U (x)),

with M(x) = M(x)⊤ positive definite for all x ∈ W × ℝnx and satisfying a1I ≤ M(x) ≤ a2I for all x ∈ W × ℝnx and for
some a1, a2 > 0, U (x) a strictly upper triangular matrix and with E a diagonal matrix satisfying EE = I . Moreover, simple
computations31 show that, if B(x) is bounded, then there exists c > 1 such that, with C ∶= diag(cny−1, cny−2,… , c, 1), we have

(I + U (x))C + C(I + U (x))⊤ ≥ I.

Let

 ∶= EC, (x) ∶= EM(x)−1E.

Since a1I ≤M(x) ≤ a2I holds at each x ∈ W ×ℝnx , then the eigenvalues ofM(x)−1 are lower and upper-bounded by a−12 and
a−11 respectively, and hence point a of Assumption 2 holds. Furthermore, we observe that  = ⊤ = EC = CE. Hence, noting
that

B(x)⊤EM(x)−1 = (I + U (x))⊤M(x)⊤E⊤EM(x)−1 = (I + U (x))⊤,
we then have

⊤B(x)⊤(x) + (x)B(x) = ECB(x)⊤EM(x)−1E + EM(x)−1EB(x)CE = E
[

C(I + U (x))⊤ + (I + U (x))C
]

E ≥ I,

for all x ∈ W ×ℝnx . Thus, since EE = I , point c of Assumption 2 holds.
Finally, we observe that31 L(x)g(x)uB(x) = 0 implies L(x)g(x)uM(x) = 0. Since

L(x)g(x)uM(x)−1 = −M(x)−1L(x)g(x)uM(x)M(x)−1 = 0,

then also point b holds, hence the result.

6.2 Strong invertibility in the sense of Wang and Isidori 2015 and 201732,18 implies Assumption 2
Here we prove that the assumption of invertibility used, for instance, in the works of Wang, Isidori and Su32,18 implies
Assumption 2.

Lemma 4. Suppose that nu = ny (i.e. B(x) is square) and that there exist a non singular matrix M ∈ ℝnu×nu and a constant
�0 ∈ (0, 1) such that

max
Λ∈ℝnu×nu
|Λ|≤1

|

|

|

|

(

B(x) −M
)

ΛM−1|
|

|

|

≤ �0 (54)

holds for all x ∈ W ×ℝnx . Then Assumption 2 holds.

Proof. As (54) holds for all Λ ∈ ℝnu×nu satisfying |Λ| ≤ 1, it holds in particular for Λ = I , thus yielding

|B(x)M−1 − I| ≤ �0.

Thus, for all p ∈ ℝnu and x ∈ W ×ℝnx , it holds that

2p⊤
(

I − B(x)M−1
)

p ≤ |2p⊤(B(x)M−1 − I)p| ≤ 2|p|2 ⋅ |I − B(x)M−1
| ≤ 2�0|p|2 = p⊤(2�0I)p.

Therefore, we obtain

p⊤
(

2I −M−TB(x)⊤ − B(x)M−1
)

p = 2p⊤p − 2p⊤B(x)M−1p = 2p
(

I − B(x)M−1
)

p ≤ p⊤(2�0I)p.

As it holds for all p ∈ ℝnu and x ∈ W ×ℝnx then, necessarily

2I −M−TB(x)⊤ − B(x)M−1 ≤ 2�0I,

and thus, letting  ∶=M−1 and (x) ∶= I∕(2(1− �0)) yields the item c of Assumption 2. Point a instead follows by noting that
�0 ∈ (0, 1), while point b is straightforward as  is constant in x.
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6.3 Positivity and negativity in the sense of McGregor, Byrnes and Isidori 200615, Back 200933

and Astolfi, Isidori, Marconi and Praly 201316 imply Assumption 2
Finally, here we show that the “negativity” and “positivity” assumptions on B, made in some recent papers15,33,16, all imply
Assumption 2. The following lemma refers to the positivity assumption (Assumption 1) of Astolfi, Isidori, Marconi and Praly
201316.

