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Marine microbes exhibit biogeographical patterns linked with fluxes of matter and
energy. Yet, knowledge of the mechanisms shaping bacterioplankton community
assembly across temporal scales remains poor. We examined bacterioplankton 16S
rRNA gene fragments obtained from Baltic Sea transects to determine phylogenetic
relatedness and assembly processes coupled with niche breadth. Communities
were phylogenetically more related over time than expected by chance, albeit with
considerable temporal variation. Hence, habitat filtering, i.e., local environmental
conditions, rather than competition structured bacterioplankton communities in summer
but not in spring or autumn. Species sorting (SS) was the dominant assembly
process, but temporal and taxonomical variation in mechanisms was observed. For May
communities, Cyanobacteria, Actinobacteria, Alpha- and Betaproteobacteria exhibited
SS while Bacteroidetes and Verrucomicrobia were assembled by SS and mass effect.
Concomitantly, Gammaproteobacteria were assembled by the neutral model and patch
dynamics. Temporal variation in habitat filtering and dispersal highlights the impact of
seasonally driven reorganization of microbial communities. Typically abundant Baltic
Sea populations such as the NS3a marine group (Bacteroidetes) and the SAR86
and SAR11 clade had the highest niche breadth. The verrucomicrobial Spartobacteria
population also exhibited high niche breadth. Surprisingly, variation in bacterioplankton
community composition was regulated by environmental factors for generalist taxa
but not specialists. Our results suggest that generalists such as NS3a, SAR86, and
SAR11 are reorganized to a greater extent by changes in the environment compared to
specialists and contribute more strongly to determining overall biogeographical patterns
of marine bacterial communities.

Keywords: metacommunity, assembly mechanism, net relatedness index, niche breadth, generalist, specialist,
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INTRODUCTION

Understanding the mechanisms that regulate microbial
distribution patterns is a central objective in microbial ecology
since microorganisms determine dynamics in processing of
elements essential to life (Falkowski et al., 2008; Gomez-
Consarnau et al., 2012; Logue et al., 2015). Yet, despite the
recognized importance of microbial biogeography (Pommier
et al., 2007; Barberan and Casamayor, 2010; Ghiglione
et al., 2012), the assembly processes involved in structuring
bacterioplankton communities are poorly understood (Martiny
et al., 2006; Pommier et al., 2007; Barberan and Casamayor,
2010; Ghiglione et al., 2012; Lindström and Langenheder, 2012).
However, current advancements in high-throughput sequencing
now offer an opportunity for microbial ecologists to introduce
and test mechanistic concepts in microbial biogeography (Poisot
et al., 2013).

Bacterioplankton communities may be structured both
by local and regional factors. The net relatedness index
(NRI) measures species relatedness within a local community
and estimates the importance of environmental conditions
versus competition (Webb, 2000). A positive NRI value can
be interpreted as habitat filtering, where members of the
community are more closely related than expected by chance,
indicating that community composition is structured by local
environmental conditions (Webb et al., 2002). In contrast,
a negative value implicates competitive exclusion of closely
related species, leading to a local community with more
distantly related species. Still, competitive exclusion assumes
that communities are at steady-state (Rescigno and Richardson,
1965; Armstrong and McGehee, 1980), and steady-state in
natural assemblages may rarely be achieved depending on,
e.g., varying time scales of mixing/disturbances compared to
growth rates. There is limited data on phylogenetic relatedness
among microbial assemblages in marine systems and most
have found positive NRI values, suggesting that habitat filtering
(environmental factors) is important for bacterioplankton
community structure (Barberan and Casamayor, 2010; Pontarp
et al., 2012). Nevertheless, the extent of temporal variation in
phylogenetic relatedness among bacterioplankton assemblages
remains little studied.

