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Abstract: Power quality is a wide-ranging and current topic that involves a huge effort from the
scientific community. Power quality issues have to be avoided or solved in order to preserve
the integrity of the network and its assets. To this purpose, several power quality indexes and
measurement techniques have been developed and used by experts. This paper aims at solving
the issue of having an uncertainty associated to the total harmonic distortion (THD) measurements.
The idea is to obtain a close-form expression, which only requires the knowledge of the instrument
transformer accuracy class, to estimate the mean value and the variance of THD. After the development
of such an expression, it has been tested and stressed to confirm its effectiveness and applicability in a
variety of conditions, and for harmonics up to 25th (of 50 Hz), defined by the standards.

Keywords: THD; accuracy class; instrument transformers; sensors; probability density function;
variance; probability distribution

1. Introduction

The classical structure of the power network underwent a huge change after the introduction of
several new actors. With particular emphasis on medium and low voltage networks (MV and LV),
such new actors include: electronic converters, renewable energy sources, measurement instruments,
charging stations for electric vehicles, and storage systems. All have contributed to the improvement
of the power network towards the so-called and well-known smart grids.

The integration of these new actors brought benefits to both the costumers and distribution
system operators (DSOs), which can manage the network in a smarter way, gathering all the necessary
information to control each aspect of the grid. However, the new smart grids are not problem-free.
As a matter of fact, two of the main issues affecting the network are (i) the reliability of the electrical
assets and (ii) the behavior of the network and of assets in the presence of low power quality (PQ).

The former issue concerns the reliability of the existing or new assets when operating at the new
and current conditions of the network. To this purpose, the literature provides a variety of works
tackling almost all particular aspects related to the assets. For example, a critical cable accessory like
the cable joint is tackled in [1–5], while studies on electrical insulators have been completed in [6–9].
Two asset management systems have been developed in [10,11] and the integration of electric vehicles
and storage systems into smart grids has been detailed in [12] and [13], respectively. Lastly, the
performance of energy meters under non-rated conditions, hence affected by PQ issues, are studied
in [14–19].
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Turning to the effects of PQ on the network, it is well documented that a low level of PQ may
compromise the operation of the network and of its assets. For example, voltage dips effects have
been discussed for wind turbines and storage systems in [20] and [21], respectively. In [22–26],
techniques to mitigate the effects of harmonics and to improve PQ for converters/inverters have
been presented. Finally, crucial assets that must work in all possible network conditions are the
instrument transformers (ITs). Their correct behavior is crucial for different purposes, (i) measurements
for billing [27–29], (ii) measurements to feed management and control algorithms for DSOs and
utilities [30–36], (iii) knowledge of the network parameters. Consequently, studies on ITs behavior at
non-rated conditions, including effects of a low PQ, are always vivid and current. In [37–39] effects of
the harmonics and mitigation techniques have been developed for current transformers (CTs), while
the same issue has been tackled in [40,41] for voltage transformers (VTs). A comparison among MV
VTs, for PQ purposes has been completed in [42], while the effects of modulation on CTs has been
studied in [43].

In light of the above, this paper aims at providing a closed-form expression to evaluate the
uncertainty associated to an important parameter like the total harmonic distortion (THD). In fact,
considering the complexity of its expression, it is typically measured without any information regarding
the associated uncertainty. This results in inaccurate, or in some cases meaningless, information
provided to the final user and to DSOs. The literature related to this particular aspect is not wide;
however, in [44] an approach for the THD’s uncertainty evaluation based on the guide for the expression
of uncertainty on measurements (GUM) [45] has been presented. The THD uncertainty is studied
in [46] starting from a characterization of the instrumentation. Finally, [47] assessed the uncertainty of
several PQ parameters from a probabilistic point of view and [48] provides a complete overview of the
issues related to the measurements of the PQ indices, respectively.

The novelty of this work, as detailed in the following sections, is to provide a closed-form
expression of the uncertainty related to THD, which only requires the accuracy class information of the
low-power instrument transformers (LPITs) involved for the measurement of the voltages. Therefore,
even non-experts or DSOs operators may evaluate the uncertainty related to their THD measurements.

What follows has been structured as: Section 2 provide a brief overview of the PQ scenario and the
related standards. Section 3 details the developed expression and all the mathematical steps involved.
In Section 4, the performed tests and the obtained results are discussed to verify the effectiveness and
applicability of the THD uncertainty expression. Finally, Section 5 collects the main conclusion and
significant comments on the work.

2. Power Quality Overview

Even if the original meaning was related to voltage, PQ is defined as “characteristics of the electric
current, voltage and frequencies at a given point in an electric power system, evaluated against a
set of reference technical parameters”, according to the International Electrotechnical Commission
vocabulary [49].