Lemma 5. Suppose that nu = ny (i.e.B(x) is square) and that there existsK ∈ ℝny×ny such that the following positivity condition
holds

B(x)K +K⊤B(x)⊤ ≥ I (55)
for all x ∈ W ×ℝnx . Then Assumption 2 holds.

Proof. We first observe that equation (55) implies thatK is invertible. In fact, if we suppose thatK is singular, then there exists
p ≠ 0 satisfying Kp = 0. But this yields p⊤(B(x)K + K⊤B(x))p = 0, which contradicts (55). Then, Assumption 2 is satisfied
by simply letting  = K and (x) = I .

The following lemma, instead, refers to a slightly relaxed version of Assumption 4.4 of McGregor, Byrnes and Isidori 200615,
which is however implied by that assumption in each compact subset ofW ×ℝnx .

Lemma 6. Suppose that nu = ny (i.e. B(x) is square) and that there exists M ∈ ℝny×ny and � > 0 such that the following
negativity condition holds

B(x)M +M⊤B(x)⊤ < −�I (56)
for all x ∈ W ×ℝnx . Then Assumption 2 holds.

Proof. The proof follows by Lemma 5 by noticing that (56) implies (55) with K = −M∕�.

Finally, the following lemma concerns a slightly relaxed version of Assumption 3 of Back 200933, which is equivalent to that
assumption in each compact set.

Lemma 7. Suppose that nu = ny (i.e. B(x) is square), and assume that there exist � > 0, a non singular matrix K , G− ∶=
diag(g−1 ,… , g−m), and G

+ ∶= diag(g+1 ,… , g+m) such that 0 < G
− < G+ and that

(

B(x)Kp − G−p
)⊤
Π2

(

B(x)Kp − G+p
)

≤ −�p⊤p, (57)

for all p ∈ ℝnu and all x ∈ W ×ℝnx and where Π ∶= 2(G+ + G−)−1. Then Assumption 2 holds.

Proof. Equation (57) implies (G− = (G−)⊤)

−K⊤B(x)⊤Π2G+ − G−Π2B(x)K +K⊤B(x)⊤Π2B(x)K + G−Π2G+ ≤ −�I,

that in turn implies
(x) ∶= K⊤B(x)⊤Π2G+ + G−Π2B(x)K > �I

for all x ∈ W ×ℝnx . Noting that

Π2G+ = Π ⋅ 2(G+ + G−)−1G+ = Π ⋅ 2(G+ + G−)−1(G+ + G− − G−) = 2Π − Π2G−

G−Π2 = 2 ⋅ G−(G+ + G−)−1Π = 2Π − G+Π2

then
(x) = 2

(

K⊤B(x)⊤Π + ΠB(x)K
)

−(x)⊤

Thus,(x) > �I implies
K⊤B(x)⊤Π + ΠB(x)K = 1

2

(

(x) +(x)⊤
)

> �I,

and by lettingM = −KΠ−1 we obtain
M⊤B(x)⊤ + B(x)M < −�Π2,

and the claim follows from Lemma 6 by noting that Π2 is positive definite.
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6.4 About Assumption 4
In this sectionwe show that Assumption 4 holds in all the frameworks reported in the previous sections. Regarding the framework
of Section 6.1, we observe that ifB(x) is bounded,L(x)g(x)uB(x) = 0, and |Δi(x)| ≥ � > 0 for all x ∈ W ×ℝnx and all i = 1,… , ny,
then the same properties apply for the upper-left submatrix Be,e(x) ∈ ℝne×ne defined by eliminating the last ny − ne rows and
columns of B(x). Thus, according to Lemma 3, there exist e and e(x) satisfying the same properties of Assumption 2 for
the reduced matrix Be,e(x). Since by Lemma 3 the result for the full-size B(x) can be obtained with a matrix  of the form
 = diag(cny−nee,a), for some c > 1 and some a ∈ ℝ(ny−ne)×(ny−ne), then in view of (13), De,e(x) = cne−nyeBe,e(x), and it is
readily seen that  can be chosen so that Assumptions 2 and 4 hold simultaneously with(x) = e(x).
Regarding all the other frameworks presented above, the fact that also Assumption 4 holds is a consequence of the following

Lemma.

