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Abstract

We study a risk-sharing agreement where members exert a loss-mitigating action which de-
creases the amount of reimbursements to be paid in the pool. The action is costly and members
tend to free-ride on it. An optimal risk-sharing agreement maximizes the expected utility of a
representative member with respect to both the coverage and the (collective) action such that
e¢ ciency is restored. We study the sustainability of the optimal agreement as equilibrium in
a repeated game with inde�nite number of repetitions. When the optimal agreement is not
enforceable, the equilibrium with free riding emerges. We identify an interesting trade-o¤: wel-
fare generated by the optimal risk-sharing agreement increases with the size of the pool, but
at the same time the pool size must not be too large for collective choices to be self-enforcing.
This generates a discontinuous e¤ect of pool size on welfare.
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1 Introduction

�[U]nless the number of individuals in a group is quite small, or unless there is coercion or some other

special device to make individuals act in their common interest, rational, self-interested individuals

will not act to achieve their common or group interests.�(Olson 1965, p. 2)

In line with the previous quotation, we study the emergence of the optimal collective action as a

self-enforcing mechanism in organizations promoting mutual help among participants. That is, we

investigate how members of risk-sharing agreements can pursue a fully shared objective function

(the symmetric Pareto e¢ cient or optimal risk-sharing agreement), instead of maximizing their

individual objective functions by following Nash behaviors.

In risk-sharing agreements, members contribute whatever amount is needed to meet the losses

covered by the pool (see Picard 2014 and references within). Thus, the contribution to be paid is

stochastic because it depends on how many individuals su¤er the loss in the relevant period.

In our setting, members of the pool are all identical: they are endowed with the same initial

wealth, they face the same risk and they are characterized by the same utility function. This

allows us to naturally de�ne the optimal risk-sharing agreement and to focus on the behavior of the

representative member.1 Pool members face the risk of a monetary loss whose magnitude is a¤ected

by a costly action that we assume to be non contractible. We consider two strategies regarding the

choice of the action: members can play their Nash strategy or they can choose the collective action.

The latter is the action that maximizes the expected utility of a representative individual.

Moreover, the total amount to be reimbursed is �nanced with equal shares by members of the

pool. Importantly, in the �rst stage, the �pool� decides the share of the monetary loss to be

covered in case of damage (thus the coverage maximizes the expected utility of a representative

member) then, in the second stage, each member individually chooses the loss-mitigating action.

Thus, members�behavior in the second stage a¤ects the pool�s choice of the coverage in the �rst

stage.

In this setting we study under which conditions the optimal collective action emerges as an

1We refer the reader to Footnote 4 and to the end of Section 8 for a discussion about the consequences of relaxing
the assumption of uniform wealth in the pool.
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equilibrium and we investigate the impact of pool size on members�expected welfare.

The problem is relevant for many organizations we observe in reality. Besides mutual health

insurance that we discuss in details in Section 7, other examples are the following. In reinsurance

pools, insurers pool their risks together by sharing claims. Companies in the agreement have an

obvious common interest in loss prevention and in the maintenance of quality standards throughout

the membership. Families in poor countries are usually exposed to substantial risk but formal

insurance is rare so that households mostly rely on informal risk-sharing arrangements. Membership

requires trust and only families with a good reputation of being careful and reliable can participate

in the pool. Maritime insurance is another example2 . Typically, P&I Clubs o¤er �protection

and indemnity�to shipowners in the form of risk-sharing contracts. In the risk-sharing agreement

shipowners are supposed to behave according to precise safety rules. Lawyers, doctors and business

consultants highly rely on partnership contracts. The agreement speci�es rules on how risk, costs

and pro�ts are shared in the partnerships. Partners have a common interest in risk and cost

reduction.

In our setting, Nash behaviors allow for a partial internalization of the bene�cial e¤ect of the

members�action on the required contribution, while the optimal collective action allows for a full

internalization and thus improves e¢ ciency and welfare. We �rst show that full coverage is the

pool�s optimal choice in case the optimal collective action is pursued, while partial coverage is

optimally chosen by the pool under Nash behavior. Moreover, as the size of the pool tends to

in�nity, the optimal risk-sharing agreement reproduces the �rst-best while Nash behaviors lead to

the same welfare generated by a coinsurance policy with �xed contribution (premium).3 Then, we

investigate how the e¢ cient action, that is the optimal collective action, can be sustained as an

equilibrium in our framework.

As is well known, optimal collective actions can sometimes be obtained with repeated inter-

actions and some punishment strategy in the case of deviation (hence, with respect to the initial

quotation from Olson 1965, the �special device�we consider in the paper is repeated interaction).

2For a brief overview see http://www.igpandi.org/Group+Agreements/The+Pooling+Agreement, consulted in
November 2015.

3Contracts with �xed premium are typically o¤ered by traditional forpro�t companies and correspond to policies
where the risk is transferred, in full or in part, to the insurer.
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We mainly focus on the �trigger�strategy but we also brie�y discuss other punishment strategies.

When studying the repetition of the game, we investigate the case of full commitment as for the

coverage o¤ered in the agreement in the �rst stage, meaning that the coverage remains �xed in the

case of deviation and punishment (as it seems plausible if the coverage is de�ned by a contract).

However, we show that results are qualitatively equivalent when both stages (the choice of the

coverage and the choice of the action) are repeated, so that the pool selects a new coverage after

deviation.

We show that the free-riding incentives hampering the optimal risk-sharing agreement are in-

creasing in the size of the pool. Our setting thus allows the identi�cation of a trade-o¤ that has

important policy implications because it dramatically a¤ects e¢ ciency in risk-sharing arrangements.

On the one hand, e¢ ciency is increasing in the number of participants in the risk-sharing agree-

ment. On the other hand, since members�incentives to free ride are always higher in a large pool,

the optimal risk-sharing agreement is enforceable only when the size of the pool is not too high.

Therefore, when the dimension of the pool is relatively large, Nash behaviors prevail and lead to

the ine¢ cient equilibrium with free-riding. This depicts a schedule for members�expected utility in

equilibrium that is discontinuous, with a downward jump when optimality turns out to be no longer

enforceable. With the help of simulations performed with CARA and CRRA utility functions, we

also show that, except for the size of the pool such that the optimal risk-sharing agreement is no

longer enforceable (the downward jump), welfare is increasing in the pool size, even when Nash

behaviors emerge. Hence, the e¢ cient size of the pool is either the maximal one compatible with

cooperation or the largest possible (see Figure 3).

Our results are in line with some theoretical papers showing that contracts in small pools allow

better coordination of members�behaviors (see, for example, Ligon and Thistle, 2005; Fafchamps

and Lund, 2003; Genicot and Ray, 2003 or Bramoullé and Kranton, 2007) and with some evidence

that we discuss in Section 7 and in the Conclusion.

A relatively large academic literature has analyzed risk-sharing agreements in the last decades.

Since Borch (1962), theorists have evaluated di¤erent risk-sharing policies comparing them in par-

ticular to the policies with �xed premium (see Eeckhoudt and Kimball, 1992; Doherty and Dionne,
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1993). Risk-pooling agreements have been analyzed in settings with asymmetric information by,

among others, Mayers and Smith (1986), Smith and Stutzer (1990), Lee and Ligon (2001), Ligon

and Thistle (2005) and Bourlès and Henriet (2012). Within this literature, the contribution most

closely related to our paper is Lee and Ligon (2001) who study optimal risk-sharing contracts in the

case of moral hazard. In particular, their policyholders choose non-cooperatively an action a¤ecting

the probability of the loss, while we analyze the choice of an action a¤ecting the size of the loss and

we focus on Pareto e¢ cient behaviors as an alternative to Nash behaviors.

The structure of the article is described below.

Section 2 describes the economic environment. The optimal risk-sharing agreement is de�ned

and characterized in Section 3. The risk-sharing agreement with free-riding is characterized in Sub-

section 4. Subsection 5 analyzes the relationship between pool size, action e¢ ciency and members�

welfare. Section 6 shows how the optimal risk-sharing agreement can be enforced in the case of

repeated interactions. Section 7 discusses mutual health insurance as a real world example �tting

with our setting and results. Concluding remarks follow in the last section.

