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Abstract—The acceleration of Computer Vision algorithms is
an important enabler to support the more and more pervasive
applications of the embedded vision domain. Heterogeneous
systems featuring a clustered many-core accelerator are a very
promising target for embedded vision workloads, but the code
optimization for these platforms is a challenging task. In this
work we introduce ADRENALINE1, a novel framework for
fast prototyping and optimization of OpenVX applications for
heterogeneous SoCs with many-core accelerators. ADRENALINE
consists of an optimized OpenVX run-time system and a virtual
platform, and it is intended to provide support to a wide range of
end users. We highlight the benefits of this approach in different
optimization contexts.

Keywords—embedded vision, OpenVX, virtual platform, accel-
erator

I. INTRODUCTION
In recent years the industrial community has strongly

focused on embedded vision technologies, which aim at incor-
porating Computer Vision (CV) capabilities into a wide range
of embedded systems. Typical examples of these applications
are gesture tracking, smart video surveillance, advanced driver
assistance systems (ADAS), augmented reality (AR), and many
others. In this context the acceleration of CV functions is in-
creasingly considered a must, since many of these applications
are computationally intensive.

The increasing adoption of vision capabilities within em-
bedded systems requires both high performance and energy
efficiency. Towards these goals, architectural heterogeneity is
being more and more adopted to design embedded vision
systems, where a multi-core host processor is coupled to
programmable many-core accelerators [5] [22] [16] [4] [10].
These accelerators provide tens to hundreds of small process-
ing units, connected to a shared on-chip memory via a low-
latency, high-throughput interconnection. Heterogeneous sys-
tems based on many-core programmable accelerators have the
potential to dramatically increase the peak performance/Watt,
but they come at the price of increased programming com-
plexity. The role of programming models aimed at simplify-
ing this task becomes thus paramount. In the last years the
Khronos consortium [2] has been very active in proposing
new programming standards for heterogeneous platforms. For
many years OpenCL [17] has been the best representative of
this category, and nowadays it is widely supported by major
SoC vendors. OpenCL aims at defining a standard interface

1ADRENALINE is part of the PULP project eco-system [3]. PULP is an
open-source hardware platform that provides an ultra-low-power many-core
accelerator template. As a tribute to the cinematographic counterpart after
which the PULP was named, ADRENALINE also draws from that colourful
universe of characters and situations. Have you guessed what it is yet?
Website: http://www-micrel.deis.unibo.it/adrenaline

for cross-platform heterogeneity exploitation, but it exposes
a very low-level API which requires both a significant effort
by the programmers and an intimate knowledge of the target
hardware. To increase the productivity of application designers,
it is important that the programming model exposes high-level
constructs for the exploitation of parallel and heterogeneous
resources. In this way, experts of the application can focus
on its partitioning and deployment, without the need for
expertise on the hardware details. This is particularly true in
the CV domain, where the expertise of application designers
is typically on the algorithms.

OpenVX [18] has been introduced as a cross-platform
standard for imaging and vision application domains, with the
aim to raise significantly the level of abstraction at which CV
applications should be coded. Based on a standard plain C
API, it is easy to use and fully transparent to architectural
details. The details of the hardware platform are hidden in the
underlying run-time environment (RTE) layer. This approach
enables the portability of vision applications across different
heterogeneous platforms, delegating the performance tuning
to hardware vendors, who provide an efficient RTE with
architecture-specific optimizations.

In this work we introduce ADRENALINE, a novel frame-
work for fast prototyping and optimization of OpenVX appli-
cations on heterogeneous SoCs with many-core accelerators.
ADRENALINE consists of an optimized OpenVX run-time
system, based on streamlined OpenCL support for a generic
heterogeneous SoC template. The tool comes with a virtual
platform modeling the target architecture template, which can
be easily configured along several axes. The run-time system
includes several optimizations for the efficient exploitation
of the explicitly managed memory hierarchy adopted in the
targeted SoCs, but it can be easily extended to consider other
optimization opportunities. Similarly, the virtual platform can
be expanded to model additional architectural blocks in a
simple manner. Finally, we provide relevant use cases for our
tool, showing how it can support the needs of several users.

