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Potential Theory results for a class of PDOs
admitting a global fundamental solution

Andrea Bonfiglioli

Abstract We outline several results of Potential Theory for a class of linear par-
tial differential operators L of the second order in divergence form. Under essen-
tially the sole assumption of hypoellipticity, we present a non-invariant homoge-
neous Harnack inequality for L ; under different geometrical assumptions on L
(mainly, under global doubling/Poincaré assumptions), it is described how to obtain
an invariant, non-homogeneous Harnack inequality. When L is equipped with a
global fundamental solution Γ , further Potential Theory results are available (such
as the Strong Maximum Principle). We present some assumptions on L ensuring
that such a Γ exists.

1 Introduction

The keystones of classic Potential Theory were established in the century elapsing
between the 20’s of the nineteenth century and the 20’s of the twentieth century.
During this period, the following topics were studied, regarding the classic Laplace
operator ∆ :

- 1823: the Dirichlet problem (Poisson);
- 1828: the Green’s function (Green);
- 1839: the Maximum Principle (Earnshaw);
- 1840: mean value properties (Gauss);
- 1870: further results on the Dirichlet problem (Schwarz);
- 1887: convergence properties (Harnack);
- 1890: barrier functions (Poincaré);
- 1923 ca: weak solvability (Perron, Wiener, Brelot);

Andrea Bonfiglioli
Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta San Donato, 5,
40126 Bologna, Italy, e-mail: andrea.bonfiglioli6@unibo.it

1



2 Andrea Bonfiglioli

- 1930: representation theory and the potential function (Riesz);
- 1929: axiomatic Potential Theory (Kellogg).

All these topics are deeply interrelated, and each of them could hardly exist without
the others. However, if we were to select a restricted number of them according
to their most capital role in Potential Theory, we would point out the undisputable
importance of the Green function, the Maximum Principle, and the convergence
properties. In this paper we outline some recent (or very recent) results concerning
the latter topics, for classes of linear partial differential operators (PDOs, in the
sequel) of the second order in divergence form.

As an outline of the paper, the exposition is thusly presented:

1. in Section 2, we introduce a rather general class of hypoelliptic PDOs L , and we
show how to obtain a non-invariant homogenous Harnack inequality for L ; by
restricting the class considered, we then describe how to prove an invariant and
non-homogenous inequality (Section 4);

2. when L possesses a well-behaved global Green function Γ (also called funda-
mental solution), more Potential Theoretic results are available, including Maxi-
mum Principles (Section 3);

3. due to the importance of Γ , under stronger assumptions on L , we provide suffi-
cient conditions for its existence (Section 5).

2 A non-invariant Harnack inequality

On Euclidean space RN , we consider a PDO L of the second order in the following
divergence form (“weighted” by a density V )

L :=
1

V (x)

N

∑
i, j=1

∂
∂xi

(
V (x)ai, j(x)

∂
∂x j

)
, (1)

where the functions V and ai, j fulfil the following assumptions:

• V and any ai, j are C∞ from RN to R;
• V (x) > 0, A(x) := (ai, j(x))i, j is symmetric and positive semi-definite at any x ∈

RN ;
• assumption (NTD): L is non-totally-degenerate at any point, i.e., A(x) ̸= 0 for

any x ∈ RN ;
• assumption (HY): L is C∞-hypoelliptic on every open subset of RN .

There are examples of operators satisfying our assumptions in: Lie group theory
(e.g., sub-Laplacian operators [26]); CR Geometry and Riemannian Geometry; sev-
eral complex variables; Brownian motion; Stochastic PDEs.

Remark 1. We observe that there are examples of operators (with infinitely-degene-
rate coefficients) fulfilling all of our assumptions but outside the well-studied class
of Hörmander operators; for example:
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∂ 2

∂x2
1
+
(

exp
(
− 1

x2
1

)
∂

∂x2

)2
in R2,

∂ 2

∂x2
1
+
(

exp
(
− 1√

|x1|

)
∂

∂x2

)2
+ ∂ 2

∂x2
3

in R3,

∂ 2

∂x2
1
+
(

exp(−1/|x1|) ∂
∂x2

)2
+
(

exp(−1/|x1|) ∂
∂x3

)2
in R3,

∂ 2

∂x2
2
+
(

x2
∂

∂x1

)2
+ ∂ 2

∂x2
4
+
(

exp(−1/ 3
√
|x1|) ∂

∂x3

)2
in R4,

respectively studied by Fediı̆ [41]; Kusuoka, Stroock [63]; Christ [34]; Morimoto
[65], who proved that the above PDOs are indeed C∞-hypoelliptic.