2 Model set up

A pool is a set N of n identical individuals whose utility from money is represented by a strictly

increasing and strictly concave Von Neumann-Morgenstern utility function U (�), di¤erentiable at

least twice with lim
c!+1

U 0(c) = 0. Individuals all have initial wealth w and face the probability

p of a monetary loss of size L(a) with independently and identically distributed risks.4 The loss

function depends on a member�s action a 2 [0;+1), it is a positive and twice di¤erentiable function

such that L0(a) < 0 and L00(a) > 0; 8 a 2 [0;+1).5 The loss-mitigating action is chosen before

the risk is realized and implies a disutility cost C(a), with C(0) = 0; C 0(a) � 0 and C 00(a) > 0;

4The speci�cation of identical wealth for all individuals simpli�es the analysis. It allows us to focus on agents with
identical risk perceptions. Heterogeneity would call for further assumptions on risk aversion (whether it is increasing
or decreasing in wealth), on the collective objective of the pool (how the agreement aggregates utility of di¤erent
members) and on the negotiation process. In the conclusion we provide a discussion on how relaxing such assumption
would a¤ect the analysis.

5As an example, suppose that individuals are facing the risk of illness. Prevention is the loss-reducing action
implying an ex-ante utility cost and having a bene�t in terms of a lower health shock in the case of illness. In Ehrlich
and Becker (1972), a consumer�s action decreasing the amount of a possible loss is called a self-insurance measure.
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8a 2 [0;+1); which is additively separable from the utility derived from money. We furthermore

assume that C 0(0) = 0.

In the risk-sharing agreement, members pay a contribution and receive a reimbursement if the

loss occurs. As usual with this kind of structure, we require the individual action a to be not

perfectly controllable. To this end we restrict the set of feasible contracts assuming a simple partial

reimbursement qL according to a fraction q 2 [0; 1].6 This cost-sharing or linear contract indeed

represents the type of contract mostly o¤ered by (formal and informal) risk-sharing agreements

and standard insurers. Alternatively, to guarantee that the action a cannot be controlled, we could

have considered richer contracts (rarely observed in reality), but at the cost of adding a stochastic

mapping between a and L. This alternative would have signi�cantly obscured the analysis without

qualitatively a¤ecting our results (see the discussion at the end of Section 6).

Let e�j ; j 2 f1; :::; ng; be the simple Bernoulli variable, equal to 1 with probability p and 0 with
probability 1�p , i.e. (1; p; 0; 1� p). The total amount of reimbursements to be paid by the pool is

thus q
Pn

j=1 L (aj)
e�j : We assume that such an amount is equally shared among the n individuals

so that each member pays the contribution q
n

Pn
j=1 L (aj)

e�j : Thus, in the risk-sharing agreement,
the contribution to be paid in order to receive the insurance coverage is random because it depends

on the realization of the Bernoulli variable e�j for each individual.7
The expected utility achieved by member i is:

ui (~a; q; n) = EU

0@w �
0@(1� q)L (ai)e�i + q

n

nX
j=1

L (aj)e�j
1A1A� C (ai) (1)

where ~a stands for the vector (aj)
n
j=1 :

The timing of choices in the pool is the following:

Stage 1 The pool collectively commits to a coverage level q.

Stage 2 (i) Each member chooses his/her own action. (ii) The risks are realized. The pool collects
6Clearly, with a non-linear contract paying �1 if the loss is higher than the one associated with the desired

action, the e¢ cient action would be implementable.
7This represents a major di¤erence with respect to the standard insurance policy with �xed premium that we

analyze in Appendix 9.5.

6



the contributions and pays reimbursement to those members who su¤ered the loss.

Importantly, the pool collectively chooses the optimal coverage q and then each member chooses

his/her loss-mitigating action aj given the coverage q: Notice that since the pool commits to the

coverage in Stage 1, only the second stage of the game, i.e. the choice of the action, can be possibly

repeated (see Section 4 for the de�nition of the static game and Section 6 for the description of the

repeated game).

Below we �rst de�ne the optimal risk-sharing agreement, that is the agreement in which all

members fully internalize the positive externality their action exerts on the contribution to be

paid for membership. As we will explain, the action chosen in the optimal risk-sharing agreement

is the optimal collective action, in line with Olson�s (1965) idea of an action that represents the

common interest of a group (see also Ostrom 2000). In the subsequent section we will analyze the

Nash equilibrium arising in the risk-sharing agreement when individuals pursue their own personal

interest.

3 The optimal risk-sharing agreement

In this section we characterize the optimal risk-sharing agreement under anonymity. The anonymity

assumption guarantees that all members perform the same action and that the objective function

of the pool is the maximization of the expected utility of a representative agent.

The optimal risk-sharing agreement is de�ned below.

De�nition 1 The optimal risk-sharing agreement maximizes the expected utility of a representative

member of the pool with respect to both the coverage q and the collective action a. We denote by aC

the resulting optimal collective action.8

As all members choose the same action, the expected utility of a representative member writes:

uCi (a; q; n) � ui([a; :::; a]; q; n) = EU

0@w �
0@(1� q)e�i + q

n

nX
j=1

e�j
1AL (a)

1A� C (a) (2)

8 In this sense this is also the symmetric Pareto e¢ cient agreement.

7



where, once again, action a is the same for all members of the pool by construction.

Notice that all individuals fully internalize the positive externality exerted by their action on the

total contribution required for membership, qn
Pn

j=1
e�jL (a). In di¤erent words, the loss-mitigating

action will be optimally chosen by taking into account its social bene�t in terms of a lower contri-

bution to be paid by all members of the pool.

Given De�nition 1 above, the optimal collective action aC(q; n) is the solution of:

E

24U 0
0@w �

0@(1� q)e�i + q

n

nX
j=1

e�j
1AL (a)

1A0@(1� q)e�i + q

n

nX
j=1

e�j
1A35 = �C 0 (a)

L0 (a)
(3)

We call q�C the optimal coverage in the optimal risk-sharing agreement. By solving the program

where expected utility (2) is maximized with respect to the coverage and where the action satis�es

(3), one can show that:

Proposition 1 The optimal risk-sharing agreement o¤ers full coverage
�
q�C = 1

�
to its members.

Proof. See Appendix 9.1.

Intuitively, since the collective action fully internalizes the positive externality on the contribu-

tion to be paid for membership, full coverage is optimal. In di¤erent words, the pool does not need

to limit free-riding by imposing partial coverage, as will be instead the case in the case in which

individuals play their Nash strategy.

Substituting q�C = 1 in (3), the optimal action from the point of view of the pool, aC(1; n); is

the solution of:

E

"
U 0

 
w � L (a)

Pn
j=1
e�j

n

! Pn
j=1
e�j

n

#
= �C

0 (a)

L0 (a)
(4)

Note that, despite full coverage, members still face some risk because the contribution to be

paid is random and depends on how many losses realize in the pool.

As a last remark we would like to emphasize the similarity between the optimal risk-sharing

agreement and the �rst-best linear policy with �xed contribution presented in Appendix 9.2. In-
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tuitively, both with random and with �xed contribution, the optimal policy entails full-coverage

because the optimal action is enforceable.

4 The risk-sharing agreement with free-riding

In this section we study the risk-sharing agreement in which members of the pool do not internalize

the full bene�t of their action on the contribution to be paid for membership, that is they free-ride

on the loss-mitigating action. It is important to consider, however, that the pool still chooses the

coverage q collectively in Stage 1.

In Stage 2, pool members play the game, �(N;~a 2 Rn+; (ui)i2f1:::ng), where N identi�es the set

of n players and ~a is the vector of pure strategies (ai)i2f1:::ng with ai 2 [0;+1).

Below we thus �rst characterize the Nash equilibria of this game and then we derive the optimal

coverage q chosen in Stage 1 when the pool anticipates that members will play Nash equilibria in

Stage 2.

Denoting by ~a�i = (aj)j 6=i the strategies (actions) of all agents other than i, expression (1) can

be written as:

ui ([ai;~a�i]; q; n) = EU

0@w �
0@(1� q)L (ai)e�i + q

n

0@L (ai)e�i +X
j 6=i

L (aj)e�j
1A1A1A� C (ai) (5)

where, in the contribution of individual i, we now have two terms: the �rst indicates the contribution

to be paid in order to cover individual i0s possible loss, the second term indicates the contribution

required to cover the possible loss of all the other members. Expression (5) shows that each member

perceives his/her own action as playing a role only when the negative shock realizes (�i = 1).