Metacommunity theory predicts the interdependence of
local environmental interactions and dispersal-driven processes
(Mouquet and Loreau, 2003; Leibold et al., 2004; Holyoak
et al., 2005; Beisner et al., 2006). There are currently four
conceptual paradigms of metacommunity theory. Species
sorting (SS) indicates that local environmental conditions
regulate community structure whereas mass effect (ME) and
patch dynamic (PD) indicate dispersal-driven assortment of
communities. The neutral model (NM), in turn, emphasizes
the importance of stochastic assembly processes (Logue et al.,
2011). To our knowledge, three studies examining assembly
mechanisms of bacterioplankton communities have been
performed in marine environments; in the southern East China
Sea, among Vibrio cholerae strains collected around the central
California coast, and for 16 mainly coastal sites distributed
globally (Keymer et al., 2009; Barberan and Casamayor, 2010;

Yeh et al., 2015). In contrast, limnic environments are better
understood (see, e.g., Beisner et al., 2006; Van der Gucht et al.,
2007; Lindström et al., 2010; Logue and Lindström, 2010;
Langenheder et al., 2012; Lindström and Langenheder, 2012;
Adams et al., 2014). Collectively, examination of assembly
mechanisms of bacterioplankton communities in aquatic
environments indicates that SS (i.e., local environmental
conditions) is the main driver of bacterial community structure.
Nevertheless, although local environmental conditions are the
dominant factor in shaping bacterioplankton communities, both
Langenheder et al. (2012) and Yeh et al. (2015) observed temporal
changes in assembly processes. Thus, information is lacking on
the factors affecting bacterioplankton assembly mechanisms,
including the magnitude and prevalence of temporal changes,
or the influence of different taxa-intrinsic characteristics such
as dispersal capacity, or a generalist versus specialist nature
(Lindström and Langenheder, 2012).

Our aim was to examine assembly processes for structuring
bacterioplankton community composition and biogeography
using samples collected from monthly transects during April
to October 2011 along a 100-km transect off the east coast
of Sweden in the western Gotland Sea of the Baltic Sea
Proper (Diaz-Gil et al., 2014; Legrand et al., 2015; Bertos-Fortis
et al., 2016). Using 16S rRNA gene fragments we investigated
(i) phylogenetic relatedness over time, (ii) differences in
community assembly mechanisms over time, and between taxa,
and (iii) how niche breadth influenced community assembly.
Firstly, we hypothesized that substantial temporal variation in
phylogenetic relatedness and assembly processes would result
from seasonal changes in environmental conditions. Secondly,
we hypothesized that different major taxa would exhibit different
assembly processes. A final hypothesis was that variation in
local environmental conditions would significantly influence
community composition for taxa with limited niche breadth
(i.e., specialists) but not taxa with a wide niche breadth (i.e.,
generalists).

MATERIALS AND METHODS

Sample Collection, Physicochemical
Factors, and Processing of 16S rRNA
Amplicons
We used samples collected from monthly transects during
April to October 2011 along a 100-km transect off the east
coast of Sweden in the western Gotland Sea of the Baltic

TABLE 1 | Summary of Mantel’s tests performed in the present study.

Month (n = 7) Group (n = 7) Number of
Mantel’s tests

All All 1

Separate months All 7

All Separate groups 7

Separate months Separate groups 49
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Sea Proper (for a detailed description of the study area and
environmental conditions, see Diaz-Gil et al., 2014; Legrand
et al., 2015; Bertos-Fortis et al., 2016). In brief, unfiltered
natural seawater was collected in acid washed Milli-Q rinsed
polycarbonate bottles, at discrete depths (2, 4, 6, 8, and
10 m) that were pooled and filtered shipboard on to 47 mm
0.2 µm Supor filters (Pall corporation). In total 13 stations
were sampled from April to October, a total 63 samples
analyzed, representing seasonal variation of coastal and open
ocean sites. Samples for measuring Chlorophyll a (Chl a)
concentration were collected according to Jespersen and
Christoffersen (1987), and dissolved inorganic nutrients (NH4