To specify the role of V , if dx is Lebesgue measure in RN , in the sequel we set

dµ(x) :=V (x)dx. (2)

Clearly, L is formally self-adjoint in L2(RN ,dµ) on the smooth compactly-suppor-
ted functions: ∫

φ L ψ dµ =
∫

ψ L φ dµ, ∀ φ,ψ ∈C∞
0 (RN).

The opportunity to permit V to be non-identically 1 comes from our interest in
second-order operators coming from Lie group theory; indeed, one can find in [6,
Example 1.1] some examples of operators of the form (1), where V ̸= 1 is the density
of the Haar measure µ of a Lie group G whose underlying manifold is RN , and
X1, . . . ,Xm is a family of generators of the Lie algebra of G. In this case, it appears
very natural to consider sub-Laplace operators of the form

L =−
m

∑
j=1

X∗µ
j X j,

where X∗µ
j denotes the adjoint of the vector field X j in L2(G,dµ). Such an L can

always be written in the form (1); it satisfies (HY) in force of Hörmander’s hypoel-
lipticity theorem (since X1, . . . ,Xm are Lie-generators of Lie(G)).

For another explicit example, see the next one:

Example 1. Consider the Lie group G = (R3,∗) where

(x1,x2,x3)∗ (y1,y2,y3) = (x1 + y1,x2 + y2,x3 + y3ex1);

it is natural to consider the Haar measure µ on G defined by µ = V (x)dx, with
V (x) = e−x1 ; if we also consider the Lie generators X1,X2 of Lie(G) given by X1 =
∂x1 and X2 = ∂x2 + ex1 ∂x3 , then the operator L =−X∗µ

1 X1 −X∗µ
2 X2 has the form

L = (∂x1)
2 +(∂x2)

2 + e2x1(∂x3)
2 +2ex1 ∂x2,x3 −∂x1 .

L enjoys the form (1) with the above V (x) and with



4 Andrea Bonfiglioli

A(x) =

1 0 0
0 1 ex1

0 ex1 e2x1

 ,

but it cannot be written as a pure divergence form operator div(B(x)∇), whence
the opportunity to consider operators of the more general form (1). L also enjoys
assumptions (NTD) and (HY) (the latter is due to Hörmander’s hypoellipticity the-
orem, as already remarked).

Apart from the elliptic case, in the existing literature, as regards the Maximum
Principles and the Harnack inequality for (divergence-form) degenerate-elliptic
PDOs under a subelliptic assumption (or assuming that the degeneracy be con-
trolled by some Muckenhoupt weights), there are several references starting from
the 1980’s: Chanillo and Wheeden [33]; Fabes, Jerison and Kenig [37]; Fabes, Kenig
and Serapioni [38]; Fefferman and Phong [40]; Franchi and Lanconelli [45]; Gutiér-
rez [52] Jerison and Sánchez-Calle [58].

It is also well known that a natural framework for the Harnack inequality is that
of doubling metric spaces (where a doubling condition and a Poincaré inequality are
available): Aimar, Forzani and Toledano [3]; Barlow and Bass [5]; Di Fazio, Gutiér-
rez and Lanconelli [36]; Grigor’yan and Saloff-Coste [51]; Gutiérrez and Lanconelli
[53]; Hebisch and Saloff-Coste [54]; Indratno, Maldonado and Silwal [57]; Kin-
nunen, Marola, Miranda and Paronetto [59]; Mohammed [64]; Saloff-Coste [70].

Without making any subellipticity or Muckenhoupt assumption, nor requiring
any underlying doubling/Poincaré metric space setting, in [6] we proved the follow-
ing Strong Maximum Principle, a key step for the Harnack inequality:

Theorem 1 (Strong Maximum Principle for L ). Suppose that L is an operator
of the form (1), with C∞ coefficients V > 0 and (ai, j)i, j ≥ 0, and that it satisfies
(NTD) and (HY). Let O ⊆ RN be a connected open set. Then, the following facts
hold.

1. Any function u ∈C2(O,R) satisfying L u ≥ 0 on O and attaining a maximum in
O is constant throughout O.

2. If c ∈C∞(RN ,R) is nonnegative on RN , and if we set

Lc := L − c,

then any function u ∈C2(O,R) satisfying Lcu ≥ 0 on O and attaining a nonneg-
ative maximum in O is constant throughout O.

We proved Theorem 1 following the approach by Bony in his celebrated 1969 paper
[27] concerning with Hörmander sums of squares. However, in view of Remark 1,
since our assumptions are general enough to comprise non-Hörmander PDOs we
cannot simply recover Bony’s argument, which is based on the well-known connec-
tivity theorem of Carathéodory, Chow, Hermann and Rashevskiı̆.