The rest of the paper is organized as follows. Section II
introduces the OpenVX programming model. In Section III
we describe the architectural template we are focused on in
this work. Section IV describes ADRENALINE internals in
detail. Section V shows the experimental results. Section VI
presents the related works. Finally, we conclude and introduce
our future work in Section VII.

II. OPENVX PROGRAMMING MODEL
OpenVX [18] is a cross-platform C-based Application

Programming Interface (API) standard. Strongly supported by
many industrial actors, OpenVX aims at enabling hardware
vendors to implement and optimize low-level image processing
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Fig. 1: OpenVX framework objects

and CV primitives. Most image processing applications can
be easily structured as a set of vision kernels (i.e. basic
function or algorithms) that interact on the basis of input/out-
put data dependencies. In this context, OpenVX supports a
graph-oriented execution model based on a Directed Acyclic
Graphs (DAGs) of kernel instances. The standard describes the
software abstractions that are defined in an OpenVX execution
environment, referred as OpenVX framework. Figure 1 depicts
the framework objects and their relationship. A key point is
the difference between a kernel, that is the implementation of
a vision algorithm, and a node, that is an instance of a kernel
inside a graph. After the creation of a framework context,
an OpenVX program contains the definition of a set of data
objects, in particular images and other helper data structures.
Data objects may be declared as virtual. Basically, virtual data
just define a dependency between adjacent kernel nodes, and
are not associated with any memory area accessible by means
of API functions.

OpenVX graphs are composed of one or more nodes that
are added by calling node creation functions. Nodes are linked
together via data dependencies, without specifying no explicit
ordering. The OpenVX standard defines a library of predefined
vision kernels, but also supports the notion of user defined
kernels to provide new features. The standard defines 41 prede-
fined kernels, which are fully supported in our implementation.
Graphs must be verified before their execution, with the aim
to guarantee some mandatory properties:
• Input and output requirements must be compliant to

the node interface (data direction, data type, required
vs optional flag).

• No cycles are allowed in the graph.
• Only a single writer node to any data object is allowed.
• Writes have higher priorities than reads.

After verification, a graph can be executed in two modes: (i)
synchronous blocking mode, which blocks the program execu-
tion until the graph execution is completed; (ii) asynchronous
single-issue mode, which is non blocking and enables the
parallel execution of multiple graphs.

Listing 1 shows a typical example of an OpenVX program,
and Figure 2 shows the corresponding DAG.

1 v x c o n t e x t c t x = v x C r e a t e C o n t e x t ( ) ;
2
3 vx image rgb = vxCrea te Image ( c tx , . . . ) ;
4 vx image g ray = v x C r e a t e V i r t u a l I m a g e ( . . . ) ;
5 vx image g a u s s = v x C r e a t e V i r t u a l I m a g e ( . . . ) ;
6 vx image gradX = v x C r e a t e V i r t u a l I m a g e ( . . . ) ;
7 vx image gradY = v x C r e a t e V i r t u a l I m a g e ( . . . ) ;
8 vx image mag = vxCrea te Image ( c tx , . . . ) ;
9 vx image phase = vxCrea te Image ( c tx , . . . ) ;

10
11 vx graph graph = vxCrea teGraph ( c o n t e x t ) ;
12

ColorConvert

Sobel3x3

Gaussian3x3rgb gray

gauss
gradX

gradY

Magnitude

Phase

mag

phase

input

output

Fig. 2: Resulting graph for OpenVX sample code.

13 vxColorConver tNode ( graph , rbg , g r ay ) ;
14 vxGaussian3x3Node ( graph , gray , g a u s s ) ,
15 vxSobel3x3Node ( graph , gauss , gradX , gradY ) ;
16 vxMagnitudeNode ( graph , gradX , gradY , mag ) ;
17 vxPhaseNode ( graph , gradX , gradY , phase ) ;
18
19 s t a t u s = vxVer i fyGraph ( g raph ) ;
20 i f ( s t a t u s != VX SUCCESS) a b o r t ( ) ;
21
22 whi le ( /∗ i n p u t images ? ∗ / ) {
23 /∗ c a p t u r e da ta i n t o rgb ∗ /
24 vxProces sGraph ( g raph ) ;
25 /∗ use da ta from o u t ∗ /
26 }
27
28 v x R e l e a s e C o n t e x t (& c o n t e x t ) ;

Listing 1: OpenVX example

This introductory example follows these steps:
• A context is initially created (line 1) and then released

at the end (line 28).
• Images are defined (lines 3-9), some of them as virtual

(lines 4-7).
• A graph is created (line 11).
• A set of nodes is created and added to the graph as

instances of vision kernels (lines 13-17).
• The vxVerifyGraph function (line 19) checks the

graph consistency.
• The vxProcessGraph function (line 24) executes

the graph in synchronous blocking mode inside a loop,
that is a typical programming pattern to process an
incoming stream of input images.