+,
NO3

−, PO4
3−, and SiO2) were analyzed following the method

of Valderrama (1995; for details on sampling abiotic factors,
see Legrand et al., 2015; Bertos-Fortis et al., 2016). Sampling
collection, DNA extraction, PCR amplification, and amplicon
processing is detailed in Bertos-Fortis et al. (2016). Collection
and extraction of DNA was performed according to Riemann
et al. (2000). Bacterial 16S rRNA was amplified with bacterial
primers 341F and 805R targeting the V3–V4 hypervariable
region and containing adaptor and barcode following the
protocol of Herlemann et al. (2011). The resulting purified
barcoded amplicons were normalized in equimolar amounts and
sequenced on a Roche GS-FLX 454 automated pyrosequencer
(Roche Applied Science, Branford, CT, USA) at SciLifeLab,
Stockholm, Sweden. Raw sequence data generated from 454
pyrosequencing were processed following Quince et al. (2011)
and taxonomically identified using the SINA/SILVA database
(Quast et al., 2013). Sequences were clustered together into
operational taxonomic units (OTU) at the 97% 16S rRNA
gene identity level using Usearch (Edgar, 2010). For subsequent
analyses all samples were rarefied to 2500 sequences per sample.
Amplicon sequences from the 16S rRNA gene fragments obtained
from Bertos-Fortis et al. (2016) were deposited in the National
Center for Biotechnology Information (NCBI) Sequence Read
Archive under accession number SRP023607.

Statistical Tests
A maximum likelihood-based phylogenetic tree for analyzing
NRI was calculated using MEGA 5.0 (Tamura et al., 2011) using
nearest neighbor interchange. Calculations for NRI are detailed
in Webb (2000) and Horner-Devine and Bohannan (2006).

Correlations between bacterioplankton community
composition (Bray–Curtis distances) and environmental
factors versus spatial factors (Euclidean distances of salinity,
temperature, Chl a, ammonium [NH4

+], nitrate [NO3
−],

phosphate [PO4
−], and silicate [SiO4] compared to latitude

and longitude) were calculated using standard Mantel’s tests
for environmental [E] and spatial [S] factors and partial
Mantel’s tests for the fraction of bacterioplankton community
composition that can be explained by the environmental factors
independent of any spatial structure [E| S] and the fraction
that can be explained by spatial allocation independently of any
environmental variables [S| E] (Table 1). Assignment to the
most appropriate metacommunity type was performed following
Cottenie (2005).

Niche breadth was calculated using Levin’s niche breadth
index following Pandit et al. (2009) (B = 1/6N

i = 1p2
ij) where

pij is the proportion of OTU j in the sample i and N is the
number of samples. OTUs with high B values are classified as
habitat generalists and evenly distributed along a wide range of
habitats. In contrast, OTUs with low B values are considered
habitat specialists and unevenly distributed among sampling
sites. Mantel’s tests for [E] and [S] and partial Mantel’s tests for
[E| S] and [S| E] was performed for these different niche breadth
groups as above.

All statistical tests and graphical outputs were performed in
R 3.2.2 (R Development Core Team, 2014), using the packages
Vegan (Oksanen et al., 2010), picante (Kembel et al., 2010), and
ggplot2 (Wickham, 2009).

RESULTS AND DISCUSSION

Importance of Environmental Conditions
and Competition within a Local
Community
To determine the importance of habitat filtering compared
to competition for shaping local community composition
we analyzed the phylogenetic relatedness among OTUs
(conservatively defined at 97% 16S rRNA gene identity).
Using the NRI index, 49 of 63 values were positive while 14
were negative (Table 2). From the 49 positive NRI values,
14 were significantly positive and most of these values (11 of

TABLE 2 | Phylogenetic relatedness over time.