Lemma 8. Suppose that nu = ny and Assumption 2 holds  of the form

(x) = diag(e(x),a(x))

for some e(x) ∈ ℝne×ne and a(x) ∈ ℝ(ny−ne)×(ny−ne). Then Assumption 4 holds.

Proof. The proof directly by noticing that point a and b of Assumption 2 imply the same properties on e(x), while point c,
which by definition of D(x) is equivalent to

D(x)⊤(x) + (x)D(x) ≥ I,
implies

(

De,e(x)⊤e(x) + e(x)De,e(x) M1(x)
M1(x)⊤ M2(x)

)

≥ I (58)

for some properly definedM1 andM2. Pick p ∈ ℝne arbitrary. Then (58) implies

|p|2 ≤
(

p
0

)⊤(De,e(x)⊤e(x) + e(x)De,e(x) M1(x)
M1(x)⊤ M2(x)

)(

p
0

)

= p⊤
(

De,e(x)⊤e(x) + e(x)De,e(x)
)

p

and thus Assumption 4 holds with (x) ∶= e(x).

7 CONCLUSION

In this paper we have proposed a post-processing regulator for multivariable nonlinear systems possessing a partial normal form.
Contrary to previous approaches, the proposed regulator can handle additional measurements that need not to vanish at the steady
state but that can be useful for stabilization purposes or, for instance, to fit into the minimum-phase requirement. The proposed
approach can also handle a control input dimension of arbitrarily large size, provided that a controllability assumption is fulfilled.
About the controllability requirement, we have shown that is is implied by many state-of-art assumption in the literature of
high-gain stabilization and regulation of normal forms. Among the drawbacks of the proposed approach, we underline how the
stabilization phase is still strongly based on a “high-gain” perspective, thus allowing us to restrict to linear stabilizers, and how
the proposed conditions to obtain asymptotic regulation may be not constructive in general.
Future research directions spread in many ways. In the first place, we aim to introduce adaptation in the control loop, so as

to cope with model uncertainties and to weaken the chicken-egg dilemma that link the choice of the stabilizer gains and the
internal model dynamics, as envisioned in4. A second research direction concerns the extension of the framework to include
more general stabilizing laws, going beyond he linear high-gain technique and trying to relax the minimum-phase requirement.

How to cite this article:M. Bin, and L. Marconi (0000), Output Regulation by Post-Processing Internal Models for a Class of
Multivariable Nonlinear Systems, Int. J. Robust Nonlinear Control, 0000;00:0–0.
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APPENDIX

A PROOF OF LEMMA 1

Pick i ∈ {1,… , r} and, with ki > 0, define the matrix Λi(ki) ∶= diag(k
Ni−2
i Ipi , k

Ni−3
i Ipi ,… , kiIpi , Ipi)∈ ℝpi(Ni−1)×pi(Ni−1) and

change coordinates as
� i → zi ∶= Λi(ki)� i .

With reference to the matrices defined in (3a)-(3c), noting that

Λi(ki)FiiΛi(ki)−1 = kiFii, Λi(ki)Hii = Hii, Λi(ki)C⊤
i G1CiΛi(ki)

−1 = C⊤
i G1Ci, Λi(ki)C⊤

i = k
Ni−2
i C⊤

i

then zi fulfills

żi = kiFiizi +Hii�i + Λi(ki)
i−1
∑

j=1

(

FijΛj(kj)−1zj +Hij�j
)

+ C⊤
i G1Ciz

i + kNi−2
i C⊤

i (�2 − G1�1)

Let (�i1,… , �iNi−1
) be such that the polynomial �Ni−1 + �iNi−1

�Ni−2 +⋯ + �i1 has roots with negative real part and, with

Di ∶=
(

−�i1Ipi ⋯ − �iNi−1
Ipi

)

and �̄ i ∈ ℝpi , let
� i = �̄ i + kiDizi .