Luckily for us, a theorem by Amano [4] on a connectivity/controllability prop-
erty for hypoelliptic PDOs allows us to recover Bony’s ideas in their full strength



Potential Theory results for a class of PDOs 5

(thus circumventing the issue caused by non-Hörmander PDOs). Our argument for
Theorem 1 is essentially as follows. We set

Ai :=
N

∑
j=1

ai, j
∂

∂x j
(i = 1, . . . ,N), A0 :=

1
V

N

∑
i=1

∂V
∂xi

Ai; (3)

then we argue in this way (for the details and the nomenclature, see [6]):

1. A1, . . . ,AN are tangent to the set F(u) := {x ∈ Ω : u(x) = maxΩ u}, provided
L u ≥ 0 (Hopf-type lemma);

2. A0 is also tangent to F(u) (it is a smooth combination of A1, . . . ,AN);
3. the tangentiality of A0,A1 . . . ,AN ensures the propagation of F(u) along the inte-

gral curves of any linear combination of A0,A1, . . . ,AN (Bony);
4. the C∞-hypoellipticity of L ensures the controllability (hence, a suitable connec-

tivity property) of the set span{A0,A1, . . . ,AN} (this is the point where we invoke
Amano’s crucial result).

These facts plainly prove that F(u) is forced to coincide with Ω , as soon as F(u) is
non-void. As for (4), we review Amano’s geometric result on hypoellipticity: once
one has rewritten L in the following way

L =
N

∑
i=1

∂
∂xi

(Ai)+A0,

then assumptions (NTD) and (HY) implies a connectivity property of any pair of
points of the underlying domain Ω , along the linear combinations of A0,A1, . . . ,AN .
See [4] for all the details. In order to prove our non-invariant Harnack inequality, we
need a further assumption:

• assumption (HY)ε : for every ε > 0, L −ε is C∞-hypoelliptic on every open set
in RN .

The problem of establishing, in general, whether or not our previous assumption
(HY) implies (HY)ε is non-trivial; it appears that having some quantitative infor-
mation on the loss of derivatives may help in facing this question (personal com-
munication by Parmeggiani). Concerning this issue it is known that, for example, in
the complex coefficient case the presence of a zero-order term (even a small ε) may
drastically alter hypoellipticity (see Stein, [71]; see also the very recent paper [66]
by Parmeggiani for related topics).

The role of (HY)ε is crucial in establishing a comparison argument (analogous
to that in [27, Proposition 7.1, p.298]) giving the lower bound

u(x0)≥ ε
∫

Ω
u(y)Gε(x0,y)V (y)dy ∀x0 ∈ Ω , (4)

for every nonnegative L -harmonic function u on the open set Ω which possesses a
Green kernel Gε(x,y) relative to the perturbed operator L − ε .
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With the aid of (4), with the use of the Green functions related to L and Lε , and
by means of Theorem 1, in [6] we proved the following Harnack inequality:

Theorem 2 (Harnack Inequality). Suppose that L is an operator of the form (1),
with C∞ coefficients V > 0 and (ai, j)≥ 0, and suppose it satisfies hypotheses (NTD),
(HY) and (HY)ε .

Then, for every connected open set O ⊆ RN and every compact subset K of O,
there exists a constant M = M(L ,O,K)≥ 1 such that

sup
K

u ≤ M inf
K

u, (5)

for every nonnegative L -harmonic function u in O. If L is subelliptic or if it has
Cω coefficients, then assumption (HY)ε can be dropped.

We remark that the operators in Remark 1 are not subelliptic (nor Cω ), yet they sat-
isfy hypotheses (NTD), (HY) and (HY)ε . The lack of subellipticity is a consequence
of the characterization of the subelliptic PDOs due to Fefferman and Phong [39, 40]
(see also [62, Prop.1.3] or [58, Th.2.1 and Prop.2.1]; the validity of (HY)ε derives
from a result by Kohn, [62]. Thus our Theorem 2 is not a consequence of Bony’s
results in [27], nor of the results on Harnack inequalities for subelliptic PDOs cited
after Example 1.

Technically, we obtained Theorem 2 from the following result (due to Moko-
bodzki and Brelot, [30, Chapter I]):

Lemma 1. Let L be a second order linear PDO in RN with smooth coefficients.
Suppose the following conditions are satisfied.

(Regularity): There exists a basis B for the Euclidean topology of RN (consist-
ing of bounded open sets) such that, for every Ω ∈ B \ {∅} and for every
φ ∈C(∂Ω ,R), there exists a unique L-harmonic function HΩ

φ ∈C2(Ω)∩C(Ω)
solving the Dirichlet problem {

Lu = 0 in Ω
u = φ on ∂Ω ,

and satisfying HΩ
φ ≥ 0 whenever φ ≥ 0.

(Weak Harnack Inequality): For every connected open set O ⊆RN , every compact
subset K of O and every y0 ∈O, there exists a constant C(y0) =C(L,O,K,y0)> 0
such that

sup
K

u ≤C(y0)u(y0),

for every nonnegative L-harmonic function u in O.