Month + (n) − (n) + (%) − (%) Sig + (n) Sig − (n) Sig + (%) Sig − (%)

April 3 4 42.9 57.1 0 0 0 0

May 3 8 27.3 72.7 0 0 0 0

June 4 1 80 20 1 0 20 0

NRI July 10 1 90.9 9.1 7 0 63.6 0

August 12 0 100 0 4 0 33.3 0

September 12 0 100 0 1 0 8.3 0

October 5 0 100 0 1 0 20 0

Maximum likelihood-based phylogenetic tree for analyzing NRI was calculated from MEGA 5.0 (Tamura et al., 2011) using nearest neighbor interchange. Number of and
percentage of positive and negative NRI values is indicated with ± (n) and ± (%), respectively. Number of and percentage of significantly positive or negative NRI values
is indicated with Sig ± and Sig ± (%), respectively.
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14) were found in July and August (Table 2). Positive NRI
values are in agreement with previous studies indicating that
local environmental conditions are important for community
structure (Andersson et al., 2010; Barberan and Casamayor,
2010; Pontarp et al., 2012). Nevertheless, to our knowledge ours
is the first study that has investigated temporal variations in
bacterial phylogenetic relatedness.

The composition of local bacterioplankton communities is
generally dictated by biogeographical distribution and dispersal
capability of populations, local adaptive radiation, intra- and
inter-specific interactions, and local environmental effects
resulting from changes in physicochemical conditions such as
temperature, salinity, and nutrient availability (Webb, 2000).
Although these processes can act synergistically, their relative
importance varies over spatial, temporal, and phylogenetic
scales (Martiny et al., 2006; Hanson et al., 2012; Lindström
and Langenheder, 2012). Pontarp et al. (2012) proposed that
despite the recognized temporal variation in bacterioplankton
community composition (see, e.g., Andersson et al., 2010),
the dominating assembly processes are similar. Moreover,
the study performed by Andersson et al. (2010) showed an
inverse correlation between genetic distance and similarity in
OTU abundance profiles. The authors suggested that closely
related taxa have coherent temporal dynamics and share
similar ecological niches. Collectively, these studies point
toward phylogenetic conservatism of functional traits among
microorganisms. However, as Martiny et al. (2013) pointed
out, phylum and class level conservation of traits generally
appears to be limited. We show a considerable temporal variation
in phylogenetic relatedness (Table 2), implying that multiple
mechanisms can shape microbial communities across time.
These results suggest that habitat filtering only structures marine
bacterial communities under certain conditions. Phylogenetic
conservatism likely influences the dynamics of the bacterial
communities but the effects are masked at the community level
since traits are more conserved at higher taxonomical ranks
such as genus and/or species. Still, care should be taken when
making conclusions on samples obtained at a single site or over
a larger geographical area on one occasion, as the dynamics
of bacterioplankton community assortment are instead largely
dictated by the prevailing mechanism at any given time and
changes seasonally.

Importance of Local Environmental
Conditions and Dispersal for Differences
in Community Structure among Sites
When assembly mechanisms were examined for the total
bacterial community for all months together, SS was the
main assembly mechanism (Figure 1) and analysis of the
different bacterial taxa for all months together showed that
SS remained the predominant assembly process. Indeed, SS
has previously been emphasized as the principal assembly
mechanism structuring bacterioplankton communities (Beisner
et al., 2006; Van der Gucht et al., 2007; Barberan and
Casamayor, 2010; Lindström et al., 2010; Logue and Lindström,
2010; Lindström and Langenheder, 2012) and Baltic Sea

FIGURE 1 | Metacommunity types found in our study. Variation in
bacterial community composition was split into the following components: [E]
environmental, [S] spatial, [E| S] the fraction of bacterial community
composition that can be explained by the environmental factors independent
of any spatial structure, and [S| E] the fraction of bacterioplankton community
composition that can be explained by spatial allocation independently of
environmental variables. Color in heatmap indicates Pearson’s r correlation
and asterisk (∗) indicates significant values. Metacommunity types are
abbreviated; SS, species sorting; ME, mass effect; NM, neutral model; PD,
patch dynamic; UD, undetermined; NF, not found.
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TABLE 3 | Number of OTUs, average niche breadth (B) and occupancy for
bacterioplankton communities within different ranges of niche breadth
and within different bacterial taxa.