Overall, the OpenVX standard has been designed to support
efficient execution on a wide range of architectures, while
maintaining a consistent vision acceleration API for appli-
cation portability. In this scenario, vendors should provide
implementations for different hardware architectures, such
as CPUs, GPUs. DSPs, FPGAs, and dedicated ASICs. The
OpenVX high-level specification hides hardware details, but
a vendor could implement a wide range of platform-specific
optimization techniques.

III. ARCHITECTURAL TEMPLATE
Figure 3 shows a block diagram of the architectural tem-

plate targeted in this work. It consists of a general-purpose
host processor coupled with a clustered many-core accelerator
(CMA) inside an embedded system on chip (SoC) platform.
The multi-cluster design is a common solution applied to over-
come scalability limitations in modern many-core accelerators,
such as STM STHORM [5], Plurality HAL [22], KALRAY
MMPA [16], Adapteva Epiphany-IV [4] and PULP [10].
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The processing elements (PEs) inside a cluster are fully
independent RISC cores, supporting both SIMD and MIMD
parallelism. Each PE is equipped with a private instruction
cache. To avoid memory coherency overhead and increase
energy efficiency, the PEs do not have private data caches.
All PEs share a L1 multi-banked tightly coupled data memory
(TCDM) acting as a scratchpad. The TCDM has a number
of ports equal to the number of memory banks to provide
concurrent access to different memory locations. Commu-
nication between the cores and the TCDM is based on a
single-cycle logarithmic interconnect, implementing a word-
level interleaving scheme to reduce the access contention to
TCDM banks. The architectural template also includes a L2
scratchpad memory at SoC level and an external L3 DDR
accessible by means of a memory controller. Both host cores
and PEs can access the whole memory space, that is modeled
as a partitioned global address space (PGAS). A DMA engine
enables communication with other clusters, L2 memory and
external peripherals.

The current version of ADRENALINE models a SoC with
a single accelerator cluster, while future releases will evolve
into a full multi-cluster environment. Our OpenVX run-time
already supports the execution of OpenVX programs on multi-
cluster accelerators by applying two methodologies: (i) the use
of different clusters to compute different input sets, and (ii)
the partition of an input set into multiple parts that can be
computed independently.

IV. ADRENALINE INTERNALS
ADRENALINE comes with a virtual platform modeling

the target architecture template and an OpenVX run-time
optimized for many-core accelerators. This tool has been
developed following two main objectives, application bench-
marking/profiling and architecture tuning.

A. Virtual platform
The virtual platform is written in Python and C++. Python

is used for the architecture instantiation and configuration, and
also for the high-level execution management. C++ is used for
implementing the models in an efficient manner, so that only
binary code is called during normal execution.

A key functionality is the possibility of describing a block
as a combinatory network. For instance, it is used to describe
the interconnection between the cores and the TCDM. A
library of basic components is available, but custom blocks
can also be implemented and assembled.

In the following paragraphs we report some additional
details about the most relevant blocks.

OpenRISC core. It is modeled with an Instruction Set
Simulator (ISS) for the OpenRISC ISA [1], extended with
timing modeling to consider the various sources of pipeline
stalls. Adopting the same interface, an ISS for a different
architecture can be plugged.

Memories. The memory blocks use a simple timing model,
with a fixed latency for each reported access.

L1 interconnect. This block has an important impact on
data accesses. The timings of an application can really differ
depending on how the data buffers are accessed from memo-
ries. In our model, each target memory bank can accept one
request per cycle, as provided by the architectural template.