Then, the thesis of Theorem 2 holds for L.

When one takes L =L , the validity of condition ‘(Regularity)’ can be obtained as a
consequence of the hypoellipticity of L (as in [27]); besides, the validity of condi-
tion ‘(Weak Harnack Inequality)’ is a consequence of (4) plus some basic Functional
Analysis.
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Introducing the topics of the following section, we underline that the Harnack
inequality (5) implies the following Brelot convergence property: every increasing
sequence of L -harmonic functions (on a connected open set) either converges to
≡ ∞ or to an L -harmonic function. This is one of the most crucial axiom (and often
one of the most difficult to prove) of the Axiomatic Potential Theory for L (see [26,
Chapter 6]).

3 Further Potential Theory results

A most convenient assumption for potential-theoretic problems for operators L as
in (1) is that L possesses a smooth, global and positive fundamental solution: see
the series of papers [1, 7, 24, 25]. For the use of the fundamental solution in obtain-
ing the Harnack inequality for Hörmander sums of squares, see: Citti, Garofalo and
Lanconelli [35]; Garofalo and Lanconelli [48, 49]; Pascucci and Polidoro [67, 68];
Bramanti, Brandolini, Lanconelli and Uguzzoni [29].

First of all we clarify what we mean by a fundamental solution: for the (formally)
self-adjoint operator L as in (1), we assume the existence of a (global) fundamental
solution, that is a function

Γ : {(x,y) ∈ RN ×RN : x ̸= y} −→ R such that:

1. for every fixed x ∈ RN (the so-called ‘pole’), Γx := Γ (x, ·) belongs to L1
loc(RN)

and it solves −L Γx = Diracx, i.e.,∫
RN

Γ (x,y)L φ(y)dµ(y) =−φ(x), ∀ φ ∈C∞
0 (RN).

2. for every fixed x ∈ RN one has lim|y|→∞ Γ (x,y) = 0.

For geometrical purposes it may occasionally be convenient to further require that:

lim
y→x

Γ (x,y) = ∞.

This “blow-up” pole-condition is not part of our definition of a global fundamental
solution, but will be required only if need be. A fundamental solution for L , if it
exists, is unique (a.e.): this follows from the Hörmander hypoellipticity theorem and
from the Strong Maximum Principle. Following [35], we define the Γ -ball of centre
x and radius r:

Ωr(x) :=
{

y ∈ RN : Γx(y)> 1/r
}
.

Under the blow-up pole-condition, {Ωr(x)}r forms a basis of neighborhoods (as
r ↓ 0), invading RN (as r ↑ ∞).

The Divergence Theorem and the V -divergence form of L imply the following
surface mean-integral formula: whenever u is C2 on Ω(x,r) it holds that
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u(x) = mr(u)(x)−
∫

Ωr(x)

(
Γx(y)−

1
r

)
L u(y)dµ(y),

where
mr(u)(x) :=

∫
∂Ωr(x)

uKx V dHN−1,

with the kernel Kx being defined on RN \{x} by

Kx :=

⟨
A∇Γx,∇Γx

⟩
|∇Γx|

.

Unlike the classic Laplacian case, the kernel Kx(y) may vanish: this is indeed the
case with the first Heisenberg group, where the associated y 7→ Kx(y) vanishes pre-
cisely on the line {y1 = x1, y2 = x2}.

In general, since Kx(y)= 0 if and only if
⟨
A(y)∇Γx(y),∇Γx(y)

⟩
= 0, and the latter

holds true if and only if A(y)∇Γx(y) = 0, we see that Kx(y) = 0 precisely when

A1Γx(y) = · · ·= ANΓx(y) = 0,

with the notation in (3). Thus, by Amano’s controllability result [4], we infer that

Kx(y)> 0 on an open dense set in RN .

Arguing as in [1], this last fact can lead to an alternative proof of the Strong Max-
imum Principle for an L endowed with a global fundamental solution. Indeed, if
L u ≥ 0 and if x0 ∈ Ω is a maximum point of u, we have

u(x0)≤ mr(u)(x0) =
∫

∂Ωr(x0)
uKx0 dHN−1 ≤ u(x0).

This immediately gives

0 =
∫

∂Ωr(x0)
(u(x0)−u)Kx0 dHN−1;

if we integrate with respect to r ∈ [0,R] and we use co-area formula, we get

0 =
∫

ΩR(x0)
(u(x0)−u)⟨A∇Γx0 ,∇Γx0⟩dµ .

Since u(x0)− u ≥ 0 and ⟨A∇Γx0 ,∇Γx0⟩ > 0 in an open dense set, we see that u is
constantly equal to u(x0) in ΩR(x0), so that u is constant throughout Ω (which is
connected).