Number of
OTUs

Average B Average
occupancy (% of
sites occupied)

All bacteria 2261 3.95± 5.33 8.56 ± 14.22

B > 10 169 (40%) 19.26 ± 8.8 49.45 ± 23.73

B = 6–10 188 (7%) 7.8± 1.14 17.70 ± 6.71

B = 3–6 467 (50%) 4.0 ± 0.85 7.63 ± 2.77

B < 3 1438 (3%) 1.62± 0.78 2.83 ± 1.28

Cyanobacteria 269 (13%) 4.28± 5.98 11.22 ± 19.47

Bacteroidetes 338 (20%) 4.99± 6.23 11.94 ± 17.55

Actinobacteria 663 (28%) 4.07± 5.99 8.35 ± 15.04

Verrucomicrobia 43 (3%) 5.67± 5.08 13.91 ± 18.04

Alphaproteobacteria 221 (14%) 4.40± 6.13 9.24 ± 15.64

Betaproteobacteria 65 (1%) 5.10± 5.53 10.72 ± 14.11

Gammaproteobacteria 125 (5%) 4.06± 5.48 9.15 ± 14.58

Niche breadth was calculated for all taxa together but also for Actinobacteria,
Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria separately, using Levins’ niche
width (B) index. For Number of OTUs, percentages of total sequences (relative
abundance) are provided in parenthesis.

bacterioplankton communities have been shown to be largely
structured by changes in salinity (Herlemann et al., 2011; Dupont
et al., 2014). In fact, a recent metagenomic study suggested a
global brackish water microbiome exists (Hugerth et al., 2015).
In addition, Baltic Sea bacterioplankton metacommunities have
been shown to be shaped by seasonally anoxic conditions that
promote redox-specialized bacterial populations (Laas et al.,
2015). Altogether, studies highlight that local environmental
conditions structure the regional distribution of bacterioplankton
populations into distinct metacommunities. Yet, temporal
changes in assembly mechanisms have also been demonstrated
for bacterial communities in rock pools (Langenheder et al.,
2012) and in the southern East China Sea (Yeh et al., 2015),
and accordingly, assembly mechanisms estimated over time
in the current dataset indicated differences between months
(Figure 1), so that, for example, in April and August the
total communities were structured according to both the NM
and PDs while the May and September communities were
structured by SS and ME. In conclusion, although the main
assembly process was SS, there was at times a substantial effect
of spatial factors in shaping community structure, indicating
that dispersal-driven assembly processes were also important,
and these results highlight seasonal variation in the assembly
of microbial communities and indicate the need for studying
temporal dynamics in greater detail to understand microbial
metacommunity dynamics. Ultimately, we could potentially
envision the use of seasonal shifts in local and regional
distribution patterns of marine microbes to predict responses to
anthropogenically induced climate change and shifts in carbon
cycling in marine ecosystems.

Interestingly, we also found differences in metacommunity
assembly processes for different major bacterial taxa within each

month. For example, in May, Actinobacteria, Betaproteobacteria,
Cyanobacteria, and Alphaproteobacteria were structured by
SS, and Bacteroidetes and Verrucomicrobia exhibited SS and
ME, whereas Gammaproteobacteria were structured by the
NM and PDs (Figure 1). This emphasizes that there can be
pronounced temporal differences in the assortment of bacterial
communities and that different metacommunity paradigms vary
in importance on seasonal scales and between taxa. Overall,
these results are largely in agreement with assembly mechanisms
observed for different major bacterial groups in globally
distributed datasets in both lake and marine environments
as well as rock pools located near the Baltic Sea (Barberan
and Casamayor, 2010; Székely and Langenheder, 2014). It is,
however, noteworthy that the NM and spatial effects were also
found for Gammaproteobacteria in the study of Barberan and
Casamayor (2010), but in contrast, Székely and Langenheder
(2014) observed neither significant environmental nor spatial
effects for this bacterial class. Nevertheless, it is notable that
Gammaproteobacteria do not exhibit SS in these studies and
only once within months in the present paper (April). The
typically fast-growing gammaproteobacterial populations might
be assembled by mechanisms other than SS since this class
contains several opportunistic taxa that mainly enter and exit
the rare and abundant compartments of bacterioplankton. Still,
Gammaproteobacteria assemblages were assembled by SS for the
overall study period (i.e., for all pooled months).