From a DSO perspective, a reference standard is the EN 50160 [50], in which continuous phenomena
and voltage events that may affect the network are described for all voltage levels. Furthermore,
limits for the voltage, frequency and harmonics during the normal operation of the network are fixed.
In particular, for the voltage and the frequency is established that they should not vary more than
±10% and ±1% of their rated values, respectively. As for the harmonics from the 2nd to the 25th, aim of
the work, the limits defined in [50] are listed in Table 1. Higher harmonic orders are not tackled by the
standard due to their unpredictable behavior and low amplitude compared to the 50, 60 Hz component.



Sensors 2020, 20, 1804 3 of 18

Table 1. Values of the harmonic limits at the supply terminals for orders up to 25th.

Odd Harmonics
Even Harmonics

Not Multiples of 3 Multiples of 3

Order h Relative
Amplitude uh

Order h Relative
Amplitude uh

Order h Relative
Amplitude uh

3 6.0% 3 5.0% 2 2.0%
7 5.0% 9 1.5% 4 1.0%
11 3.5% 15 0.5% 6 to 24 0.5%
13 3.0% 21 0.5%
17 2.0%
19 1.5%
23 1.5%
25 1.5%

In addition to the limit fixed in the table, the standard [50] imposes that the THD of the supply
voltage should be less than 8% for whatever combination of harmonics affecting the supply voltage
(up to the 40th).

Another fundamental standard for DSO and power network owners is the IEC Std 519-2014 [51],
which provides recommended practice and requirements for harmonic control in electric power
systems. The standard purpose is to define goals for system designers who have to build electrical
power systems that include both linear and non-linear loads. In the document, after the relevant
definitions and equations, the current and voltage distortions limits at the point of common coupling
(PCC)—for different voltage and current levels—are given.

Turning to another perspective, the reference standards for manufacturers and final users are the
IEC 61000-4-7 [52], the IEC 61000-4-30 [53], and the IEC 61869 series. In [52], instrument manufacturers
are asked to build their devices fulfilling some measurement requirements for the voltage, current,
and power. These requirements are fixed in terms of error on the rated values (for voltage, current,
and power) and in terms of percentage variation for the harmonic measurements. In [53], instead, is a
description of how to perform the measurements of all disturbances affecting the voltage, hence the
PQ, for different classes of devices. Finally, the IEC 61869 series dedicated to ITs contains, in the IEC
61869-6 [54] for the low-power ones, the ratio error and phase displacement limits for all harmonic’s
orders. It should be emphasized that such limits can be applied when the ITs are subjected to a single
frequency signal and not to a signal consisting of a fundamental component plus several harmonics.
However, for the next section, such limits will be used in absence of any other information on the
accuracy associated to the harmonic measurements. To this purpose, the limits for ratio error for
several accuracy classes are listed in Table 2 for a wide range of frequencies.

Table 2. Ratio error for each accuracy class and for different range of frequencies.

Accuracy Class Ratio Error ε [%]

50 Hz 0.1 to 1 kHz 1 to 1.5 kHz 1.5 to 3 kHz

0.1 ±0.1 ±1 ±2 ±5
0.2 ±0.2 ±2 ±4 ±5
0.5 ±0.5 ±5 ±10 ±10
1 ±1 ±10 ±20 ±20

Summarizing, the PQ is a quite general terms that include several aspects: (i) limits of the PQ
indexes for DSOs, (ii) measuring the electrical quantities when affected by PQ issues, (iii) building
measurement devices capable of working under and detect the various meanings of PQ.

However, it is difficult to find some information in the standards regarding the uncertainty related
to the PQ measurements, like for the THD, which is the main topic of this work.
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3. The Closed-Form Expression

3.1. Mathematical Development

This section describes how the closed-form expression of the THD uncertainty has been obtained
starting from the THD definition. The required input is the accuracy class of the LPIT used to measure
the voltage or the current, then the output of the obtained expressions are the mean value and the
variance of the THD. For the sake of simplicity, in what follows, the mathematical expressions are
given for the voltage case (but they can be replicated also for the current).

Let’s start from the THD definition [51]:

THD =

√∑N

i=2

(
Vi
V1

)2

, (1)

where V1 is the rms value of the first frequency component of the signal (e.g., 50, 60 Hz), Vi is the rms
value of the harmonic component of order i, and N is the maximum harmonic order contained in the
signal or considered.

The main idea is to rewrite and develop Equation (1) considering the ratio errors affecting the rms
values. These are indicated as ε1 and εi for V1 and Vi, respectively. Hence:

THD =

√∑N

i=2

(
Vi(1 + εi)

V1(1 + ε1)

)2

. (2)

The errors ε1 and εi assume a value among those listed in Table 2. In particular, ε1 may be one
value among those in the second column (dedicated to the 50 Hz component), while εi may assume
all possible values in the remaining columns, depending on the harmonic order considered (hence,
on the frequency).

From the expression of THD in Equation (2), the aim is to exploit the probability distribution
of each single element of Equation (2) to obtain the final distribution of THD, of which the mean
value µTHD and the variance σ2

THD are the desired outcomes. This can be done if, as suggested by the
GUM [45], ε1 and εi are considered as random variables (r.v.), which varies within the limits listed in
Table 2.