In Stage 2; i.e. in game �, each member maximizes expected utility (5) taking as given the

action chosen by other individuals ~a�i and the coverage q.

Let us de�ne BRi(
�!a �i) � argmaxai ui ([ai;~a�i]; q; n) individual i�s best-response, i.e. the ai
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which solves:

E

24U 0
0@w �

0@�1� q + q

n

�e�iL (ai) + q

n

X
j 6=i

e�jL (aj)
1A1Ae�i

35�1� q + q

n

�
= �C

0 (ai)

L0 (ai)
(6)

Interestingly, the best response BRi(�) would be positive (whatever the actions chosen by other

members) even in the case of full coverage (q = 1). Indeed even at q = 1, the left-hand side of (6) is

strictly positive, which implies ai > 0; as C 0(0) = 0, C 00(a) > 0 and L0(a) < 0. The reason is that

individuals internalize part of the bene�cial impact of their action on the contribution through the

term q
n
e�iL(ai) appearing on the left-hand side of equation (5).

One can then show that a Nash symmetric equilibrium exists and is unique:

Lemma 1 In the risk-sharing agreement with free-riding, a Nash equilibrium in pure strategies

exists. It is symmetric and unique and corresponds to aN (q; n) solving in a

E

24U 0
0@w �

0@(1� q)e�i + q

n

nX
j=1

e�j
1AL (a)

1Ae�i
35�1� q + q

n

�
= �C

0 (a)

L0 (a)
(7)

Proof. See Appendix 9.3.

We now consider Stage 1. The coverage is chosen collectively by the pool, thus q�N is the solution

to the program where the expected utility of the representative individual (5) is maximized under

the free-riding constraint aj = aN (q; n); 8j = 1:::; n.

Proposition 2 The risk-sharing agreement with free-riding optimally o¤ers partial coverage
�
q�N < 1

�
to its members.

Proof. See Appendix 9.4.

Here, members of the pool receive a partial reimbursement of their monetary losses.9 ;10 Intu-

itively, members need incentives, in the form of partial coverage, because they do not fully internalize
9From an analytical point of view, full coverage is not optimal anymore in the risk-sharing agreement with free-

riding because the Envelope Theorem cannot be applied in this case. See, in particular, equations (14) and (27) in
Appendix 9.1 and 9.4 respectively.
10Lee and Ligon (2001) analyze a risk-sharing agreement where a non-contractible self-protection action is available
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the bene�t of their action on the contribution to be paid.

We would like to stress the similarity between the risk-sharing agreement with free-riding and the

second-best linear policy with �xed contribution (typically o¤ered by standard insurance companies)

that we present in Appendix 9.5. Both with random and with �xed contribution, the policy entails

partial coverage because the action cannot be controlled. Notice however that, because of the

random contribution, in the risk-sharing agreement with free-riding individuals face a higher risk

than the one they face in the case of the second-best policy with �xed premium.11 We thus expect

the partial coverage chosen by the pool to be higher than the second-best partial coverage with

�xed contribution.

5 How pool size a¤ects the risk-sharing agreement

We now consider how the members�payo¤ changes with the size of the pool.

We �rst observe that, as expected, individuals are better o¤ in the optimal risk-sharing agree-

ment than in the one with free-riding. Moreover, as the pool size goes to in�nity, we show that the

optimal risk-sharing agreement converges to the �rst-best allocation derived with a linear policy

with �xed contribution (see Appendix 9.2) whereas, the risk-sharing agreement with free-riding is

equivalent to the second-best policy with �xed contribution (see Appendix 9.5). Finally we show

that, in the optimal risk-sharing agreement, members�payo¤ is increasing in the pool size.

First of all consider that, when n = 1; the payo¤s with and without free-riding are identical and

do not depend on the coverage q:

EU
�
w � e�1L (a)�� C (a) (8)

Moreover, because of the optimality of the collective action:

to policyholders (i.e. in the case of an action that decreases the probability of the loss). Using �Cournot conjectures�
they show that full coverage is optimal. Our result di¤ers from theirs since we solve the problem using the concept of
Nash equilibrium. This implies that, when choosing the reimbursement level q in the �rst stage, individuals anticipate
the e¤ect of such a coverage on the choice of other members of the pool.
11 In fact, under full coverage (q = 1) ; we would observe a positive action in the risk-sharing agreement with free-

riding (as mentioned below equation 6), whereas we would observe no-action in the case of a linear policy with �xed
contribution.
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Observation 1 Given a pool size strictly larger than 1, expected utility in the optimal risk-sharing

agreement is always higher than in the risk-sharing agreement with free-riding.

Now, let�s consider how expected utility changes with the pool size in the optimal risk-sharing

agreement:

Proposition 3 In the optimal risk-sharing agreement, members�expected utility is monotonically

increasing in the pool size.

Proof. See Appendix 9.6.

Unfortunately, the proof of Proposition 3 cannot be easily extended to the risk-sharing agreement

with free-riding, because of the partial coverage characterizing the Nash equilibrium. Since the

bene�ts of risk-sharing increase with the size of the pool in the agreement with free-riding as well,

we expect the individuals�welfare to be increasing with the size of the pool in the Nash agreement

too. Our intuition is con�rmed by the following simulations (see also Figure 1 below).

Simulations Let us consider the following CARA utility function12 :

U(W ) = �e
��W

�

where � represents the degree of constant absolute risk-aversion and is assigned the value of 0:5.

Wealth w is 10 and the probability of loss p is 0:3. The cost of action is expressed by the function

C(a) = a2, while the loss function is L(a) = 1 � a. Members�expected utility with and without

free-riding is shown in Figure 1 below. First, as stated in Proposition 3, expected utility in the

optimal risk-sharing agreement is monotonically increasing in the size of the pool. Second, in line

with Remark 1, expected utility is higher in the optimal than in the risk-sharing agreement with

free-riding for every possible value of the pool size. Finally, as we expected, in the agreement with

free-riding expected utility is (monotonically) increasing in the size of the pool. Interestingly, such

12Simulations��les are available upon request.
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monotonicity is preserved with CRRA utility functions.13

Insert FIGURE 1 here

5.1 Asymptotic results

By the law of large numbers, as the number of individuals in the pool rises and tends to in�nity,

the share of them su¤ering the loss (
Pn

j=1
e�j)=n tends towards the probability of the loss p. This

implies that, in a very large pool, the random membership contribution
Pn

j=1
e�jqL(a)=n tends to

the �xed contribution pqL(a), thus the uncertainty on the contribution disappears precisely as in

the �rst- and in second-best contracts analyzed in Appendix 9.2 and in Appendix 9.5, respectively.

This occurs irrespective of whether the action is the optimal collective or the Nash action. Further,

in the optimal risk-sharing agreement, since full coverage is o¤ered, the �xed contribution becomes

pL(a).

Let�s consider �rst the optimal risk-sharing agreement. From (4), as n ! 1, the optimal

collective action aC solves:

� pU 0 (w � pL (a))L0 (a) = C 0 (a) (9)

which implicitly de�nes the �rst-best action under a �xed contribution (see equation 16 in Appendix

9.2). Therefore, when n ! 1; the optimal risk-sharing agreement replicates the �rst-best policy

with �xed contribution whose welfare is described by (17).

Let�s now consider the risk-sharing agreement with free-riding. As the pool size tends to in�nity,

the term q
n tends to zero. Therefore, from the �rst-order condition (7), in the Nash equilibrium the

action is the solution of:

�pU 0 (w � (1� q)L (a)� pqL (a)) (1� q)L0 (a) = C 0 (a)

which is equivalent to (29) in Appendix 9.5. Thus, as n ! 1; the individuals�payo¤ in the Nash

equilibrium is exactly the same as with the second-best policy with a �xed contribution.

13Simulations with CRRA are available upon request to the authors.
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All the previous reasoning is summarized in the following Observation:

Observation 2 When the number of individuals in the pool tends to in�nity, the optimal risk-

sharing agreement tends to the �rst-best policy with a �xed contribution, while the risk-sharing

agreement with free-riding tends to the second-best policy with �xed contribution .