Collectively, distributions of bacterioplankton populations
affiliated with Cyanobacteria and Alphaproteobacteria were
mainly assembled by local environmental conditions whereas
Bacteroidetes and Verrucomicrobia were structured by spatial
and environmental effects. Assembly of Gammaproteobacteria
was on the other hand largely determined by the NM in
addition to spatial and environmental effects. These results
suggest that the dominant Gammaproteobacteria class may be
less sensitive to long-term changes in environmental conditions
resulting from anthropogenically induced climate change. Hence,
Gammaproteobacteria might have an increased importance
in the microbial food web due to future ocean change. In
contrast, Actinobacteria, Cyanobacteria, Alphaproteobacteria,
Bacteroidetes, and Verrucomicrobia that were shaped by
environmental and spatial factors are likely more sensitive to
predicted long-term ocean changes in environmental conditions
and dispersal limitation and might hence be replaced by
opportunistic gammaproteobacterial taxa.

Habitat Specialization versus Assembly
Processes
For terrestrial macroorganisms, community assembly is typically
regulated by SS for habitat specialists, while habitat generalists
are not significantly affected by changes in the environment
(Leibold et al., 2004; Cottenie, 2005; Ellis et al., 2006). In
comparison, zooplankton community assembly is regulated by
SS for specialists (Pandit et al., 2009), while bacterial community
composition can be explained by environmental factors for
generalists (Székely and Langenheder, 2014). To examine how
marine bacterioplankton generalists were assembled compared
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FIGURE 2 | The variation in bacterioplankton community composition that can be explained by the environmental and spatial factors within niche
breadth calculated for all bacteria divided into groups of B > 10, B = 6–10, B = 3–6, and B < 3 (A), and within niche breadth calculated for specific bacterial
groups (B). Names of major bacterial groups are abbreviated; Actinobacteria (Actino), Alphaproteobacteria (Alpha), Bacteroidetes (Bact), Betaproteobacteria (Beta),
Cyanobacteria (Cyano), Gammaproteobacteria (Gamma), Verrucomicrobia (Verr).
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TABLE 4 | Niche breadth (B) of specific individual OTUs and their taxonomical affiliation.

OTU Phyla/class Taxa Niche breadth (B) Average relative
abundance (% total

sequences)