Since Fii +HiiDi is Hurwitz, then there exists k⋆ > 1 such that, for any ki > k⋆, the following holds

|zi(t)| ≤ b1e
−b2kit

|zi(0)| + b3k
Ni−3
i

(

|�̄[1,i]|[0,t) + |�|[0,t)
)

+ b4k
Ni−3
i

i−1
∑

j=1
kj

t

∫
0

e−b2ki(t−�)|zj(�)|d� (A1)

for some b1, b2, b3, b4 > 0, and in which we let for convenience � ∶= |G1||�1| + |�2|, �̄[1,i] ∶= (�̄1,… , �̄i). We can partition ē
as ē = col(ē1,… , ēre), with ēi ∶= k2−Ni

i Cizi. Pick � > 0 and pick i ∈ {2,… , r}. Let for convenience k̄i ∶= max1≤j<i kj and
suppose that, for each j = 1,… , i − 1, zj(t) fulfills

|zj(t)| ≤ ℎi1(k̄i)e
− b2

2
k1t
|z(0)| + ℎi2(k̄i)

(

|�̄[1,j]|[0,t) + |�|[0,t)
)

, (A2)

for some ℎi1(k̄i), ℎ
i
2(k̄i) ≥ 0. Then, if ki > k̄i > k1, for each � ≤ t we have

e−b2ki(t−�) ≤ e−b2k1(t−�) ≤ e−
b2
2
k1teb2k1� ,

and equations (A1)-(A2) give

|zi(t)| ≤ b1e
−b2k1t

|z(0)| + b3k
Ni−3
i

(

|�̄[1,i]|[0,t) + |�|[0,t)
)

+ b4k
Ni−3
i (i − 1)k̄i

(

e−b2k1t
t

∫
0

e
b2
2
k1�ℎi1(k̄i)|z(0)|d� +

t

∫
0

e−b2ki(t−�)ℎi2(k̄i)
(

|�̄[1,i]|[0,t) + |�|[0,�)
)

d�
)

≤

(

b1 +
2b4rk̄iℎi1(k̄i)k

Ni−3
i

b2k1

)

e−
b2
2
k1t
|z(0)| +

(

b3 +
b4rk̄iℎi2(k̄i)

b2ki

)

kNi−3
i

(

|�̄[1,i]|[0,t) + |�|[0,t)
)

.

(A3)

Hence, if

ki > max

{

k⋆, k̄i,
r
�

(

b3 +
b4rk̄iℎi2(k̄i)

b2

)}

, (A4)

then, in view of (A3), the fact that (A2) holds for j = 1,… , i − 1 implies that the same bounds also hold for j = 1,… , i, with
k̄i+1 = max{k̄i, ki} = ki and

ℎi+11 (k̄i+1) ∶= ℎi1(k̄i+1) + b1 +
2b4rℎi1(k̄i+1)k̄

Ni−2
i+1

b2k1
, ℎi+12 (k̄i+1) ∶= ℎi2(k̄i+1) +

r
�
k̄Ni−2
i+1 .
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Moreover, noting that |ēi(t)| ≤ k2−Ni
i |zi(t)|, in view of (A3), we have

|ēi(t)| ≤ qi1(k̄i, ki)e
− b2

2
k1t
|z(0)| + �

r
(

|�̄ e|[0,t) + |�|[0,t)
)

(A5)

with qi1(k̄i, ki) ∶= ℎ
i+1
1 (k̄i)k

2−Ni
i and �̄ e ∶= �̄[1,re]. Fix k1 so that

k1 ≥ max
{

k⋆,
b3r
�

}

.