Below we verify that, when members interact just once, the optimal collective action is never an

equilibrium in the optimal risk-sharing agreement because of the incentives to free ride. We then

study conditions such that the optimal collective action can be sustained as an equilibrium in a

repeated game where pool members interact an inde�nite number of times.

6 The sustainability of the optimal risk-sharing agreement

Let�s �rst show why the optimal collective action aC is never an equilibrium in a static framework.

Indeed, if coverage is �xed to q�C = 1 and all other members are choosing the action aC , member

i has incentive to deviate. In particular, given a pool of size n, the best reply action (the action

under deviation) satis�es:

aD(n) � argmax
ai
ui([ai; (a

C(1; n); :::; aC(1; n))]; 1; n) < aC(1; n)

The costly action performed by each individual in the pool exerts a positive externality on the

random contribution and the individual prefers to free ride on it. The most advantageous situation

for a member of the pool is when all the other individuals internalize the social bene�t of the action

on the random contribution, while he/she just internalizes the impact of his/her action on his/her

own damage in the event of loss. This implies that the optimal collective action aC(1; n) cannot be

sustained as an equilibrium if individuals in the pool interact only once.14

Can the optimal collective action aC(1; n) be sustained as an equilibrium in a repeated game?

As explained in Section 2, we will analyze a situation in which the pool commits to coverage q

14We will study the sustainability of the optimal risk-sharing agreement with respect to individual deviations by
members of the pool. Hence we do not study a cooperative game which would instead require the speci�cation of a
value function for each possible coalition of agents and the analysis of collective deviations.
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in Stage 1, but where Stage 2 is repeated an inde�nite number of times. Thus, below, the coverage

is �xed at q�C = 1: This assumption seems the most natural and describes a situation where the

pool has commitment power and the policy cannot be subject to frequent changes, typically due

to time and administrative constraints.15 At the end of this section, we will however also brie�y

discuss the case with no commitment on the coverage q, i.e. the situation in which the repetition

of the game concerns both Stages 1 and 2.

More formally, we study the game in which the Stage 2-game �(N;~a 2 Rn+; (ui)i2f1:::ng) is

inde�nitely repeated. The repeated game has the following characteristics.

Discount factor: the parameter � indicates the constant �probability-adjusted�discount factor.

Denoting � the constant and common discount factor and � the common belief that members

have regarding the probability that they will continue to interact from period to period16 , the

probability-adjusted discount factor writes: � = ��; with 0 < � < �;� � 1:17 Hence, the expected

discounted payo¤ of a member of the pool can be written as:
P1

t=1 �
t�1ui(~at; 1; n), where ~at is the

vector of actions played at time t:

Punishment strategy: we assume that members of the pool follow the Grim trigger strategy:

in the �rst period, t = 0; the individual chooses the optimal action level aC(1; n); in t � 1 he/she

chooses aC(1; n) if in each previous period any losses that have occurred are of size L
�
aC(1; n)

�
,

otherwise he/she chooses a = aN (1; n) forever.18

Monitoring structure: we assume that individuals are informed about the number, denoted by

k; of pool members who su¤er the loss in each period. Each pool member is required to contribute

an amount that is equal to 1=n of the sum of reimbursements to be paid in the pool in each period.

In the case one member deviates from the optimal collective action and his/her loss realizes, then

all members are required to pay a contribution which is larger than
Pn

j=1
e�jL(aC)=n = kL(aC)=n

15Note that, by focusing on full commitment on the policy, our model is mostly suited to describe formal risk-
sharing agreements. See Section 7 for a real world example.
16 In this sense the number of periods over which the game is repeated is inde�nite (see Roth and Murnighan 1978).
17See Neyman (1999) for a model in which uncertainty on the duration of the game is interpreted as a small

departure from the common knowledge assumption on the number of repetitions.
18Such a Grim trigger strategy perfectly �ts a non-competitive environment, where there is no choice for individuals

except that of staying in the pool. We refer the reader to the end of this section for a discussion about exclusion as a
punishment strategy, and about punishment when an outside option exists, for example because pro�t and nonpro�t
organizations compete in the market.
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because the loss of the deviator is L(aD) > L(aC). Hence, a deviation from the optimal collective

action is detected only if the deviator experiences the loss, that is with probability p. This means

that we are in a stochastic environment regarding deviation observability. (See the last part of this

section about enlarging the stochastic environment to the loss function).19

For expositional reasons, let�s call uC(n) = ui(a
C(1; n); 1; n) the individual�s (one-period) ex-

pected utility in the optimal risk-sharing agreement and uD(n) = ui([aD(n); (aC(1; n); :::; aC(1; n))]; 1; n)

his/her (one-period) expected utility when he/she deviates. In the period after deviation, the in-

dividual will be detected only if the loss has realized, that is with probability p. In that case, all

the other members of the pool will react by choosing the Nash action level, with q = 1 or aN (1; n).

Let�s call uP (n) = ui([a
N (1; n); (aN (1; n); :::; aN (1; n))]; 1; n) the expected utility the deviator ob-

tains when he/she is detected and thus punished. The strategy a = aN (1; n) for the deviator is just

the subgame perfect Grim trigger strategy in our game.

With probability (1� p) the deviation is not detected and the deviator obtains the payo¤ uD(n)

also in the period after the deviation. The previous reasoning is repeated in the subsequent periods.

After a deviation the individual�s payo¤ can be written as follows:

uD(n) + �p
1

1� �u
P (n) + �(1� p)

�
uD(n) + �p

1

1� �u
P (n)+

�(1� p)
�
uD(n) + �p

1

1� �u
P (n) + �(1� p)[:::]

��

Thus, the discounted payo¤ in the case of deviation is:

�p

1� �

1X
t=0

(� (1� p))t uP (n) +
1X
t=0

(� (1� p))t uD(n)

or:
1

1� � (1� p)

�
uD(n) +

p�

1� �u
P (n)

�
;

19With respect to the setting analyzed in Friedman (1971), our model has two speci�c features: (i) players do not
directly observe the action of other players but they infer deviation through the contribution required for membership
and from their knowledge of the number of claims; (ii) detection only occurs if the loss of the deviator realizes, that
is with probability p:
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whereas if the optimal collective action aC(1; n) is chosen forever, the discounted payo¤ a member

obtains is:
1X
t=0

�tuC(n) =
1

1� �u
C(n):

The optimal collective action can thus be sustained as an equilibrium if the discounted payo¤ in

the optimal risk-sharing agreement dominates the discounted payo¤ from deviation, or when the

inequality below holds:

1

1� �u
C(n) � 1

1� � (1� p)

�
uD(n) +

p�

1� �u
P (n)

�
(10)

From inequality (10) we can state the following:

Proposition 4 Let n̂ be the largest n such that (10) holds with equality. The optimal risk-sharing

agreement cannot be sustained as equilibrium for n > n̂.

Proof. See Appendix 9.7.

The left and the right-hand side of (10) are equal for n = 1 (see the proof in Appendix 9.7); hence

n̂ � 1 exists. However, the right-hand side of (10) is larger than the left-hand side for n = +1. As

a consequence, the optimal risk-sharing agreement can be sustained in equilibrium if the left-hand

side of the inequality increases faster with the pool size than the right-hand side. In other words,

the optimal collective action aC(1; n) is enforceable only if the bene�ts from risk-sharing for low

size pools are larger in the optimal risk-sharing agreement than in the one with free-riding or in

the deviation.

The previous proposition states that only a pool size which is not too large is compatible with

the optimal risk-sharing agreement. Intuitively, incentives to free ride are higher in a larger pool.

In fact, when n is high, (i) by deviating from the optimal collective action, aC(1; n); the individual

signi�cantly decreases the cost of his action, whereas deviation has almost no negative e¤ect on

the contribution and (ii) the punishment is less costly since the bene�t from risk-sharing remains

important.

However, it can be n̂ = 1: In such a case, the optimal risk-sharing agreement cannot be sustained.
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As expected, the existence of a pool size strictly larger than 1 that satis�es (10) with equality

(i.e. n̂ > 1) is more likely the higher the individuals�probability-adjusted discount factor �:

As explained in the proof, since we cannot exclude that the left-hand side and the right-hand

side of (10) cross each other more than once, n � n̂ is a necessary but not su¢ cient condition for

the sustainability of the optimal risk-sharing agreement. In particular, a closed subset of n below

the threshold n̂ may exist, for which the payo¤ under deviation already prevails. However, in all

our simulations with CARA and CRRA, the two sides of (10) cross just once for n > 1 (see Figure

2 below).