9 Bacteroidetes NS3a marine group 45.39 2.88 ± 1.76

7 Gammaproteobacteria SAR86 clade 45.02 3.41 ± 2.23

37 Actinobacteria hgcI clade 43.19 1.3 ± 0.9

47 Bacteroidetes uncultured 41.69 0.71 ± 0.52

B top 10 41 Alphaproteobacteria SAR11 clade 40.58 1.27 ± 0.95

15 Alphaproteobacteria SAR11 clade 39.58 1.64 ± 1.28

42 Unclassified 38.63 1.14 ± 0.91

8 Actinobacteria hgcI clade 38.17 4.31 ± 3.52

2 Alphaproteobacteria SAR11 clade 37.03 6.46 ± 5.43

32 Bacteroidetes NS5 marine group 36.68 0.95 ± 0.82

90 Bacteroidetes Fluviicola 16.21 0.13 ± 0.21

239 Actinobacteria Microbacteriaceae 16.15 0.1 ± 0.18

588 Alphaproteobacteria SAR11 clade 15.75 0.03 ± 0.05

11 Verrucomicrobia LD29 15.59 1.37 ± 2.4

B > 10 77 Bacteroidetes NS11-12 marine group 15.47 0.35 ± 0.61

6 Cyanobacteria FamilyI 15.41 0.87 ± 1.51

211 Planctomycetes Planctomyces 15.21 0.05 ± 0.08

333 Alphaproteobacteria Rhizobiales 15.04 0.03 ± 0.05

248 Bacteroidetes Flavobacterium 14.88 0.06 ± 0.12

74 Alphaproteobacteria Rhodobacteraceae 14.83 0.07 ± 0.12

363 Verrucomicrobia Opitutus 7.81 0.01 ± 0.03

171 Bacteroidetes Fluviicola 7.8 0.12 ± 0.33

993 Actinobacteria Micrococcales 7.78 0.02 ± 0.04

1074 Actinobacteria hgcI clade 7.74 0.01 ± 0.04

B = 6–10 119 Cyanobacteria Anabaena 7.71 0.23 ± 0.62

572 Bacteroidetes Flavobacterium 7.68 0.02 ± 0.05

454 Unclassified 7.67 0.03 ± 0.08

427 Unclassified 7.57 0.02 ± 0.06

946 Alphaproteobacteria SAR11 clade 7.53 0.01 ± 0.03

24 Cyanobacteria Anabaena 7.52 1.14 ± 3.11

212 Gammaproteobacteria Acinetobacter 7.5 0.07 ± 0.02

264 Bacteroidetes Algoriphagus 3.92 0.01 ± 0.04

268 Verrucomicrobia FukuN18 freshwater group 3.91 0.05 ± 0.19

987 Unclassified 3.9 0.01 ± 0.03

1330 Actinobacteria Sporichthyaceae 3.9 0.01 ± 0.03

2005 Unclassified 3.86 0.01 ± 0.02

B = 3–6 495 Gammaproteobacteria Acinetobacter 3.85 0.01 ± 0.03

286 Gammaproteobacteria SAR86 clade 3.85 0.01 ± 0.03

613 Alphaproteobacteria TK34 3.85 0.01 ± 0.03

1715 Gammaproteobacteria Idiomarinaceae 3.85 0.01 ± 0.03

318 Verrucomicrobia Marine group 3.79 0.01 ± 0.03

999 Bacteroidetes Robiginitalea 1.92 0.003 ± 0.02

1248 Actinobacteria CL500-29 marine group 1.92 0.003 ± 0.02

1275 Planctomycetes CL500-3 1.92 0.003 ± 0.02

1331 Actinobacteria uncultured 1.92 0.003 ± 0.02

B < 3 1403 Alphaproteobacteria Candidatus Captivus 1.92 0.003 ± 0.02

1499 Unclassified 1.92 0.003 ± 0.02

1738 Cyanobacteria FamilyI 1.92 0.003 ± 0.02

1902 Bacteroidetes Owenweeksia 1.92 0.003 ± 0.02

(Continued)
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TABLE 4 | Continued

OTU Phyla/class Taxa Niche breadth (B) Average relative
abundance (% total

sequences)

2009 Verrucomicrobia Cerasicoccus 1.92 0.003 ± 0.02

2058 Actinobacteria CL500-29 marine group 1.92 0.003 ± 0.02

21578 Epsilonproteobacteria Arcobacter 1 0.0007 ± 0.01

21693 Actinobacteria Microbacteriaceae 1 0.0007 ± 0.01

21837 Gammaproteobacteria Psychrobacter 1 0.0007 ± 0.01

23354 Actinobacteria Sporichthyaceae 1 0.0007 ± 0.01

23821 Unclassified 1 0.0007 ± 0.01

B bottom 10 23972 Actinobacteria 1 0.0007 ± 0.01

24642 Bacteroidetes NS7 marine group 1 0.0014 ± 0.01

25615 Betaproteobacteria OM43 clade 1 0.0007 ± 0.01

25676 Actinobacteria hgcI clade 1 0.0007 ± 0.01

25699 Unclassified 1 0.0007 ± 0.01

The top 10 and bottom 10 OTUs are provided with the highest and lowest niche breadth, respectively. Ten OTUs were selected for each B group representing the median
within that group. Average relative abundance (% of total sequences) with standard deviation is provided for each OTU.