The applications of mean-value formulas to Potential Theory are countless;
among them we mention the applications to:

• Maximum Principles, [1];
• Gauss&Koebe-type Theorems (characterization of the L -harmonicity), [7];
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• Montel-type Theorems (concerning the topology of the L -harmonic functions),
[7];

• many possible different characterizations of the L -subharmonicity, [24, 25].

When sub-Laplacians on Carnot groups are involved, we also have applications to:

• Harnack inequalities and Liouville-type theorems, [21];
• Maximum Principles on unbounded domains, [22];
• Bôcher-type Theorems (on the removability of singularities), [23].

The vast applicability of mean-value formulas (deriving from the sole existence of
Γ ) makes it (very!) desirable to enlarge the class of PDOs for which the existence of
a global fundamental solution (with the above well-behaved properties) is known.
See Section 5.

4 An invariant Harnack inequality

The aim of this section is to describe how we could obtain an invariant and non-
homogeneous Harnack inequality for PDOs L of the form (1) but under different
assumptions than those in Section 2. For instance, we drop our previous hypoellip-
ticity assumptions (HY) and (HY)ε , in favor of more geometrical hypotheses. We
shall skip any detail here, referring the interested reader to [8].

As we already discussed, a convenient framework to prove an invariant Har-
nack inequality for (1) is that of doubling metric spaces; hence, we suppose that the
quadratic form of L can be controlled by a family of locally-Lipschitz vector fields
X = {X1, . . . ,Xm} on RN , in the sense the X-elliptic operators introduced by Kogoj
and Lanconelli in [60]: this means that there exist two constants λ ,Λ > 0 such that

λ
m

∑
j=1

⟨X j(x),ξ ⟩2 ≤
N

∑
i, j=1

ai, j(x)ξiξ j ≤ Λ
m

∑
j=1

⟨X j(x),ξ ⟩2, ∀ x,ξ ∈ RN .

Moreover, we assume that, with the associated Carnot-Carathéodory metric d, N-di-
mensional Euclidean space is endowed by d with the structure of a doubling space
(globally) and a Poincaré inequality holds true on any d-ball in space (this can be
seen as another ‘global’ assumption). Here the doubling measure is again the mea-
sure µ introduced in (2), naturally associated with L . These assumptions read as
follows:

• assumption (D): there exists Q > 0 such that

µ(B(x,2r))≤ 2Q µ(B(x,r)), for every x ∈ RN and every r > 0;

• assumption (P): there exists a constant CP > 0 such that, for every x ∈RN , r > 0
and every u which is C1 in a neighborhood of B(x,2r) one has
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−
∫

B(x,r)

∣∣∣u(y)−uB(x,r)

∣∣∣dµ(y)≤CP r −
∫

B(x,2r)

∣∣∣Xu(y)
∣∣∣dµ(y).

Here we used the following notations: |Xu| :=
√

∑m
j=1 |X ju|2 and

−
∫

B(x,r)
{· · ·}dµ =

1
µ(B(x,r))

∫
B(x,r)

{· · ·}dµ , uB(x,r) :=−
∫

B(x,r)
u(y)dµ(y).

Under these assumptions (plus some further mild technical hypotheses on the d-
topology1), one can derive Poincaré-Sobolev-type inequalities on the d-balls, fol-
lowing the ideas by Hajłasz and Koskela in [55].

Since we are interested in relating the global doubling condition and the global
Poincaré inequality to the theory of subelliptic operators, it is natural to work in
the setting of the Sobolev spaces associated with the family of vector fields X with
respect to the doubling measure µ . Accordingly, we take for granted the associated
notion of weak solution to −L u = g (when g is in Lp).

Thanks to a density result of Meyers-Serrin type (see [44, 47]), one can consider
the Sobolev space W 1,2(Ω ,X ,µ) as the closure of the space of the smooth functions
in the norm of W 1,2, similarly to the classic case. This result, together with some
Sobolev-type inequality on the d-balls (see also [20, 46, 50, 55]), is an important tool
in order to obtain an adaptation of the well-established Moser iterative technique; as
is well known, this powerful technique allowed us to obtain the following invariant
and non-homogeneous Harnack inequality for L (with the consequent inner and
boundary Hölder estimates):

Theorem 3 (Non-homogeneous, invariant Harnack inequality). Let the assump-
tions (D) and (P) be satisfied for L and for the doubling metric space (RN ,d,µ).
Let Ω ⊆ RN be an open set, and let g ∈ Lp(Ω), with p > Q/2.