To sum up, the model shows that a trade-o¤ arises with respect to the size of the pool. On the

one hand, the bene�t from risk-sharing is increasing in the number of participants; on the other

hand the optimal collective action, and thus e¢ ciency, is only compatible with a pool size that is

not too large.

Let�s now consider the decision of the pool in Stage 1. Given the values of the parameters n; �

and p characterizing the economic environment, the pool chooses the coverage q by anticipating the

subsequent repetition of Stage 2 of the game for an uncertain number of periods. In di¤erent words,

the pool anticipates whether, given the size of the pool n, the optimal risk-sharing agreement is

self-enforcing or if instead the Nash equilibrium of the one-shot game prevails.

In the subsection below we relate the type of risk-sharing agreement prevailing in equilibrium

(and its e¢ ciency) to the size of the pool. Before doing so, we study inequality (10) and we show

that the optimal risk-sharing agreement is indeed sustained as an equilibrium in the simulations. We

also o¤er some comparative statics about individuals�risk aversion and about the risk of incurring

the loss.

6.1 Simulations

In Figure 2 below we depict the left-hand side and the right-hand side of inequality (10) using the

utility function and the parameter values considered before, together with a probability-adjusted
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discount factor � = 0:3.20 Simulations show that the optimal risk-sharing is sustained for n �

n̂ = 1000. For a larger pool size, the Nash equilibrium emerges and the risk-sharing agreement

is not e¢ cient anymore. Note also that, in the example considered, the right-hand side of (10) is

monotonically increasing in the pool size. Moreover, the left- and the right-hand side of (10) cross

just once for n > 1. We also obtain monotonicity of the right-hand side and single-crossing with

the simulations based on a CRRA function that are available upon request to the authors.

Result 1 (simulations with CARA and CRRA utility functions) The right-hand side of

(10) crosses the left-hand side from below and the optimal risk-sharing agreement is self-enforcing

if and only if n � n̂.

Insert FIGURE 2 here

As basic comparative statics, we can take into account the e¤ects of changing two crucial vari-

ables in the analysis of inequality (10): the risk aversion (captured by the parameter �) and the

probability of loss (p), respectively. It is worth noting that an increase in the individuals�risk aver-

sion from � = 0:5 to � = 0:6 leads to a large rise in the value of the pool size compatible with the

collective action from around 1000 to 3000. This result relies on the fact that, when risk-aversion

increases, the bene�t of risk-sharing among members in the pool is higher and the utility generated

by the collective action grows. Conversely, after a decrease in risk aversion from � = 0:5 to � = 0:4,

we observe that the maximum pool size for which the optimal risk-sharing agreement is sustainable

is lower than 350. Let�s now consider the loss probability p. If it increases from p = 0:3 to p = 0:6,

we observe that the collective action is compatible with a smaller pool size: the upper bound value

of the pool size changes from 1000 to 420. At �rst sight, this result may seem counterintuitive

because the probability of the loss corresponds to the probability of detection in our context and,

thus, is directly related to punishment enforcement. Such result relies instead on the e¤ect the

probability of the loss has on the individuals�optimal action level. Indeed, an increase in the prob-

ability of the loss reduces the di¤erence between the collective and the Nash action (as it increases

20 In Figure 2, the graphs showing the left and the right-hand side of (10) are not represented for the pool size
n = 1 because of the scale of the picture.
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the bene�t from exerting the action) and thus decreases the di¤erences between expected utilities.

Symmetrically, reducing the probability from p = 0:3 to p = 0:2 increases the maximum size of the

pool compatible with the optimal agreement from 1000 to 1600. In a nutshell:

Result 2 (simulations with CARA utility functions) The optimal risk-sharing agreement is

sustainable for a larger pool as the probability of the loss decreases and individuals� risk aversion

increases.

Figure 3 describes a representative individual�s expected utility as a function of the pool size

and the feasible equilibrium for the same numerical example we considered above. Except for n = n̂;

expected utility is increasing in the pool size because the bene�ts from risk-sharing increase with the

size of the pool. In n = n̂ we observe a discontinuity, more speci�cally a downward jump, because

the optimal collective action can no longer be sustained and, for n = n̂; the Nash equilibrium is

reached instead. In terms of the optimal size of the pool, simulations show that it is convenient

to have either a pool size equal to n̂; so that individuals can bene�t from the optimal risk-sharing

agreement and the most e¢ cient loss-mitigating action, or a very large size, so that members can

bene�t from risk-sharing. The previous discontinuity result is summarized as follows.

Result 3 (simulations with CARA and CRRA utility functions) Except for the downward

jump for n = n̂; expected utility is increasing in the pool size. The optimal size of the pool is either

n̂ or the largest possible.

Insert FIGURE 3 here

6.2 Alternative structures of the repeated game

Commitment. Let�s now consider the setting where commitment is limited and the coverage q

can be renegotiated. Renegotiation implies that both Stage 1 and Stage 2 of the game are repeated

so that, after the detection of a deviation, the pool makes a new decision about coverage q. In such

a case, the equilibrium of the repeated game is the equilibrium of the one-shot game (with stages

1 and 2) or the Nash equilibrium described in Subsection 4. Thus, the deviation choice is still
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aD(n) but the coverage o¤ered by the pool after deviation is q�N < 1. Therefore, the punishment

after deviation is no longer uP (n) considered above but corresponds to members� utility in the

Nash equilibrium. Our main result does not change qualitatively, in the sense that Proposition

4 still holds, but we obviously �nd a slightly di¤erent maximum size of the pool compatible with

the optimal risk-sharing agreement. Interestingly, by performing simulations in the case of limited

commitment, we observe that n̂ is now lower than in Figure 3 (in particular, now n̂ = 950). The

reason is that, with limited commitment, the punishment utility is u
�
aN ; q�N ; n

�
> uP (n). Indeed

the former punishment utility is computed considering the coverage that is optimal given the non-

cooperative choice of the e¤ort, while the latter is computed using q�C = 1 which is suboptimal

when the action is aN . As a consequence, with limited commitment, inequality (10) is more di¢ cult

to be satis�ed.

Punishment in a competitive environment. Suppose that other risk-sharing agreements exist

or that forpro�t insurers are active in the market. We must then explicitly consider these outside

options in the punishment strategy that probably becomes less e¤ective. In the interesting case

of an environment where our risk-sharing agreement competes with forpro�t companies that act

strategically, the outside option becomes endogenous and results largely depend on the kind of

dynamic contracts o¤ered by the competitors (see for example Moreno et al., 2006 on bonus-malus

schemes used in car insurance).

Detection of deviation. In our framework a deviation from the optimal collective action is in-

ferred when members are asked to pay a contribution larger than expected, i.e. when the individual

who is deviating su¤ers the loss. As the literature on �rms�collusion shows, it is possible to ob-

tain cooperation also in settings where detection of cheating behaviors is more di¢ cult than in our

model (see Green and Porter 198421). In our framework too, but under more stringent conditions,

the optimal collective action would still be sustained if the detection of possible deviations were

more di¢ cult to infer, as with a stochastic loss function.

21Green and Porter (1984) examine the nature of cartel self-enforcement in the presence of demand uncertainty.
In particular, in their setting, demand �uctuations (that are not directly observed by �rms) make the detection
of deviation di¢ cult to infer. The collusive equilibria are then less likely and unstable industry performances can
occur. Reversionary episodes, where price cut is performed by all �rms in the cartel as a punishment strategy, can
sometimes happen with no �rm really defecting, simply because of low demand.
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Less �demanding� coordination. Even though for n > n̂ the optimal risk-sharing agreement

is not self-enforceable (with the harshest punishment), still the pool may collectively agree on a

lower aC , thus reducing the temptation to deviate. Considering these less �demanding�collective

equilibria would identify intermediate outcomes in between the optimal risk-sharing agreement and

the agreement where the Nash action is implemented. Agreeing on a lower aC for n > n̂ would still

allow for some e¢ ciency gain and thus reduce the downward jump illustrated in Figure 3. However,

this would not qualitatively alter our results.