Other interconnects. In the interconnect model a single
request is never split, it traverses all the interfaces to the final
target not allowing fine-grained arbitration. However there is
a bandwidth model which is applied on each request, with the
aim to report realistic timings.

DMA. The DMA sends a single synchronous request to the
interconnect for each line to be transferred. The interconnect
reports a latency for the whole transfer. As the DMA is able
to fully stream several input requests while writing output
requests, another input request can be scheduled after the
latency of the first input request.

Shared instruction cache. The shared instruction cache
model is made of an interconnect model and a set of cache
banks. Each cache bank is a classic cache model that is able
to report the latency to a request, depending on the fact it is
a hit or a miss. The interconnect model is quite similar to the
memory interconnect model with a support for multicast and
a model of the L0 prefetch buffer. The L0 prefetch buffer is
modeled as a classic cache with a single entry, so that only
the misses are propagated to the L1 interconnect.

The current version supports the simulation of a single
cluster and a single-core host. The host used for experiments is
an OpenRISC core, with the aim to have comparable metrics
for results. To instantiate a fully heterogeneous system, the host
could be configured as an ARM or a x86 core. ADRENALINE
provides the following tunable parameters:
• number of cores;
• hardware FPU enabled/disabled;
• available memory at L1, L2 and L3 levels;
• DMA bandwidth/latency.
ADRENALINE can be extended by defining new modules.

A module is a Python class which declares the input and output
ports that can be connected to other modules to specify the
connections between the architectural blocks (e.g., a router to
a memory). Then each Python class has a corresponding C++
class that implements the block model. When the platform is
started, each C++ class receives all the configuration from the
Python class (how ports are connected, property values), so
that only C++ code is running during simulation.

Overall, writing a new module requires a limited effort to
write the Python class, as it mainly contains declarations. Then
the difficulty of writing the C++ model usually depends on the
timing behaviour complexity of the block.

B. OpenVX run-time
The low-level programming environment in

ADRENALINE is based on OpenCL 1.1 [17]. A common
issue of using OpenCL on embedded systems is related to the
mandatory use of global memory space to share intermediate
data between kernels. When increasing the number of
interacting kernels, the main memory bandwidth required to
fulfill data requests originated by PEs is much higher than
the available one, causing a bottleneck. To overcome this
limitation, we extended OpenCL semantics to support explicit
memory management. This feature enables more control and
efficient reuse of on-chip memory, and greatly reduces the
recourse to off-chip memory for storing intermediate results.
Our OpenVX framework for CMA architectures is based on
this extended OpenCL run-time, but it hides all the low-level
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details behind a standard kernel interface, and even more
important, it automatically handles partition and scheduling
of data and kernels.

In our implementation we enforce localized execution,
which implies that when a kernel is executed on a cluster,
read/write operations are always performed on local buffers
in the L1 scratchpad memory. The major advantage of this
approach is that processor stalls due to reads/writes on L1 are
very limited, as the access latency is low. Unfortunately, in
real platforms the L1 is typically too small to contain a full
image, moreover multiple kernels requires more L1 buffers to
store intermediate results. As a natural solution to this problem,
images are partitioned into smaller blocks, called tiles. With
a proper sizing, multiple tiles can use different L1 buffers. In
addition, the use of double buffering on input/output images
enables to overlap between data transfers and computation,
avoiding that cores are waiting during DMA transfers. Overall,
the tile size strictly depends on the data access patterns used
by kernels.

OpenVX standard does not specify which patterns should
be supported and how they drive the run-time optimizations.
Based on literature [25], we consider five remarkable classes
of vision operators:

1) Point operators (e.g. color conversion, threshold)
compute the value of each output point from the
corresponding input point.

2) Local neighbor operators (e.g. linear operators, mor-
phological operators) compute the value of a point in
the output image that corresponds to the input tile.

3) Recursive neighbor operators (e.g. integral image)
are similar to the previous ones, but in addition they
also consider the previously computed values in the
output tile.

4) Global operators (e.g. DFT) compute the value of
a point in the output image using the whole input
image.

5) Geometric operators (e.g. affine transforms) compute
the value of a point in the output image using a non-
rectangular input area.

6) Statistical operators (e.g. mean, histogram) compute
statistical functions of image points.