Then there exists a structural constant C > 0 (only depending on the dou-
bling/Poincaré constants Q,CP, on the X-ellipticity constants λ ,Λ and on p) such
that, for every d-ball B(x,R) satisfying B(x,4R)⊂ Ω , one has

sup
B(x,R)

u ≤C
(

inf
B(x,R)

u+R2∥g∥∗Lp(B(x,4R))

)
, (6)

for any nonnegative W 1
loc-weak solution u of −L u = g in Ω .

Here we used the notation

∥g∥∗Lp(A) :=
(
−
∫

A
|g|p dµ

)1/p

.

In the particular case when g ≡ 0, from Theorem 3 one obtains the homogeneous,
invariant Harnack inequalities obtained by Kogoj and Lanconelli in [60, 61]. Again

1 We assume that the metric space (RN ,d) is complete and its topology coincides with the Eu-
clidean one.
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in the homogeneous case g ≡ 0, an invariant Harnack inequality under local dou-
bling/Poincaré has been proved by Gutiérrez and Lanconelli in [53], for balls of
small radii. In the same paper [53], the authors obtain a non-homogeneous invariant
Harnack inequality, under the presence of some dilation-invariance property on the
vector fields X involved.

The summand R2∥g∥∗Lp(B(x,4R)) is bounded from above by

R2

µ(B(x,R))1/p ∥g∥Lp(Ω);

when R is small and x lies in a compact set K ⊂ Ω , there exists a constant C(Q,K)>
0 such that (due to the doubling inequality (D)) the latter does not exceed

C(Q,K)R2−Q/p∥g∥Lp(Ω).

Thus, our inequality (6) contains the analogous non-homogeneous, invariant Har-
nack inequality by Uguzzoni in [72], where it is considered the particular case when
x is confined in some compact set K ⊂ Ω and R is very small. Roughly put, these
more restrictive requirements on the d-balls involved are the drawback of the local
doubling/Poincaré assumptions made in [72]; in the same spirit, our global inequal-
ity (6) (in the sense that it holds for any d-ball) is the product of our more onerous
assumptions that doubling and Poincaré inequalities hold globally for any d-ball.

In a future investigation, we intend to apply Theorem 3 in order to prove the
existence of a global fundamental solution for our X-elliptic operators L : this will
require a deep insight of the Green function related to L , plus the maximum prin-
ciples by Gutiérrez and Lanconelli in [53].

5 The existence of the fundamental solution for a class of PDOs

In order to explain the main idea behind our technique for obtaining a funda-
mental solution for a (selected) class od PDOs, we describe an example. Let
∆n = ∑n

j=1(∂x j)
2 be the classic Laplace operator on Rn; then we may say that ∆n+p

is a ‘lifting’ of ∆n (for every p ≥ 1) in the sense that

∆n+p( f ◦π) = (∆n f )◦π for every f ∈C∞(Rn,R),

where π : Rn+p → Rn is the projection of Rn+p onto Rn. If n > 2, the fundamental
solution of ∆n (a constant multiple of ∥x∥2−n) can be recovered by that of ∆n+p
by a process that we may call ‘saturation’, in the sense that we integrate over the
remaining p coordinates: this comes from the integral identity2

2 The identity follows from the change of variable t = ∥x∥τ (with τ ∈ Rp).
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c
(√

x2
1 + · · ·+ x2

n

)2−n
=
∫
Rp

(√
x2

1 + · · ·+ x2
n + t2

1 + · · ·+ t2
p

)2−n−p
dt1 . . .dtp,

holding true for some constant c, whenever n > 2. Incidentally, the above integral
is convergent precisely when n > 2. We aim to obtain an analogous process of lift-
ing/saturation for other classes of PDOs.

To this end, we consider a set X = {X1, . . . ,Xm} of linearly independent3 smooth
vector fields on Rn satisfying the following assumptions:

(H1) X1, . . . ,Xm are homogeneous of degree 1 with respect to the non-isotropic di-
lations

δλ (x) = (λ σ1 x1, . . . ,λ σn xn),

where 1 = σ1 ≤ . . . ≤ σn and q := ∑n
j=1 σ j > 2 (the so-called homogeneous di-

mension related to δλ ); this means that (for any i = 1, . . . ,m)

Xi( f ◦δλ ) = λ (Xi f )◦δλ ∀ λ > 0, ∀ f ∈C∞(Rn,R).

(H2) X1, . . . ,Xm satisfy the Hörmander rank condition:

dim
{

X(x) : X ∈ Lie{X1, . . . ,Xm}
}
= n, for every x ∈ Rn.

We then introduce the operator L naturally associated with X , that is,

L =
m

∑
j=1

X2
j . (7)

Example 2. Let us consider, on Euclidean space R2, the Grushin vector fields:

X1 = ∂x1 , X2 = x1 ∂x2 .