Exclusion. Suppose now that the identity of the deviator is observable, which is much more

demanding in terms of information than what we assume in the model.22 Excluding the deviator

from the pool is then a possible punishment strategy. Exclusion represents an e¤ective punishment

if no other risk-sharing agreement exists and if coverage cannot be purchased in the insurance

market, so that the deviator who is excluded from the pool obtains forever his expected utility

when not insured: EU
�
w � e�1L (a)��C (a). Such a punishment utility would enter condition (10)

in place of uP (n) and Proposition 4 would still hold. Interestingly, since uP (n) is increasing in n;

uP (n) is larger than EU
�
w � e�1L (a)� � C (a) for n su¢ ciently high. Hence, if n is su¢ ciently

high, then exclusion turns out to be a more e¢ cient punishment strategy and inequality (10) is

more likely to be satis�ed.23

7 A real example: mutual health insurance

Mutual health insurance is a real-world example that is perfectly coherent with our analysis of

collective actions in risk-sharing agreement.

In the case of health insurance, policyholders decide how much to invest in costly preventive

measures. In particular, the action in our model corresponds to secondary prevention, or to a costly

measure that, in case of illness, reduces health care expenditures necessary to recover (screening

procedures allowing for early detection of disease). Previous literature (Barigozzi, 2004, Ellis and

22This is possible, for example, if the pool reveals to its members the list of individuals entitled for reimbursement,
together with the speci�c amount paid to each of them.
23Notice that, after the exclusion of the deviator, the pool will be composed by n�1 members, so that sustainability

of the optimal agreement will be more likely.
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Manning 2007) showed that a copayment on expenditures for preventive care is necessary to en-

courage preventative activities since, with �xed premium contracts, individuals do not internalize

the positive impact of their prevention on the insurance contribution. Instead, by asking for a

random premium, mutual insurance allows for partial or full internalization of the positive impact

of prevention on the individual�s contribution, as we showed in Sections 4 and 6.

In the health insurance market, an important di¤erence between the marketing strategy of

mutual organizations and that of forpro�t insurers o¤ering �xed premium policies is that forpro�t

insurers do not encourage long run enrollment. In fact, �xed premium policies are strictly annual

and their renewal is conditional on the individual�s health status and age.24 ,25

From a normative perspective, in order to compare the e¢ ciency of risk-sharing contracts and

�xed premium contracts we should take into account the best strategies that forpro�t insurers

could adopt if long-term contracts were o¤ered. In the previous Section, we brie�y discussed how

to investigate a setting with risk-sharing arrangements and forpro�t companies coexisting in the

insurance market (see �Punishment in a competitive environment�). However, let�s take for a

moment a positive perspective. Since forpro�t health insurers do not o¤er long-term contracts in

the real world and do not generally use information on past behaviors to incentivate prevention, our

results suggest that contracts o¤ered by mutuals may be more e¤ective in encouraging prevention

than �xed premium policies. To see this, suppose that the optimal risk-sharing agreement can be

sustained as equilibrium, as Figure 2 shows, for a pool size lower than 1000. For the same functions

and parameter values used in the simulations of Section 6, we can evaluate expected utility derived

from the second-best contract with �xed premium (see Appendix 9.5). Note that expected utility

generated by a second-best policy with �xed premium is independent, by construction, of the pool

size; whereas expected utility generated by the optimal risk-sharing agreement is increasing in

the pool size, as Proposition 3 states. Simulations show that the optimal risk-sharing agreement

dominates the second-best contract with �xed premium for a pool size larger than 250 (see Figure

24One of the objectives of the A¤ordable Care Act, recently approved in the USA, is to protect policyholders from
the insurers�practice of refusing policy renewal in case of serious health conditions.
25 Interestingly, long-term contracts are instead o¤ered by standard companies in other insurance markets. For

example front-loaded contracts in life insurance generate a partial lock-in of consumers: contracts that are more
front-loaded have a lower present value of premiums over the period of coverage (see Hendel and Lizzeri 2003).
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4).26 This implies that, in this example, a large range of pool sizes exists such that the optimal risk-

sharing agreement is sustained as an equilibrium and the risk-sharing agreement is more e¢ cient

than the second-best contract.

Insert FIGURE 4 here

Our model shows that members of risk-sharing arrangements may �nd it convenient to choose

the optimal collective action and fully cope with it. Indeed, when individuals enroll for a su¢ ciently

high amount of time and do not discount the future too much, the optimal risk-sharing agreement

becomes self-enforcing and the largest size of the pool compatible with e¢ ciency results from the

trade-o¤ between mutualization and free-riding issues. Interestingly, some evidence con�rms the

relatively small dimension of mutual companies, especially in Europe. For example, according to

the International Cooperative and Mutual Federation (ICMIF)27 , the total market share of the

2,900 mutual �rms active in 75 countries at the end of 2010 was just 26%. More detailed evidence

can be found in France and Italy. Caire (2009) reports that, in 2007 in France, the 808 existing

mutuals accounted for 58% of the health insurance market, the 9 active stock (i.e. standard) insurers

owned 23% of the market, while the remaining 19% was the share of �institutions de prévoyance�

(non-pro�t organizations that o¤er collective insurance contracts for �rms).28 Likewise in Italy,

health mutual �rms are de�nitely characterized by small size. About 1,500 �Società di mutuo

soccorso� (mutual bene�t societies) were active in 2010, they had less than one million members

and represented around 12% of the Italian market in complementary health insurance (see Lippi

Bruni et al. 2012).

We brie�y discuss some other examples in the Conclusion.

26These simulations are available upon request to the authors.
27See the Global Mutual Market Share report 2010, available at http://www.icmif.org/mms2010.
28Similarly, Kerleau (2009) shows that the market for mutual contracts is characterized by low concentration in

France, as the 5 biggest mutuals in 2005 represented only 20% of the market share and the 30 biggest ones only 44%.
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8 Concluding remarks

We have considered an agreement in which individuals share their risk of a monetary loss but

have incentives to free ride when choosing a costly loss-mitigating action. We have shown that the

optimal collective action can emerge as a self-enforcing mechanism.

The optimal collective action allows individuals to fully internalize the bene�t of their action on

the contribution to be paid for participating in the agreement. We emphasize the trade-o¤generated

by the fact that both e¢ ciency from risk-sharing and incentives to free ride are increasing in the

size of the pool. Since the implementation of the optimal risk-sharing agreement is possible only

when the size of the pool is not too high, the bene�ts from the optimal collective action comes at

the cost of limiting e¢ ciency from risk-sharing.

The sustainability of the optimal collective action as equilibrium is consistent with the general

view that small pools allow for better monitoring of individuals�behaviors and with the empirical

evidence that organizations o¤ering risk-sharing contracts are typically small. Among the moti-

vating examples listed in the Introduction, we mentioned maritime insurance. Interestingly, the

number of shipowners in each risk-sharing agreement (Club) is, even on a worldwide basis, fairly

limited. The diseconomies of scale arising for Clubs with size above a particular level are typically

interpreted as a consequence of increasing coordination costs (see Aase, 2007). Moreover, the fact

that only shipowners with a solid reputation of cautious behaviors are admitted to the Club and

that Club members incurring reckless or avoidable losses are asked to leave, suggests the enforce-

ment of some kind of collective behavior in the pool. In the same way, the maintenance of high

quality standards in reinsurance pools might be interpreted as a sign of cooperation among members

of the agreement. In the case of informal insurance in rural villages, the agreement is self-enforcing

because failure to make a promised payment translates into a social stigma and the risk of losing

membership. Exclusion is costly because individuals derive high utility from participating in the

agreement, also in the form of respect and consideration from other people in the village. This

is coherent with some form of collective actions being sustained among members of the informal

agreement.
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In the model, acting in the interest of the pool does not require an individual to be empa-

thetic with other members, but originates from an absolutely standard utility maximizer attitude.