To describe tiling patterns inside the run-time, we associate a
tiling descriptor to each node parameter. Figure 4 describes a
tiling descriptor. W and H are the dimensions of the computing
area, that is the set of points used to compute a single output
value; for output tiles, these values represent the minimum
number of output points generated by a single computation. x
and y values describe the neighboring area, that is the set of
additional points contributing to the computation of a single
output value, but they may belong to other computing or
neighboring areas. In the framework we support three kernel
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Fig. 5: Application graph partitioning

classes:
• CLE_KERNEL_NORMAL is used for point and local

neighbor operators. Tiling is used on both input and
output images.

• CLE_KERNEL_STAT is used for statistical operators.
Tiling can be activated just on input images, and we
can use a persistent buffer to implement a reduction
pattern ”walking” through the tiles.

• CLE_KERNEL_HOST is used when it is impossible to
apply tiling to input data, and this implies the kernel
is executed by the host processor. This is true for
global operators, and also in case of many geometrical
operators we cannot apply a classical input tiling due
to the irregular shape of the neighboring area.

The managing of tiling in recursive neighbor operators is
equivalent to local neighbor operators, but we also need to
save state data between tiles. For each kernel we provide a
state buffer, using one of these policies:
• CLE_STATE_NONE: no state is required;
• CLE_STATE_SCALAR: an amount of state propor-

tional to a scalar.
• CLE_STATE_BORDER: an amount of state propor-

tional to the border size.
• CLE_STATE_TILE: an amount of state proportional

to the whole tile size.
To support our run-time optimizations, we append additional
steps to graph verification. These are the required steps, with
a short description of the implementation that is currently
provided:
• Node scheduling – a schedule is determined through a

breadth-first visit, starting from the kernels connected
to graph input data (head nodes). At each step a single
kernel is selected for execution. For kernels which are
executed on the accelerator, the code parallelism is
exploited at node level.

• Buffer allocation – The initial number of L1 buffers
is equals to the number of input images to the graph.
For each kernel in the schedule list, the corresponding
output buffers are allocated. A reference counting
mechanisms is enabled, so a buffer can be reused if
there is no further references to it.

• Tile size propagation – Overlap between adjacent tiles
enforces data locality on buffers at the cost of transfer-
ring and/or computing the tile borders more than once.
The minimum tile size is computed into two passes:
a (i) forward pass, simulating a graph execution and
simultaneously collecting the tiling constraints for
each kernel, and a (ii) backward pass, starting from
the last simulated node and setting the buffer final
overlap according to all collected constraints

• Buffer sizing – Heuristic approach: Set the size of
each buffer equal to its upper bound (full image size),



alternatively halve width and height for all buffers
until the total memory footprint (i) fits the L1 available
memory and (ii) is greater than the related lower
bound (maximum tile size, including neighborhood).

• Graph partitioning – When the graph cannot be exe-
cuted allocating all the intermediate tiles in L1 buffer,
the graph is automatically partitioned into multiple
sub-graphs.

At the end of graph verification stage, the framework
derives an ordered partition set of the original OpenVX graph,
each element consisting of a single host kernel or an OpenCL
graph. At the execution stage single kernels are executed on
the host, while OpenCL graphs are executed on the accelerator.

On the host side, we provide a set of kernels implemented
on C using the OpenVX API to access data objects that
has been introduced in Section II, based on the reference
implementation provided by Khronos. On the accelerator side,
we provide a set of OpenCL kernels which access input/out-
put parameters directly addressing the global memory space,
without explicit use of DMA primitives and intermediate local
buffers. All the boilerplate code related to tiling and localized
execution is managed by the run-time on the basis of kernel
descriptors and graph verification steps.

Using our OpenVX run-time, the orchestration of multiple
kernel nodes and accelerator sub-graphs is totally transparent
to the programmer. For instance, in the application graph
depicted in Figure 5 we suppose that K3 is a statistical kernel
(e.g., a histogram). Tiling cannot be used on its output image
V4, because each input tile contributes to sparse data in
the result set (the histogram bins). Consequently, a memory
boundary is added to its output, and this includes all the images
read by K5. In this example K5 is a kernel of classes 1, 2 or
3, so a memory boundary is inserted to switch back its input
images to L1 domain. To guarantee consistency in the host
environment, I and O must reside on L3 domain.