The first term that can be analyzed from (2) is:

A = Vi(1 + εi). (3)

According to the GUM [45], εi can be assumed distributed as a uniform r.v. in the interval ±εi.
Therefore A is a r.v. uniformly distributed with mean value µA and variance σ2

A:

µA = Vi, (4)

σ2
A = V2

i σ
2
εh. (5)

In Equation (5), σ2
εh is the variance associated to εi, hence to the harmonic components (a subscript

h has been added for the sake of clarity). The relation between σ2
εh and εi is, according to the variance

of a uniform distribution:

σ2
εh =

(2εi)
2

12
. (6)

Afterwards, in Equation (2) the term A defined in Equation (3) is squared:

B = [Vi(1 + εi)]
2. (7)
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B follows a distribution that is in between a uniform and the inverse of a square root. In particular
the probability density function (pdf) of B, fB(x), is:

fB(x) =
1

2εi
√

x
, (8)

where x is a generic variable. In Figure 1, the distribution of B is presented for generic values of Vi and
a million trials.Sensors 2020, 20, 1804 5 of 18 
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Figure 1. Distribution of B with 1 million trials.

It is worth clarifying that, in Figure 1, the y axis has been zoomed in on to highlight that B
distribution is not fully uniform. In fact, without the zoom, the distribution may appear as uniform.
Therefore, from (8), by applying their definition, it is straightforward to obtain the mean value and
variance of B:

µB = V2
i + Viσ

2
εh, (9)

σ2
B = 4V4

i σ
2
εh +

4
5

V4
i σ

4
εh. (10)

In light of Equations (3)–(10), it is possible to obtain the mean value and variance of the denominator
of Equation (2) (B1 = [V1(1 + ε1)]

2) as:

µB1 = V2
1 + V1σ

2
ε, (11)

σ2
B1 = 4V4

1σ
2
ε +

4
5

V4
1σ

4
ε, (12)

where σ2
ε is the variance associated to ε1 that can be easily found applying Equation (6) to ε1.

Turning to the sum of the harmonic components in Equation (2), it is worth noticing that the term
B1 is independent of it. Therefore, the new term to study can be defined as:

C =
∑N

i=2
[Vi(1 + εi)]

2. (13)

Such term can be approached using the central limit theorem CLT [55] which guarantees that the
mean value and variance of C are the sum of µB and σ2

B for each harmonic order. This results in:

µC =
∑N

i=2

(
V2

i + Viσ
2
εh

)
, (14)
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σ2
C =

∑N

i=2

(
4V4

i σ
2
εh +

4
5

V4
i σ

4
εh

)
. (15)

The second to last step before obtaining the mean value and variance of THD is the quotient
between C and B1:

D =
C
B1

=

∑N
i=2[Vi(1 + εi)]

2

[V1(1 + ε1)]
2 . (16)

Its distribution can be obtained considering that:

• C is the sum of several r.v (up to 40 or 50) that can be already assumed normal distributed when
five elements are considered. This is confirmed by Figure 2, in which 1 million trials have been
run to obtain C using 5 r.v. that satisfy the requirements of the CLT.

• B1 is distributed as in Figure 1.
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Therefore, the distribution of D results into a quasi-normal distribution with parameters:

µD =
µC

µB1
=

∑N
i=2

(
V2

i + Viσ
2
εh

)
V2

1 + V1σ2
ε

, (17)

σ2
D = µD

2
[(
σC
µC

)2
+

(
σB1
µB1

)2
]
=

(∑N
i=2(V2

i +Viσ
2
εh)

V2
1+V1σ

2
ε

)2[∑N
i=2(4V4

i σ
2
εh+

4
5 V4

i σ
4
εh)

(
∑N

i=2(V2
i +Viσ

2
εh))

2 +
4V4

1σ
2
ε+

4
5 V4

1σ
4
ε

(V2
1+V1σ

2
ε)

2

]
, (18)

where the involved terms are all known from the previous steps.
The definitions of µD and σ2

D have been described in [56] for the ratio of two quasi-normal
distributions, with positive and non-zero mean and variance different from one. The assumption that
is made in this work is that, considering that C is normally distributed, the weight of B1 that is not
quasi-normal, in terms of distribution, is not significant compared to C.

This aspect is confirmed by Figure 3 where the distribution of D is shown starting from the values
used in Figure 2 and running 1 million trials. The relation between V1 and all Vi has been kept as in a
real THD computation: a unity value for V1 and the five Vi have been randomly chosen from Table 1.
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Once D is completely known, it is possible to obtain the desired parameters from (2). In fact,
the last step consists of applying the square root to the r.v. D, obtaining the THD.