However, supportive, fair and conditional cooperative behaviors can be considered plausible in a

risk-sharing agreement, given the very speci�c nature of the participating contract. In other words,

willingness to exert actions that are optimal from the point of view of the organization may be

higher for individuals who self-select into organizations selling these contracts. For example, soli-

darity principles explicitly mentioned in all articles of association/incorporation, if equally shared

by agents, could well facilitate collective actions.29 Moreover, cheating behaviors can also entail

some psychological costs to the deviator in terms of, for example, lower self-esteem or a social stigma

as in the case of informal insurance. Obviously, some kind of prosocial attitude or altruism would

reinforce the sustainability of e¢ ciency (see Alger and Weibull, 2010, on the impact of altruism

on risk-sharing). Finally, although remaining in a framework where individuals are characterized

by purely sel�sh preferences, members of the pool partially know each other since they assemble

for periodical meetings. As in the case of law partnerships, this suggests that some partial peer

monitoring is possible when the pool is not too large, making it easier to sustain equilibria enforcing

collective actions.

As a last remark, in our analysis we considered individuals endowed with the same wealth. The

analysis of an agreement with identical individuals seems a �rst natural step in the study of the

enforceability of optimal risk-sharing arrangements. It allowed us to compare optimal symmetric

choices in the case of risk-sharing agreements with and without free-riding and to o¤er clear and

neat conditions on the pool size for the symmetric Pareto e¢ cient agreement to be self-enforcing.

However, relaxing the assumption of identical pool members represents an interesting further step.

Suppose for example that two di¤erent types of individuals exist, the rich and the poor. Their

di¤erent wealth is likely to translate into a di¤erent attitude toward risk and into di¤erent optimal

actions; we expect, in particular, rich members to be willing to exert lower loss-mitigating actions

than poor members. A speci�c welfare function for the pool, aggregating the expected utility of

29The bene�cial matching between agents characterized by a similar �mission� (or social attitude) has been ana-
lyzed by Besley and Ghatack (2005). They show that fewer incentives are required if employer and employee share
the same mission.
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rich and poor members, has to be de�ned together with a speci�c rule for sharing the cost of the

total amount of reimbursement to be paid in the pool. Importantly, if the members�wealth is

their private information, then a screening mechanism has to be designed to prevent mimicking

in members� actions. In fact, reasonably, under asymmetric information poor members will be

tempted to exert less than optimal actions pretending to be rich. According to the sharing rule

that is in place in the pool, we expect both separating and pooling equilibria in actions to emerge in

the agreement. An asymmetric and constrained e¢ cient risk-sharing agreement would be possibly

enforced in such a case.

9 Appendix

9.1 Proof of Proposition 1

Denote fWi (~a; q; n) the (stochastic) wealth of individual i under a risk-sharing agreement charac-

terized by n members choosing actions ~a, with coverage level q:

fWi (~a; q; n) �
 
(1� q)

�
w � ~�iL (ai)

�
+ q

 
w �

Pn
j=1

~�jL (aj)

n

!!
(11)

Importantly, the second term q

�
w �

Pn
j=1

~�jL(aj)

n

�
is the same for all members.

The expected utility achieved by member i in the agreement (see equation 1) is then simply

written as:

ui (
�!a ; q; n) = E

h
U
�fWi (

�!a ; q; n)
�i
� C (ai)

We now write v (a; q; n) � ui ([a; :::; a]; q; n) as the utility obtained by each individual when all

participants play the same action a, (this utility does not depend on i, since all the members face
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the same individual risk):

v (a; q; n) � ui ([a; :::; a]; q; n) = E
h
U
�fWi (

�!a ; q; n)
�i
� C (a) (12)

= E

24U
0@w �

0@(1� q) ~�i + q

n

nX
j=1

~�j

1A1AL (a)
35� C (a)

Thanks to the assumptions on U (�), C (�) and L (�), function v is strictly concave in a and q.

In the optimal agreement, the action and the coverage are chosen simultaneously by the pool. In

particular, the optimal collective action aC and the optimal coverage q�C solve the two �rst order

conditions. The one for a is:

@v

@a
=

24�E hU 0 �fWi

�e�ii �1� q + q

n

�
�
X
j 6=i

E
h
U 0
�fWi

�e�ji q
n

35L0 (a)� C 0 (a) = 0 (13)

where the term �E
h
U 0
�fWi

�e�ii �1� q + q
n

�
L0 (a) indicates the total e¤ect of the action chosen by

individual i on his/her utility from consumption, whereas the term �
P

j 6=i E
h
U 0
�fWi

�e�ji qnL0 (a)
measures the e¤ect of the action chosen by all the other members of the pool on the contribution

paid by the same individual i. The �rst order condition for q is:

@v

@q
= E

"
U 0
�fWi

� e�i � Pn
j=1
e�j

n

!#
L (a) =

n� 1
n

h
E
h
U 0
�fWi

�e�ii� E hU 0 �fWi

�e�jiiL (a) = 0
(14)

where the second equality comes from the fact that, because of i.i.d of the deltas: 8i; 8k 6= i; ` 6=

i;E
h
U 0
�fWi

�e�ki = E hU 0 �fWi

�e�`i.
Using de�nition (11) we observe that, for q = 1; fWi = w �

Pn
j=1

~�j

n L (a) = fW does not depend

on i Hence, for q = 1; E
h
U 0
�fWi

�e�ii = E hU 0 �fWi

�e�ji .
Hence, q�C = 1 is the unique solution of (14).
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9.2 The �rst-best linear contract with �xed contribution

We consider here the optimal linear contract with �xed contribution (premium) when the action

can be directly controlled by the insurer. The individual receives qL(a) when the loss occurs and,

under fair pricing, the contribution equals pqL(a): The expected utility becomes:

EU
�
w �

h
(1� q)e� + pqiL (a)�� C (a) (15)

By maximizing the previous expected utility with respect to q, we �nd full coverage. Maximizing

with respect to the action and considering that qFB = 1; the action aFB is the implicit solution of:

� pU 0 (w � pL (a))L0 (a) = C 0 (a) (16)

The left-hand side of (16) indicates the marginal bene�t while the right-hand side represents the

marginal cost of the action. Importantly, the contribution pqL(a) = pL(a) implies that individuals

perfectly internalize the bene�cial e¤ect of their action on the contribution (see the term U 0(w �

pL(a))). In particular, they take into account that a higher action, by decreasing the contribution,

has a positive impact on marginal utility in both the possible states of nature. Marginal bene�t

is increasing in p and in �L0(a), i.e. the e¢ ciency of the action technology. Individuals�welfare is

maximized and corresponds to:

EUFB = U
�
w � pL(aFB)

�
� C(aFB) (17)

9.3 Proof of Lemma 1

We develop the proof in three steps: �rst we show existence, second we prove symmetry and

uniqueness.

� Existence: since ui(:), as function of �!a , is continuous and concave and the set of actions is

convex, a Nash equilibrium exists.
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� Best Response: for all i 2 f1; :::; ng; consider for an individual i the equation de�ning his/her

best response:

ai = BRi(
�!a �i)

, E

"
U 0

 �
1� q + 1

n

��
w � e�iL(ai)�+ q w � Pk 6=i

e�kL(aj)
n

!!e�i#�1� q + q

n

�
+
C 0(ai)

L0(ai)
= 0:(18)

Or

ai = BRi(
�!a �i), E

h
U 0
�fWi (

�!a )
�e�ii �1� q + q

n

�
+
C 0(ai)

L0(ai)
= 0; i = 1; :::n

Fix i and j, and consider the partial function fi: aj ! BRi
�
aj ;
�!a �fi;jg

�
, where �!a �fi;jg is

given:

f 0i (aj) =
E
h
U

00
�fWi (

�!a )
�e�ie�ji �1� q + q

n

�
q
n

E
h
�U 00

�fWi (
�!a )
�e�2i i �1� q + q

n

�2
+
�
�C0

L0

�0
(ai)

=
p2E

h
U

00
�fWi (

�!a )
�
=e�ie�j = 1i �1� q + q

n

�
q
n

pE
h
�U 00

�fWi (
�!a ) =e�i = 1�i �1� q + q

n

�2
+
�
�C0

L0

�0
(ai)

which is, given our assumptions on C(�), L(�) and U (:), negative. Actions are then strategic

substitutes. Moreover we have:

jf 0i (aj)j =
p2E

h
�U 00

�fWi (
�!a )
�
=e�ie�j = 1i �1� q + q

n

�
q
n

pE
h
�U 00

�fWi (
�!a ) =e�i = 1�i �1� q + q

n

�2
+
�
�C0

L0

�0
(ai)