In the most general case, the same result cannot be obtained
by fusing kernels and optimally tiling the generated loop, as
tiling requirements of different kernels are not homogeneous.
Overall, the use of OpenVX graphs enables a global level
of optimization which is not possible under a single-function
paradigm

V. EXPERIMENTAL RESULTS
In this section we illustrate some use cases for

ADRENALINE, and we show a comparison with a real
platform.

A. Run-time optimizations
To assess the benefits of our run-time optimizations on

common vision algorithms, we have taken into account the
following benchmarks (see Table I):
• Sobel is a an edge detector based on Sobel filter;
• FAST9 implements the FAST9 corner detection algo-

rithm;
• Disparity computes the stereo-matching disparity be-

tween two images;
• Pyramid creates a set of scaled and blurred images (a

pyramid);
• Optical implements the Lucas-Kanade algorithm to

measure optical flow field;
• Canny implements the Canny edge detector algorithm.
Figure 6 shows the speed-up of the OpenVX accelerated

versions compared to their OpenCL implementation. OpenCL
applications are built using a library of image processing
kernels, and kernel sources are manually optimized to support
asynchronous data transfers and double buffering. In these tests

Benchmark Nodes Images (in/out/virtual)
Sobel 4 1 / 1 / 4
FAST9 3 1 / 1 / 3
Disparity 5 2 / 1 / 6
Pyramid 6 1 / 1 / 4
Optical 4 1 / 1 / 2
Canny 4 1 / 1 / 5

TABLE I: OpenVX benchmarks
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we have considered this configuration for the virtual platform:
16 cores with hardware floating point support, 256KB L1
memory, 2MB L2 memory, 500MB L3 memory, 250MB/s
for DMA bandwidth, 450 cycles for DMA latency. This
configuration corresponds to an embedded system with severe
bandwidth constraints. Moreover, all tests are performed with
an input image size of 640×480 pixels. This size is sufficient
to already see the effects of memory bandwidth, even larger
benefits can be achieved for larger images.

Figure 7 reports the bandwidth requirements of the bench-
marks for both OpenVX and OpenCL. These values are
computed as the ratio between the total transferred bytes and
the required computation time. The OpenVX version requires
a lower bandwidth, with the exception of Optical that is
implemented using a single kernel invoked multiple times. The
bandwidth required by an the OpenCL application exceeds
the available one (represented by the dashed line) in Sobel
and Disparity, further limiting the speed-up of the OpenCL
solution. Since each OpenCL kernel copies its outputs to L3
memory to pass data to the next one, the speed-up is closely
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Benchmark OpenCL OpenVX
Sobel 703 423
Canny 475 335
Disparity 633 402
FAST9 428 348
Optical 123 83
Pyramid 441 321

TABLE II: Lines of code (OpenCL VS OpenVX)

related to the L3 bandwidth reduction. Figure 8 reports the
ratio between the data transferred by the OpenVX version and
the data transferred by the OpenCL version. It is evident that
this ratio is strictly correlated to the speed-up. Table II reports
the lines of code that a programmer must write to encode
OpenVX or OpenCL kernels. In OpenCL kernels, program-
mers need to interleave DMA and computation explicitly, and
the required lines of code are about 30% more than OpenVX
ones. Moreover, these statistics do not take into account the
boilerplate code that is required on the host side to setup and
use OpenCL API.

B. Comparison with a real platform
To validate the virtual platform, we have compared

ADRENALINE with a STHORM-based board. This board
includes a Xilinx Zynq 7020 chip, featuring an ARM Cortex
A9 dual core host processor operating at 667MHz plus FPGA
programmable logic, and a STHORM many-core accelerator
clocked at 430MHz. The ARM subsystem on the Zynq is
connected to an AMBA AXI interconnection matrix, through
which it accesses the DRAM controller. The latter is connected
to the on-board DDR3 (500MB), which is the third memory
level in the system (L3) for both ARM and STHORM cores.
To allow transactions generated inside the STHORM chip to
reach the L3 memory, and transactions generated inside the
ARM system to reach internal STHORM L1 and L2 memories,
part of the FPGA area is used to implement an access bridge.