The r.v. THD follows a Nakagami distribution [57] of parameters m and Ω:

m =
µD

σ2
D

, (19)

Ω = µD. (20)

With the two parameters it is straightforward to compute the mean value and the variance of
THD as:

µTHD = P
(
m,

1
2

)
∗

√
Ω
m

, (21)

σ2
THD = Ω

{
1−

1
m

[
P
(
m,

1
2

)]2}
. (22)

In both expressions, P is the well-known Pochhammer function [58] implemented with the
parameters m and 1

2 . The latter parameter value is due to presence of only one element under the
square root expression of THD, hence to the degrees of freedom.

With Equations (22) and (23), the desired outcome has been achieved: to find closed-form
expression for the mean value but most importantly for the variance associated to the THD.
Both expressions have as inputs the rms values of the voltage harmonics, the accuracy class of
the adopted LPIT and the limits on the harmonics’ uncertainty defined in [54].

The reader must be aware that Equations (21) and (22) are estimates of the THD distribution
parameters that are valid under the assumption made in this section. In what follows, the validity of
such expressions is numerically proven using several case studies.

3.2. Practical Considerations

In light of the overall procedure, it is interesting to link it to some particular aspects of the
Standards. Let’s consider the expression of THD in which are involved ε1 and εi. According to [50],
the limits for the harmonics are fixed up to the 25th (1250 Hz). Hence, only the first three columns of
ratio errors in Table 2 have to be considered. Note also that there is a ratio 10 between ε for the range
0.1–1 kHz and ε at 50 Hz, while such a ratio increases at 20 for the range 1–1.5 kHz. Furthermore,
these ratios are valid for all accuracy classes in Table 2.
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Consequentially, two new expressions for the harmonic ratio errors in Equation (2) can be
formulated as:

εi = 10ε1, for i = 2 . . . 20, (23)

εi = 20ε1, for i = 21 . . . 25. (24)

Finally, Equation (19) can be rewritten with only one variable, ε1:

THD =
√

D =

√∑20
i=2[Vi(1 + 10ε1)]

2 +
∑25

i=21[Vi(1 + 20ε1)]
2

V1(1 + ε1)
, (25)

which shows that the knowledge of the ratio error of the considered LPIT is sufficient to obtain,
by implementing Equation (22), the uncertainty associated to THD.

4. Tests & Results

In this section, several tests are presented to assess, first of all, the validity of the presented closed
form expression, and second, to understand its peculiarities, limits, and range of applicability.

4.1. Validation of the Closed-Form Expression

To validate the closed-form expression, described in Section 3, a case study has to be considered.
It involves:

1. Three accuracy classes of LPITs, 0.1, 0.2, and 0.5. This choice has been taken to include a huge
variety of devices in the test.

2. Three distorted signals. In the remainder of the work referred to as F, G, and H. The three
signals consist of a 50 Hz component plus different harmonic contents. In particular, F contains 4
harmonics, the 2nd, 4th, 6th, and 8th; signal G contains 7 harmonics from the 2nd to the 8th; finally,
signal H contains 15 harmonics from 2nd to the 16th. The three signals have been designed to
represent various signals with few or several harmonics, even or odd.

The combination of the above conditions leads to 9 test scenarios that have been run by using the
Monte Carlo (MC) method in the MatLab environment as a reference for the uncertainty evaluation of
THD, as suggested by Supplement 1 of the GUM [59]. In particular, 1 million trials have been run to
obtain the reference mean value and variance µTHD_c and σ2

THD_c of THD.
The input required for this test (and for the following) are (i) the harmonic amplitudes, (ii) the

limits for the harmonics’ uncertainty εi, and (iii) the ratio error ε1. In detail, the harmonic amplitude
for signals F, G, and H have been fixed in accordance with Table 1, taking the maximum value for each
harmonic and a unity value for the 50 Hz component. As for the accuracy limits, in Table 2 the second
and third columns are considered for ε1 and εi, respectively.

Results of the tests are listed in Table 3. It contains, for the three signals and for each accuracy
class (AC), the mean value, variance, and standard deviation of THD, estimated by the closed-form
expression (µTHD_e, σ2

THD_e, and σTHD_e) and the reference provided by the MC simulations (µTHD_c,
σ2

THD_c, and σTHD_c).
Before assessing the results, in Table 3 and in the following the standard deviations σTHD_c and

σTHD_e are written with two significant digits to highlight the really small difference (if any) between
the references and the results of Equations (21) and (22). Of course, the proper way of representing a
standard deviation would have been with one significant digit.
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Table 3. Results of the validation test, which involves three signals and 3 accuracy classes.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