Since e−b2k1t ≤ e−b2k1t∕2 for all k1, t > 0 and k̄2 = k1, then (A1) implies (A2) for j < 2 with ℎ21(k̄2) = b1 and ℎ
2
2(k̄2) = b3k̄

N1−3
2

and (A5) for i = 1, with q11 ∶= b1k2−N1 , q12 ∶= b2k1. Hence the sequence (A4) is well-defined and by induction we conclude
that, for each i = 1,… , r, it holds that

|zi(t)| ≤ ℎ̄1(k̄i+1)e
− b2

2
k1t
|z(0)| + ℎ̄2(k̄i+1)

(

|�̄[1,i]|[0,t) + |�|[0,t]
)

with ℎ̄1 ∶= ℎr+11 , ℎ̄2 ∶= ℎr+12 , and for each i = 1,… , re, (A5) holds true. Noting that |� i(t)| ≤ |zi(t)|, |z(0)| ≤ kNr−1
|�(0)| and

|ē(t)| ≤
∑re
i=1 |ē

i(t)|, then we obtain (29)-(30), with

�� (s, �) ∶= kNr−1ℎ̄1(k̄r+1) exp
(

−
b2b3r�
2

)

s, a1 ∶= kNr−1ℎ̄2(k̄r+1), �ē(s, t∕�) ∶= s
∑

i=1,…,re

qi1(k̄i, ki) exp
(

−
b2b3r�
2

)

and the claim of the lemma follows with

K ∶= diag
(

k1D
1Λ1(k1), … , krD

rΛr(kr)
)

.

B PROOF OF LEMMA 2

With  given by Assumption 2, define the function

V (w, x) =
√

�̄⊤(w, x)�̄ (B6)

By point a of Assumption 2 V satisfies
√

�|�̄ | ≤ V (w, x) ≤
√

�̄|�̄ |

for all (w, x) ∈ W ×ℝnx . Taking the Dini derivative of V along the solutions of the closed-loop system yields

D+V (w, x) = 1
2V (w, x)

(

− l�̄⊤
(

⊤B(w, x)⊤(w, x) + (w, x)B(w, x)
)

�̄

+ 2�̄⊤(w, x)
(

%(�, �, �̄ ) + q(w, x)
)

+ �̄
(

L(w)s (w, x) + L(x)f (w, x) + L(x)b(w,x)u(w, x)
)

�̄
)

.

Point c of Assumption 2 implies

�̄⊤
(

⊤B(w, x)⊤(w, x) + (w, x)B(w, x)
)

�̄ ≥ |�̄ |2

so as
−l�̄⊤

(

⊤B(w, x)⊤(w, x) + (w, x)B(w, x)
)

�̄ ≤ −l|�̄ |2.

As  is continuous, % is Lipschitz and q is Lipschitz onW × X̄, then there existsM1 > 0 such that

2�̄⊤(w, x)
(

%(�, �, �̄ ) + q(w, x)
)

≤M1|�̄ |
(

|�̄ | + |(w, x, �, �)|
)

,

as long as (w, x) ∈ W × X̄. Point b of Assumption 2 implies that L(x)b(w,x)u(w, x) = 0, so as by continuity of  , as long as
(w, x) ∈ W × X̄, we can write

�̄
(

L(w)s (w, x) + L(x)f (w, x) + L(x)b(w,x)u(w, x)
)

�̄ ≤M2|�̄ |
2



22 BIN AND MARCONI

for someM2 > 0. Since
1
√

�̄
≤ |�̄ |
V (w, x)

≤ 1
√

�
,

then there exists �2 > 0 such that, as long as (w, x) ∈ W × X̄, we have

D+V (w, x) ≤ (�2 − l�1)V (w, x) + �2|(w, x, �, �)|,

with �1 ∶= 1∕(2
√

�̄). The result thus follows with ��̄ (s, �) ∶= (s
√

�̄∕
√

�) exp(−�1�∕2) and a4 ∶= 2�2∕(�1
√

�) by taking
l⋆0 ∶= 2�2∕�1 and noticing that ��̄ does not depend on X̄.
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