The access bridge is clocked very conservatively at 40MHz;
consequently, the main memory bandwidth available to the
STHORM chip is limited to 250MB/s for the read channel and
125MB/s for the write channel, with an access latency of about
450 cycles. This configuration corresponds to the one used for
experiments. Since the ISAs are different, we use a relative
metric to compare the two solutions, that is the speed-up of
OpenVX compared to OpenCL. Figure 9 reports the speed-up
values measured on the STHORM platform. The comparison
with Figure 6 shows that the speed-up trend is coherent, with
an average margin of 6%. This implies that ADRENALINE
models the bandwidth effects on a real embedded system with
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Fig. 9: Speed-up of OpenVX compared to OpenCL (STHORM
board)

very good accuracy, even when the bandwidth is a severely
constrained resource.

C. Application partitioning
As an example of partitioning optimization, we have con-

sidered a single application graph containing both a Canny
edge detector and a FAST9 corner detector.

Figure 11 shows the graph representation of a Canny edge
detector. This algorithm applies a Gaussian filter to de-noise
the input image, and then apply a Sobel operator to find
horizontal and vertical gradients. Starting from gradients, it
computes the edges in terms of magnitude and phase. Finally,
it performs non-maxima suppression to thin the edges and
hysteresis thresholding to remove loosely connected points.

FAST9 corner detector [24] extracts corners by evaluating
pixels on the Bresenham circle around a candidate point. If N
contiguous pixels are brighter or darker than the central point
by at least a threshold value then this point is considered to be
a corner candidate. For each detection, its strength is computed
and finally a non-maxima suppression step is applied to reduce
the final points. The OpenVX standard library provides a
specific node for FAST9 algorithm (vxFastCornersNode),
which reads an input image and outputs an array of corner
coordinates. This version differs from the one used in the
previous sections, which is split into multiple kernels to run
on the accelerator but provides as output a full image.

Figure 10 shows the timings resulting from the different
mappings of FAST node w.r.t. Canny edge detector. For these
specific implementations, the best solution is the one executing
Canny on the accelerator and FAST9 on the host side. This is
a non trivial result that fully highlights the benefits of this kind
of analysis.

D. Architectural configuration
To evaluate different platform parameters, we have exe-

cuted Canny edge detector measuring the execution time when
the number of cores is set to increasing values. Figure 12
depicts the execution time in cycles. The bar on the left
represents the time required to execute the whole application
on the host using the reference implementation provided by
Khronos. For this application, the lack of optimizations and
the overhead due to OpenVX data access functions make more
profitable the execution on the accelerator, even in case of a
single core (1.58x).

Table III reports the speed-ups obtained using different
configurations of the many-core accelerator. The efficiency
decreases with the number of cores, and using this table a
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designer can choose a valid trade-off. Table IV reports the
effect of DMA latency on execution time, with a bandwidth
set at 8 bytes/cycle. In this case our optimization approach
based on localized execution and double buffering hides the
variations of platform parameters related to DDR connection.
In the most general case, this conditions can be verified for
any application using our tool.

VI. RELATED WORKS
In the context of embedded vision systems, in the last

years many FPGA-based solutions has been presented (e.g.,
[7] and [19], and [15]). We can also find several examples of
domain-specific architectures. CHARM [8] and AXR-CMP [9]
propose a framework for composable accelerators assembled
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Cores Speed-up
1 1.00
2 1.98
4 3.79
8 6.97
12 9.70
16 12.00

TABLE III: Speed-up

Latency (cycles) Execution time (Mcycles)
100 61.75
200 61.98
400 62.70

TABLE IV: Effect of DMA latency on execution time

from accelerator building blocks with dedicated DMA engines,
while NeuFlow [14] is a special-purpose data-flow processors
targeted for vision algorithms. Both FPGA and domain-specific
architectures have emerged to satisfy demands for power-
efficient and high-performance multiprocessing. Our solution
is based on a general-purpose accelerator, using a program-
ming model which takes into account the specific needs of
CV domain but still supporting general-purpose programming
(via standard or extended OpenCL).

Darkroom is a tool that synthesizes hardware descriptions
for ASIC or FPGA, or optimized CPU code using an optimally
scheduled pipeline. The tiling approach is similar to our
solution, but there are some limitations. They consider just
two access patterns (point-wise and stencil), that are the only
to be compatible with the pipeline execution.