F
0.1 0.0235 0.0235 1.06 × 10−8 1.05 × 10−8 1.0 × 10−4 1.0 × 10−4

0.2 0.0235 0.0236 4.23 × 10−8 4.19 × 10−8 2.1 × 10−4 2.0 × 10−4

0.5 0.0235 0.0241 2.64 × 10−8 2.49 × 10−8 5.1 × 10−4 5.0 × 10−4

G
0.1 0.096 0.096 9.66 × 10−8 9.64 × 10−8 3.1 × 10−4 3.1 × 10−4

0.2 0.0957 0.0958 3.86 × 10−8 3.85 × 10−7 6.2 × 10−4 6.2 × 10−4

0.5 0.096 0.097 2.41 × 10−6 2.37 × 10−6 1.6 × 10−3 1.5 × 10−3

H
0.1 0.108 0.108 8.43 × 10−8 8.41 × 10−8 2.9 × 10−4 2.9 × 10−4

0.2 0.1078 0.1080 3.37 × 10−7 3.36 × 10−7 5.8 × 10−4 5.8 × 10−4

0.5 0.108 0.109 2.10 × 10−6 2.06 × 10−6 1.4 × 10−3 1.4 × 10−3

The first general comment from the results is that the presented closed-form expression works.
In detail, the difference between µTHD_c and µTHD_e, for all tested cases, is always lower than 10−3, while
the difference between σTHD_c and σTHD_e is always lower than 10−5. A further comment is possible
looking at the relative standard deviation %THD_e of the estimated values in Table 4, computed as:

%THD_e =
σTHD_e

µTHD_e
. (26)

Table 4. Relative standard deviation of the estimated values.

Signal AC %THD_e (-)

F
0.1 4.4 × 10−3

0.2 8.7 × 10−3

0.5 2.1 × 10−2

G
0.1 3.2 × 10−3

0.2 6.5× 10−3

0.5 1.6 × 10−2

H
0.1 2.7 × 10−3

0.2 5.4 × 10−3

0.5 1.3 × 10−2

In fact, as expected, %THD_e increases with the accuracy class because, for the lower accurate
classes, the limits of accuracy fixed for the harmonics are less stringent (see third column of Table 2).

From Table 3, note that the accuracy class does not influence the correctness of the closed-form
expression. A reason for that may be attributed to the weight of the denominator of (25), which include
the term related to the AC. In fact, the ratio error of the 50 Hz component is at least one order of
magnitude lower compared to the ratio error of each single harmonic component (see Table 2).

A final comment on Table 3 is that the effectiveness of Equations (21) and (22) is not affected by
the harmonic content of the signal.

4.2. Tests vs. Different Accuracy Limits for Harmonics

This subsection discusses whether the closed-form expressions are affected by the change in the
fixed accuracy for the harmonics of the signal. To this purpose, the case study introduced in Section 4.1
has been used to perform two additional tests: (i) one fixing the accuracy limit for all harmonics and
all AC at 5%; (ii) another fixing that limit to 0.5%, hence 10 times lower compared to the previous.
The results for the tests at 5% and 0.5% are shown in Tables 5 and 6, respectively, adopting the same
notation used for Table 3.
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Table 5. Results of the test vs. harmonic accuracy class limit at 5%.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

F
0.1 0.0235 0.0241 2.60 × 10−7 2.45 × 10−7 5.1 × 10−4 4.9 × 10−4

0.2 0.0235 0.0241 2.60 × 10−7 2.45 × 10−7 5.1 × 10−4 5.0 × 10−4

0.5 0.0235 0.0241 2.64 × 10−7 2.49 × 10−7 5.1 × 10−4 5.0 × 10−4

G
0.1 0.096 0.097 2.34 × 10−6 2.30 × 10−6 1.5 × 10−3 1.5 × 10−3

0.2 0.096 0.097 2.34 × 10−6 2.31 × 10−6 1.5 × 10−3 1.5 × 10−3

0.5 0.096 0.097 2.41 × 10−6 2.37 × 10−6 1.6 × 10−3 1.5 × 10−3

H
0.1 0.108 0.109 2.01 × 10−6 1.97 × 10−6 1.4 × 10−3 1.4 × 10−3

0.2 0.108 0.109 2.02 × 10−6 1.98 × 10−6 1.4 × 10−3 1.4 × 10−3

0.5 0.108 0.109 2.10 × 10−6 2.06 × 10−6 1.4 × 10−3 1.4 × 10−3

Table 6. Results of the test vs. harmonic accuracy class limit at 0.5%.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