Clearly, X1,X2 are independent (as differential operators4, even if not point-wise
independent) and smooth; they are homogeneous of degree 1 with respect to δλ (x)=
(λx1,λ 2x2); they satisfy the Hörmander rank condition. A lifting of G := X2

1 +X2
2

is given by the PDO on R3 defined by

G̃ := (∂x1)
2 +(∂x3 + x1 ∂x2)

2.

The idea of obtaining a fundamental solution for the Grushin operator G via a sat-
uration argument applied to the (explicit!) fundamental solution of G̃ has already
been exploited in the literature (e.g., in Bauer, Furutani, Iwasaki [9]; see also Calin,

3 Throughout, we consider the set of the smooth vector fields on RN as a real vector space and
not as a C∞-module; therefore, the vector fields X1, . . . ,Xm are linearly dependent iff there exist
c1, . . . ,cm ∈ R, not all vanishing, such that c1X1 + · · ·+ cmXm = 0 as a first order linear PDO (i.e.,
all of its coefficient functions with respect to the usual coordinate partial derivatives are identically
equal to 0).
4 This is not in contrast with the fact their coefficient vectors (1,0) and (0,x1) are linearly depen-
dent at x1 = 0; see the previous footnote.
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Chang, Furutani, Iwasaki [31]; for more general PDOs on 2-step Carnot groups,
see Beals, Gaveau, Greiner, Kannai [14]). Other references related to the (difficult)
problem of obtaining explicit/integrally-represented fundamental solutions are the
following ones: [2, 10, 11, 12, 13, 15, 18, 19, 28, 32, 56]. See [16] for a wider list.

We intend to show that a process of lifting/saturation can always be performed
for our PDO L in (7), when (H1) and (H2) are satisfied. Indeed, L admits a lifting
which is a sub-Laplacian LG on some Carnot group G; most importantly, since LG
admits a global fundamental solution ΓG (see Folland [42]), we shall show that a
global fundamental solution Γ for L can always be obtained by a saturation argu-
ment from ΓG. This gives the existence of Γ , together with an integral representation
for it.

We describe more closely our procedure. The lifting method introduced by Roth-
schild and Stein [69] (which is, roughly put, a local fact) does not seem to be ap-
plicable. What is suited to our case is the global lifting for homogeneous operators
proved by Folland in [43], which we now describe. We set a := Lie{X1, . . . ,Xm}.
Then a is nilpotent and stratified:

a= a1 ⊕a2 ⊕·· ·⊕ar,

with [a1,ai−1] = ai if 2 ≤ i ≤ r = σn, and [a1,ar] = {0}, where we have also set
a1 := span{X1, . . . ,Xm}. We equip a with the Campbell-Hausdorff operation

X ⋄Y = X +Y +
1
2
[X ,Y ]+

1
12

[X , [X ,Y ]]− 1
12

[Y, [X ,Y ]]+ · · · ,

and with the family of dilations

∆λ (X) =
r

∑
k=1

λ kVk, where X =V1 + · · ·+Vr and Vk ∈ ak.

Folland’s theorem ensures that the triple A := (a,⋄,∆λ ) is a homogeneous Carnot
group, in the sense of [26]. Moreover, setting5

π : A→ Rn, π(X) := exp(X)(0),

the following properties hold true:

• π is surjective;
• there exists a system {J1, . . . ,Jm} of Lie-generators of Lie(A) such that

daπ(Ji) = (Xi)π(a), a ∈ A and i = 1, . . . ,m.

5 Here exp(tX)(x) denotes the solution t 7→ γ(t) of the Cauchy problem

γ̇(t) = X(γ(t)), γ(0) = x.
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In [16] we proved that something more can be done: we perform a suitable change of
variable T :RN ≡A→RN turning π into the canonical projection π :Rn×Rp →Rn,

π(x1, . . . ,xn,ξ1, . . . ,ξp) = (x1, . . . ,xn),

where p = N − n = dim(Lie{X1, . . . ,Xm})− n; this gives an explicit knowledge of
the fibers of π (all equal to Rp).

Putting together Folland’s lifting and our change of variable, we infer that there
exists a homogeneous Carnot group G =

(
RN ,⋆,D⋆

λ
)

and there exists a system
{Z1, . . . ,Zm} of generators of Lie(G) such that

Zi = Xi +
p

∑
j=1

ri, j(x,ξ )
∂

∂ξ j
, for every i = 1, . . . ,m.

We also have

D⋆
λ (x,ξ ) =

(
δλ (x),δ ∗

λ (ξ )
)
=
(
δλ (x),λ s1ξ1, . . . ,λ sp ξp

)
.

Due to the mentioned result by Folland, the sub-Laplacian LG := ∑m
j=1 Z2

j has a
unique global fundamental solution Γ of the form

ΓG
(
(x,ξ ),(y,η)

)
= d2−q−q̃ ((x,ξ )−1 ⋆ (y,η)

)
, (x,ξ ) ̸= (y,η),

where d is a suitable homogeneous norm on G and q̃ = ∑p
j=1 s j is the homogeneous

dimension of Rp with respect to δ ∗
λ .