to specialists, we calculated the niche breadth (B), for the OTUs
(Pandit et al., 2009). Most OTUs had a B < 3 (n = 1438)
compared to the small number of OTUs with a B > 10 (n = 169;
Table 3). Notably, over 40% of the total variation in community
composition was explained by changes in environmental
conditions for OTUs with B > 10 (Figure 2). In contrast, only
around 20% of the total variation in community composition
was explained by environmental factors for OTUs with B < 3
(Figure 2A). The OTUs with corresponding niche breadth
(B) > 10 contributed to 40% of total sequences. In contrast,
OTUs with B = 6–10 only contributed to 7% of total sequences,
while OTUs with B between 3 and 6 and B < 3 contributed
to 50% and 3% of the total sequence abundance, respectively.
Notably, there was a significant positive correlation between
community variance explained by environmental factors and
niche breadth (linear regression, p= 0.04, R2

= 0.86; Figure 2A).
This pattern was consistent among most bacterial groups except
for Betaproteobacteria, Verrucomicrobia, and Cyanobacteria
(Figure 2B). Thus, our results indicate that habitat generalists
contribute substantially to determining spatiotemporal variation
in marine bacterial community composition.

For individual OTUs we observed that typically numerically
abundant lineages displayed high niche breadth, such as
SAR11 OTU_41 and SAR86 OTU_7, with B = 40.58 and
B = 45.02, respectively (Table 4). Yet, interestingly, other OTUs
from the same clades were detected within B groups with
lower niche breadth, e.g., SAR11 OTU_946 with B = 7.53,
and SAR86 OTU_286 with B = 3.85. Typically, seasonally
abundant populations in summer and autumn in the Baltic Sea
Proper are exemplified by Verrucomicrobia and Actinobacteria,
respectively (Lindh et al., 2015). The verrucomicrobial OTU_11
(Spartobacteria) were found within the group corresponding to
B > 10 at 15.59. Two actinobacterial OTUs affiliated with the
CL500-29 lineage (OTU_1248, OTU_2058) were found in the
group with lowest niche breadth (B < 3). Collectively, our results
indicate that taxa with a more restricted distribution range tended
to be rare, i.e., with average relative abundances <0.1%. This

indicates that most taxa with high niche breadth were common
and abundant, while OTUs with lower niche breadth tended
to be rare. Since we observed a significant correlation between
niche breadth and the variance in community composition that
was explained by environmental factors, we propose that habitat
generalists such as SAR11 and SAR86 are likely to a greater
extent affected by changes in environmental conditions. In
agreement, previous studies have shown that habitat generalists
respond to the major and strongest prevailing environmental
conditions (Lennon and Jones, 2011; Székely and Langenheder,
2014).

CONCLUSION

Our results suggest that local environmental factors and SS
are the major drivers of marine bacterioplankton community
structure. Yet, assembly mechanisms vary over time. It remains
unknown to what degree variability in these assembly processes
depends on physical forcing, e.g., seawater is typically not
stratified most of the year in the Baltic Sea, except for a
strong stratification in summer. Further, assembly mechanisms
vary substantially between different taxa within months and
thus, multiple metacommunity assembly processes seem to
concertedly structure microbial biogeography in the Baltic Sea
Proper. We rejected our null-hypothesis that niche breadth,
i.e., compositional shifts for habitat specialists, was not
significantly explained by variation in environmental conditions.
Collectively, these results highlight that generalists or common
and widespread “core” taxa are sufficient to explain the overall
observed patterns in beta-diversity as previously suggested based
on research in rock pools by Székely and Langenheder (2014).
Here we extend these findings to marine bacterioplankton
suggesting that biogeographical patterns of marine bacteria
are to a larger extent shaped by the “core” members of the
community across environmental gradients compared to the rare
“satellite” members. Members of the rare biosphere exhibit a
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substantial stochastic variation in their distribution across time
and space, which complicates ambitions of predicting overall
community structure and ultimately bacterial processing of
carbon in a changing environment. Additionally, variations in
rare OTUs may be more influenced than abundant OTUs by
biases induced by varying sequencing depth between samples.
Collectively, our results indicate that it would be preferable
to focus on the common and widespread “core” community
for understanding shifts in biodiversity patterns coupled with
natural or anthropogenically induced changes in environmental
conditions.
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