F
0.1 0.02345 0.02346 2.78 × 10−9 2.78 × 10−9 5.3 × 10−5 5.3 × 10−5

0.2 0.02345 0.02346 3.33 × 10−9 3.33 × 10−9 5.8 × 10−5 5.8 × 10−5

0.5 0.02345 0.02346 7.16 × 10−9 7.18 × 10−9 8.5 × 10−5 8.5 × 10−5

G
0.1 0.0957 0.0957 2.64 × 10−8 2.64 × 10−8 1.6 × 10−4 1.6 × 10−4

0.2 0.0957 0.0957 3.55 × 10−8 3.55 × 10−8 1.9 × 10−4 1.9 × 10−4

0.5 0.0957 0.0957 9.95 × 10−8 9.96 × 10−8 3.2 × 10−4 3.2 × 10−4

H
0.1 0.1078 0.1078 2.39 × 10−8 2.39 × 10−8 1 × 10−4. 1.5 × 10−4

0.2 0.1078 0.1078 3.55 × 10−8 3.56 × 10−8 1.9 × 10−4 1.9 × 10−4

0.5 0.1078 0.1078 1.17 × 10−7 1.17 × 10−7 3.4 × 10−4 3.4 × 10−4

From the two tables, it is clear how the proposed approach is not affected by any value of
uncertainty associated to the measurement of the harmonic components, neither the stringent 0.5% nor
the quite wide 5%. In addition, the comparison of the two tables provides that, for the same value of
THD, the 0.5% limits provide a standard deviation one order of magnitude lower than the one at 5%,
showing a linear behavior.

4.3. Tests vs. Different Harmonics’ Amplitude

A third interesting test to perform is the verification of whether or not the amplitude of the
harmonics influences the closed-form expression proposed. To this purpose, the case study introduced
in Section 3 has been applied with some modifications: (i) the uncertainty associated to the harmonic
has been kept as defined in Table 2 for each accuracy class; (ii) the amplitude of each single harmonic
has been fixed to 5%, 2%, and 0.5% of the 50 Hz component, resulting in three different group of tests.
Then, 1 million trials have been run to compare the reference values with those obtained applying (21)
and (22). Results are collected in Tables 7–9, for the cases at 5%, 2%, and 0.5%, respectively.

Table 7. Results of the test vs. harmonic amplitude, all at 5% of the 50 Hz component.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

F
0.1 0.100 0.100 8.65 × 10−8 8.66 × 10−8 2.9 × 10−4 2.9 × 10−4

0.2 0.100 0.100 3.47 × 10−7 3.46 × 10−7 5.9 × 10−4 5.9 × 10−4

0.5 0.100 0.101 2.17 × 10−6 2.13 × 10−6 1.5 × 10−3 1.5 × 10−3

G
0.1 0.132 0.132 8.90 × 10−8 8.91 × 10−8 3.0 × 10−4 3.0 × 10−4

0.2 0.132 0.132 3.57 × 10−7 3.56 × 10−7 6.0 × 10−4 6.0 × 10−4

0.5 0.132 0.133 2.23 × 10−6 2.20 × 10−6 1.5 × 10−3 1.5 × 10−3

H
0.1 0.194 0.194 9.59 × 10−8 9.58 × 10−8 3.1 × 10−4 3.1 × 10−4

0.2 0.1937 0.1939 3.84 × 10−7 3.83 × 10−7 6.2 × 10−4 6.2 × 10−4

0.5 0.194 0.195 2.40 × 10−6 2.37 × 10−6 1.5 × 10−3 1.5 × 10−3
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Table 8. Results of the test vs. harmonic amplitude, all at 2% of the 50 Hz component.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

F
0.1 0.0400 0.0400 1.38 × 10−8 1.38 × 10−8 1.2 × 10−4 1.2 × 10−4

0.2 0.0400 0.0401 5.56 × 10−8 5.51 × 10−8 2.4 × 10−4 2.3 × 10−4

0.5 0.0400 0.0408 3.47 × 10−7 3.34 × 10−7 5.9 × 10−4 5.8 × 10−4

G
0.1 0.0529 0.0530 1.42 × 10−8 1.42 × 10−8 1.2 × 10−4 1.2 × 10−4

0.2 0.0529 0.0531 5.72 × 10−8 5.67 × 10−8 2.4 × 10−4 2.4 × 10−4

0.5 0.0529 0.0540 3.57 × 10−7 3.44 × 10−7 6.0 × 10−4 5.9 × 10−4

H
0.1 0.077 0.078 1.53 × 10−8 1.53 × 10−8 1.2 × 10−4 1.2 × 10−4

0.2 0.0775 0.0777 6.13 × 10−8 6.10 × 10−8 2.5 × 10−4 2.5 × 10−4

0.5 0.077 0.079 3.84 × 10−7 3.72 × 10−7 6.2 × 10−4 6.1 × 10−4

Table 9. Results of the test vs. harmonic amplitude, all at 0.5% of the 50 Hz component.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