Now we can perform the announced saturation argument: it can be proved that
the following is a fundamental solution for L :

Γ (x,y) :=
∫
Rp

d2−q−q̃ ((x,0)−1 ⋆ (y,η)
)

dη (x ̸= y).

To prove this, the main issue is to show that, for every fixed x,y ∈ Rn with x ̸= y,
one has

(S) : Rp ∋ η 7→ d2−q−q̃
(
(x,0)−1 ⋆ (y,η)

)
is in L1(Rp).

Some key facts for the proof of property (S) are the following:

• for every x,y ∈ Rn with x ̸= y, we have

ΓG = d2−q−q̃ ((x,0)−1 ⋆ (y,η)
)
∈ L1

loc(Rp);

• there exists a real c > 0 such that

d2−q−q̂(z,ζ )≤ c

(
p

∑
i=1

|ζi|1/si

)2−q−q̃

=: φ(ζ ), for all (z,ζ ) ∈ RN ;

• via a suitable change of variable, ΓG
(
(x,0)−1 ⋆ (y,η)

)
is η-integrable at infinity

if the same is true of φ ;
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• φ is integrable at infinity (by a homogeneous argument on annuli).

Once (S) is established, it is not too difficult to recognize that Γ is a fundamental
solution for L , further satisfying the following properties:

1. setting O := {(x,y) ∈ Rn ×Rn : x ̸= y}, then Γ ∈C∞(O,R);
2. Γ (x,y)> 0 on O;
3. Γ (x,y) = Γ (y,x) for every x ̸= y;
4. Γ ∈ L1

loc(Rn ×Rn);
5. Γ

(
δλ (x),δλ (y)

)
= λ 2−q Γ (x,y).

In the forthcoming paper [17], we shall consider the parabolic case as well. More
precisely, we consider once again a set a set X = {X1, . . . ,Xm} of linearly indepen-
dent smooth vector fields on Rn satisfying the above assumptions (H1) and (H2).
We define

H := L −∂t =
m

∑
j=1

X2
j −∂t , on R1+n = Rt ×Rn

x .

We prove the existence of a “well-behaved” global fundamental solution (usually
referred to as a heat kernel) for the parabolic PDO H . A lifting/saturation approach
can be performed. Indeed, let Z1, . . . ,Zm be as above; then the operator

HG := LG−∂t =
m

∑
j=1

Z2
j −∂t , on R1+N = Rt ×RN

(x,ξ )

is a lifting of H on R×G ≡ R1+N . As regards the operator HG, it is well-know
that there exists a smooth map γG : R1+N \{0}→ R such that the function

ΓG(t,x,ξ ;s,y,η) := γG
(
(s− t,(x,ξ )−1 ⋆ (y,η)

)
, (t,x,ξ ) ̸= (s,y,η)

is a global fundamental solution for HG (here, ⋆ is the composition law of G). Since
HG is a lifting for H , it is natural to define

Γ (t,x;s,y) :=
∫
Rp

γG
(
s− t,(x,0)−1 ⋆ (y,η)

)
dη .

The main issue here is to prove that, for every fixed (t,x) ̸= (s,y) ∈ R1+n, one has

(S)’: Rp ∋ η 7→ γG
(
s− t,(x,0)−1 ⋆ (y,η)

)
is in L1(Rp).

Key tools for proving property (S)’ are:

• the existence of a constant c > 0 such that, for every (x,ξ ) ∈RN and every t > 0,
the following uniform Gaussian estimates hold true:

1
c tQ/2 exp

(
− cd2(x,ξ )

t

)
≤ γG(t,x,ξ )≤

c
tQ/2 exp

(
− d2(x,ξ )

c t

)
;

here, d is the same homogeneous norm introduced in the stationary case;
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• the estimates for d exploited in the stationary case.

Once (S)’ is established, one can show that the function Γ is well-defined and is a
global fundamental solution for H , further satisfying the following properties:

1. Γ ≥ 0 and Γ (t,x;s,y) = 0 if and only if s ≤ t;
2. Γ depends on t and s only through the difference s− t; moreover, Γ is symmetric

with respect to the space variables;
3. Γ (λ 2t,δλ (x);λ 2s,δλ (y)) = λ−q Γ (t,x;s,y);
4. Γ is smooth out of the diagonal of R1+n ×R1+n;
5. Γ ∈ L1

loc(R1+n ×R1+n);
6. for every fixed (t,x) ∈ R1+n we have∫

Rn
Γ (t,x;s,y)dy = 1, for every s > t;
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