OpenCV [21] is an open-source and cross-platform library
featuring high-level APIs for vision domain. OpenCV is the
de-facto standard in desktop computing environment, its main-
stream version is optimized for multi-core processors but it is
not suitable for acceleration on embedded many-core systems.
Some vendors provide accelerated versions of OpenCV which
have been optimized for their hardware (e.g. OpenCV for
Texas Instruments embedded platforms [11] or OpenCV for
Tegra [27]). As a matter of fact, OpenCV needs a lower-level
middleware for accelerating image processing primitives. This
is precisely the goal of OpenVX, which aims at providing
a standardized set of accelerated primitives, thereby enabling
platform agnostic acceleration.

OpenCL [26] is a very widespread programming envi-
ronment for both many-core accelerators and GPUs, and
it is supported for an increasing number of heterogeneous
architectures; for instance, Altera supports OpenCL on its
FPGA architecture [12]. The OpenCL memory model is too
constrained for SoC solutions, hence many extensions have
been proposed by vendors. For instance, AMD provides a
zero-copy mechanism to share data between host and GPU in
Fusion APU products, also enabling the access to GPU local
memory by host side through a unified north-bridge with full
cache coherence [6]. In a many-core accelerator we need even
more control on data allocation, because cores are not working
in lock-step. In addition, we need the possibility to map the
logical global space at different levels of the memory hierarchy,
to efficiently maintain state between kernels.

Focusing on domain-specific approaches, Halide [23] is a
programming language specifically designed to describe image
processing pipelines with different architectural targets, includ-
ing an OpenCL code generator. To implement an algorithm
with Halide, the user must specify a functional description
using a specific language. Halide defines a model based on



stencil pipelines, with the aim to find a trade-off between local-
ity, exploitation of parallelism, and redundant re-computation.
Even if the basic principles are the same, our framework is
based on specific architectural features of a class of many-
core accelerators, so we can simplify some allocation problem
constraints with minimum loss of generality. Moreover, the
functional model of Halide is not Turing-complete.

Graph-structured program abstractions have been studied
for years in the context of streaming languages (e.g. StreamIt
[28]). In these approaches, static graph analysis enables stream
compilers to simultaneously optimize data locality by in-
terleaving computation and communication between nodes.
However, most research has focused on 1D streams, while
image processing kernels can be modeled as programs on 2D
and 3D streams. The model of computation required by image
processing is also more constrained than general streams,
because it is characterized by specific data access patterns.

Stencil kernels are a class of algorithms applied to multi-
dimensional arrays, in which an output point is updated with
weighted contributions from a subset of neighbor input points
(called window or stencil). Our definition of tiles is equivalent
to a 2D stencil. Many optimization techniques have been pro-
posed to execute stencil kernels on multi-core platforms [13],
but an effective solution for many-core accelerators executing
heterogeneous vision kernels has not been proposed yet. Such
a solution has to consider all the data access pattern specific
of this domain, handling the possible overlapping of input
windows and providing a solution for the access patterns that
are not properly describable in terms of stencil computation.

KernelGenius [20] is a tool that enables the high-level
description of vision kernels using a custom programming
language. It aims at generating an optimized OpenCL kernel
targeting the STHORM platform, with a totally transparent
management of the DMA data transfers. The structure of
the tiling problem for a single kernel is analogous to the
formulation we are using in this work. The final performance
are equivalent to an optimized OpenCL solution, but there are
also the same limitations that we have reported for OpenCL.

VII. CONCLUSIONS
In this paper we have introduced ADRENALINE, a frame-

work for fast prototyping and optimization of OpenVX ap-
plications that includes an OpenVX run-time and a virtual
platform. The use cases proposed in Section V show how
ADRENALINE can be used to highlight optimization opportu-
nities for a wide range of end users, from hardware designers to
CV researchers. In the near future we will also provide a new
release of the framework supporting a multi-cluster platform.
Moreover, next versions of the tool will support the execution
on Xilinx FPGA boards, mapping the host on the ARM cores
and the clusters on programmable logic, with the aim to further
enhance simulation speed and accuracy.
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