F
0.1 0.0100 0.0100 8.68 × 10−10 8.61 × 10−10 2.9 × 10−5 2.9 × 10−5

0.2 0.0100 0.0101 3.46 × 10−9 3.38 × 10−9 5.9 × 10−5 5.8 × 10−5

0.5 0.0100 0.0108 2.17 × 10−8 1.88 × 10−8 1.5 × 10−4 1.4 × 10−4

G
0.1 0.0132 0.0133 8.91 × 10−10 8.87 × 10−10 3.0 × 10−5 3.0 × 10−5

0.2 0.0132 0.0134 3.56 × 10−9 3.49 × 10−9 6.0 × 10−5 5.9 × 10−5

0.5 0.0132 0.0143 2.23 × 10−8 1.96 × 10−8 1.5 × 10−4 1.4 × 10−4

H
0.1 0.019 0.019 9.59 × 10−10 9.54 × 10−10 3.1 × 10−5 3.1 × 10−5

0.2 0.0194 0.0196 3.83 × 10−9 3.76 × 10−9 6.2 × 10−5 6.1 × 10−5

0.5 0.019 0.021 2.39 × 10−8 2.15 × 10−8 1.5 × 10−4 1.5 × 10−4

From the three tables it can be concluded that also the harmonics’ amplitude does not infer on the
applicability of Equations (21) and (22). Furthermore, it is confirmed for all accuracy classes and for
different combinations of harmonics (4, 7, and 15 harmonics plus the 50 Hz component). To clarify this
conclusion, the relative standard deviation %THD_e has been calculated—in analogy to Table 4—for the
estimated values, in all cases of Tables 7–9. Results are listed in Table 10.

Table 10. Relative standard deviation of the estimated values.

Signal AC
5% Amplitude 2% Amplitude 0.5% Amplitude

%THD_e (-) %THD_e (-) %THD_e (-)

F
0.1 2.9 × 10−3 2.9 × 10−3 2.9 × 10−3

0.2 5.9 × 10−3 5.9 × 10−3 5.7 × 10−3

0.5 1.4 × 10−2 1.4 × 10−2 1.3 × 10−2

G
0.1 2.3 × 10−3 2.3 × 10−3 2.2 × 10−3

0.2 4.5× 10−3 4.5× 10−3 4.4× 10−3

0.5 1.1 × 10−2 1.1 × 10−2 9.8 × 10−3

H
0.1 1.6 × 10−3 1.6 × 10−3 1.6 × 10−3

0.2 3.2 × 10−3 3.2 × 10−3 3.1 × 10−3

0.5 7.9 × 10−3 7.7 × 10−3 7.0 × 10−3

From the table it can be highlighted that, for all classes and percentage amplitude of the harmonics,
the relative uncertainty is consistent among the considered cases.
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4.4. Normalized Standard Uncertainty Spread.

This subsection is dedicated to the analysis of the THD uncertainty behavior. In fact, considering
that described in the previous subsections, only a few harmonic combinations have been tested so far.
To this purpose, the closed-form expression has been applied to the following case study: (i) the three
AC used above, and signals F, G, and H, (ii) harmonic components amplitude that can vary between
zero and the maximum values listed in Table 1; (iii) accuracy of the harmonic component amplitudes
fixed at those listed in Table 2.

Hence, 10,000 trials, in which only the harmonics’ amplitude varied as in (ii), have been run and
the maximum and minimum values of %THD_e have been extracted and collected, as shown in Table 11.

Table 11. Min and max values of %THD_e for the three signals and all accuracy classes.

Signal AC
%THD_e

Min (-) Max (-)

F
0.1 2.9 × 10−3 5.8 × 10−3

0.2 5.5 × 10−3 1.2 × 10−2

0.5 9.0 × 10−3 2.8 × 10−2

G
0.1 2.6 × 10−3 5.7 × 10−3

0.2 5.0 × 10−3 1.1 × 10−2

0.5 1.0 × 10−2 2.8 × 10−2

H
0.1 2.2 × 10−3 5.5 × 10−3

0.2 4.2 × 10−3 1.1 × 10−2

0.5 9.6 × 10−3 2.6 × 10−2

As it can be seen from the table, the max %THD_e of the classes 0.1, 0.2, and 0.5, never exceeds
in percentage 0.58%, 1.2%, and 2.8%, respectively. Furthermore, the range of %THD_e variation is
quite wide; hence, it is strictly dependent on the parameters adopted for its computations: m and Ω.
To this purpose, in Figures 4–6 the %THD_e values are plotted vs. m and Ω, for the accuracy class 0.1, 0.2,
and 0.5. For the sake of brevity, the three graphs represent the case with 15 harmonics components,
hence signal H.
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For the sake of readability, the three above graphs have been appositely presented with different
inclinations of the surface. This way, it is possible to better appreciate how %THD_e is affected by m
and Ω. The main conclusion by inspecting the surfaces is that high values of m are associated to low
values of %THD_e, which is reasonable in light of Equation (20). In fact, low values of m can be obtained
when the variance used for its computation is low.

4.5. Tests vs. High Number of Harmonic Components

This subsection ends the test section with a focus on the practical consideration introduced in
Section 3.2. In particular, the first part is dedicated to assess the validity of the closed-form expression
in the worst cases of 20 and 25 harmonic components; while the second part tackles the possibility of
simplify what presented in Section 3.2.

4.5.1. Tests with 20 and 25 Harmonic Components

Two new signals have been designed to test in even worse cases the proposed approach. Signal
I consists of a fundamental component plus all harmonics from the 2nd to the 20th, while signal L is
equal to I but with harmonic up to the 25th. Again, as in Section 4.1, the accuracy associated to the
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harmonics are those in Table 2, while their amplitudes are the maximum value listed in Table 1. It is
worth to highlight that, for the case of signal L the accuracy limit of the harmonic component from the
21st to the 25th is different from the one of the first 20 components.

With the same notation as Table 3, Table 12 contains the mean value, variance, and standard
deviation of THD, estimated by the closed-form expression (µTHD_e, σ2

THD_e, and σTHD_e) and obtained
by the MC trials (µTHD_c, σ2

THD_c, and σTHD_c).

Table 12. Results of test, for signals I and L, for the 3 accuracy classes.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

I
0.1 0.1109 0.1110 8.07 × 10−8 8.05 × 10−8 2.8 × 10−4 2.8 × 10−4

0.2 0.1109 0.1111 3.22 × 10−7 3.21 × 10−7 5.7 × 10−4 5.7 × 10−4

0.5 0.111 0.112 2.01 × 10−6 1.97 × 10−6 1.4 × 10−3 1.4 × 10−3

L
0.1 0.1132 0.1133 7.89 × 10−8 7.86 × 10−8 2.8 × 10−4 2.8 × 10−4

0.2 0.1133 0.1136 3.14 × 10−7 3.13 × 10−7 5.6 × 10−4 5.6 × 10−4

0.5 0.113 0.115 1.97 × 10−6 1.91 × 10−6 1.4 × 10−3 1.4 × 10−3

From the figures in the table, the effectiveness of the closed-form expression is confirmed. Again,
the uncertainty associated to THD decreases with the less stringent AC in both cases of signal I and L.
Furthermore, it is possible to conclude that the proposed approach covers all harmonic components
tackled in [50], hence it is suitable for DSO’s applications.

4.5.2. A Further Simplification of the Expression

In light of Section 4.5.1, the closed-form expression is effective in all the possible operating
conditions that may rise from [50]. Equation (25) showed that, by considering the limits defined by
the standard for the different ACs, the expression of THD as function of ratio errors only depends
on ε1. However, for each range of frequency, a different coefficient (10 or 20) has to be applied to ε1.
Therefore, this subsection aims at proving that Equation (25), written by using only the coefficient 10
for all harmonics from the 2nd to the 25th (with amplitudes in accordance with EN 50160 [50]), leads to
values of µTHD_e and σTHD_e consistent with those obtained starting from Equation (25). To prove that,
what is tested in Section 4.5.1 is replicated adopting the limits given in column 3 of Table 2 for all
harmonic components up to the 25th (1250 Hz).

Therefore, 1 million trials have been performed with signal L and all classes. The results are
presented in Table 13.

Table 13. Results of test, for signal L and for the 3 accuracy classes, with the simplified expression.

Signal AC µTHD_c (-) µTHD_e (-) σ2
THD_c (-) σ2

THD_e (-) σTHD_c (-) σTHD_e (-)

L
0.1 0.1132 0.1133 7.78 × 10−8 7.78 × 10−8 2.8 × 10−4 2.8 × 10−4

0.2 0.1133 0.1135 3.11 × 10−7 3.10 × 10−7 5.6 × 10−4 5.6 × 10−4

0.5 0.113 0.115 1.95 × 10−6 1.90 × 10−6 1.4 × 10−3 1.4 × 10−3

Values in Table 13 can be directly compared with those in Table 12 for signal L. The comparison
confirms that it is possible to assume the same uncertainty limit for the harmonics, without distinction,
from the 2nd to the 25th. In fact, considering that two significant digits are presented only for the sake
of comparison, the standard deviations in Tables 12 and 13 are identical. Hence, there is no missing
information from:

THD =

√∑25
i=2[Vi(1 + 10ε1)]

2

V1(1 + ε1)
, (27)
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for the computation of µTHD_e and σTHD_e, with respect to those obtained starting from (25).
In other words, this leads to conclude that, the contribution to the THD uncertainty given by the
harmonic components from the 21st to the 25th is negligible if the limits of [50] are met.

5. Conclusions

In this work is presented a closed-form expression to estimate the mean value and variance of the
well-known power quality parameter measured by means of an LPIT, the THD. After describing the
mathematical steps required to obtain the expressions, several tests have been run to (i) verify their
correctness and applicability, (ii) to stress them to understand their limits and peculiarities. The test
results confirm the effectiveness and accuracy of the closed-form expression to evaluate the mean value
and variance of THD. Such values can be obtained for signals containing all harmonic components
considered by the standards and in all range of amplitudes. The proposed approach has also been
stressed to obtain a simplified expression to calculate the uncertainty of THD which only requires the
knowledge of the ratio error of the instrument transformer involved.

Overall, the results of this study may be of great help in particular for DSOs and utilities operators
to estimate, at a glance, the uncertainty related to their THD measurements.
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