<
p2E

h
�U 00

�fWi (
�!a )
�
=e�ie�j = 1i �1� q + q

n

�
q
n

pE
h
�U 00

�fWi (
�!a ) =e�i = 1�i �1� q + q

n

�2
jf 0i (aj)j <

pE
h
�U 00

�fWi (
�!a )
�
=e�ie�j = 1i �1� q + q

n

�
q
n

E
h
�pU 00

�fWi (
�!a ) =e�ie�j = 1�� (1� p)U 00

�fWi (
�!a ) =e�i = 1;e�j = 0�i �1� q + q

n

�2
jf 0i (aj)j <

pE
h
�U 00

�fWi (
�!a )
�
=e�ie�j = 1i �1� q + q

n

�
q
n

pE
h
�U 00

�fWi (
�!a ) =e�ie�j = 1�i �1� q + q

n

�2 =
q
n�

1� q + q
n

� � 1
So that 0 � f 0i (aj) > �1.
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� Symmetry : suppose that there exists a Nash equilibrium for which there are two individuals i

and j such that a0 = aNi 6= aNj = a00: Then, by symmetry, ai = a00, aj = a0 and ak = aNk is also

a Nash equilibrium. That means that a0 = fi (a00) and a0 = fi (a00), so that
fi(a0)�fi(a00)

a0�a00 = �1.

But by Rolles theorem, this implies that there exists a such that f 0i(a) = �1, which is

impossible.

� Now, the condition de�ning the symmetric Nash equilibrium aN (q; n) reduces to :

E
h
U 0
�fWi

�e�ii �1� q + q

n

�
+
C 0 (a)

L0 (a)
= 0 (19)

Once again, given our assumptions on C(�), L(�) and U (�), this equation has a unique solution.

9.4 Proof of Proposition 2

Using the de�nition of fWi (~a; q; n) in (11) above (see Appendix 9.1), the expected utility achieved

by member i in the agreement, described by equation (1) in the main text, can be rewritten in a

compact form as:

ui (
�!a ; q; n) = E

h
U
�fWi (

�!a ; q; n)
�i
� C (ai)

Recall that, in the �rst stage, individuals collectively choose the level of coverage q and, in the

second stage, each individual plays his/her best reply aN (q; n) to the actions chosen by the other

members of the pool. From Lemma 9.3, the optimal action aN (q; n) is unique and symmetric and

solves @ui
@ai

([a; a:::; a] ; q; n) = 0; or it satis�es equation (19).

Before focusing on the choice of q, we prove here that @aN

@q (q; n) < 0; or that the optimal

action in the Nash equilibrium decreases in the amount of coverage provided by the pool. Denote

g(a; q; n) = @ui
@ai

([a; a:::; a] ; q; n) expressed in (19). By totally di¤erentiating g(a; q; n) with respect
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to a and q one �nds:

@g

@q
(a; q; n) = E

h
U 0
�fWi

�e�ii (1� 1

n
)L0 (a)

+E

"
U 00
�fWi

�e�i e�iL (a)� Pn
j=1

~�jL (a)

n

!#�
1� q + q

n

�
L0 (a) < 0

The �rst term is negative because L0 (ai) < 0, while the second term is negative because U 00
�fWi

�
<

0. Moreover,

@g

@a
(a; q; n) = �E

h
U 0
�fWi

�
~�i

i
(1� q + q

n
)L00 (a)

+E
h
U 00
�fWi

�
~�i

i �
1� q + q

n

�
(L0 (a))

2 � C 00 (a) < 0

where all terms are negative. Therefore, 8q 2 [0; 1],

@aN

@q
(q; n) = �@g(a; q; n)

@q
=
@g(a; q; n)

@a
< 0 (20)

Let us consider now the choice of q in the �rst stage of the game and recall that v (a; q; n) is the

utility achieved by each individual when all participants play the same action a (see also 12):

v (a; q; n) � ui ([a; :::; a]; q; n) = E

24U
0@w �

0@(1� q) ~�i + q

n

nX
j=1

~�j

1A1AL (a)
35� C (a) (21)

The action is now a = aN (q; n): Importantly, when collectively choosing q in the �rst stage, the

pool anticipates that all members will choose the action aN (q; n) without taking into account the

positive impact that the action of other members exerts on the contribution to be paid. In di¤erent

words and contrary to the case analyzed before (see Appendix 9.1), the action aN (q; n) is not the

optimal one from the point of view of the pool in the �rst stage and, hence, the Envelope Theorem

does not apply.

To see that, let us consider members�indirect utility v
�
aN (q; n) ; q; n

�
. The optimal coverage
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here solves:

@v

@q

�
aN (q; n); q; n

�
=
@v

@q

�
aN (q; n); q; n

�
+

@v

@aN
�
aN (q; n); q; n

� @aN
@q

(q; n) = 0 (22)

where
@v(aN (q;n);q;n)

@aN
6= 0: In fact, as mentioned before, v

�
aN (q; n) ; q; n

�
6= y (q; n) = v

�
aC (q; n) ; q; n

�
= maxa v (a; q; n).

From (14),

@v

@q
(aN (q; n) ; q; n) =

n� 1
n

�
E
h
U 0
�fWi

�e�ii� E hU 0 �fWi

�e�ji�L �aN� :
Moreover, when q = 1; we showed in Appendix 9.1 that 8i; j;fWi = fWj , so that :

@v

@q
(aN (1; n) ; 1; n) = 0 (23)

In addition, using (13):

@v

@a
(a; q; n) =

0@�E hU 0 �fWi

�e�ii �1� q + q

n

�
�
X
j 6=i

E
h
U 0
�fWi

�e�ji q
n

1AL0 (a)� C 0 (a) 6= 0 (24)

In particular, for q = 1; (24) becomes:

@v

@a

�
aN (1; n); 1; n

�
=

�
� 1
n
E
h
U 0
�fWi

�e�ii� n� 1
n

E
h
U 0
�fWi

�e�ji�L0 �aN (1; n)�� C 0 �aN (1; n)�
= �E

h
U 0
�fWi

�e�iiL0 �aN (1; n)�� C 0 �aN (1; n)� (25)

Using (13), action aN (1; n) is such that:

� 1
n
E
h
U 0
�fWi

�e�iiL0 �aN (1; n)�� C 0 �aN (1; n)� = 0
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By substituting the previous expression in (25) we �nd:

@v

@a

�
aN (1; n); 1; n

�
= �n� 1

n
E
h
U 0
�fWi

�e�iiL0 �aN (1; n)� > 0 (26)

Using (23), (26) and (20), we are now in the position to evaluate (22) when q = 1:

@v

@q

�
aN (1; n); 1; n

�
=
@v

@a

�
aN (1; n); 1; n

� @aN
@q

(1; n) < 0 (27)

which proves that q = 1 does not satis�es (22). Moreover, (27) shows that the function v
�
aN (q; n); q; n

�
is decreasing in q when q = 1; which implies that the optimal coverage is q�N (n) < 1:

9.5 The second-best linear contract with �xed contribution

Consider now the optimal linear contact with �xed contribution (premium) when the action cannot

be controlled. Since the action is not contractible and moral hazard has bite, we call this policy

the second-best contract with �xed contribution.

A policyholder pays the premium P and receives the reimbursement qL(a) if the loss realizes.

The individual�s expected utility is:

EU
�
w �

h
(1� q)e�iiL (a)� P�� C (a) (28)

The timing of actions is the following: �rst, the forpro�t insurer o¤ers the contract (P; q);

second, the individual accepts the contract and chooses the action level; �nally the risk is realized.

Solving backward, the optimal choice of the action, given the contract (P; q), is the solution of:

� p(1� q)U 0 (w � (1� q)L (a)� P )L0 (a) = C 0 (a) (29)

Obviously, with q = 1; the optimal action is zero because the action does not bring any bene�t in

this case. Hence, the insurer will never o¤er full insurance. By comparing (16) and (29) we observe

that, under the second best policy, the policyholder does not internalize the positive impact that
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the action has on his premium. In particular, in the left-hand side of (29) only the bene�cial e¤ect

of the action on the potential loss is taken into account.

In the �rst stage, the insurer maximizes the policyholder�s utility (28) subject to the resources

constraint (P = pqL(a)) and the individual�s incentive constraint (29). As is well known, the

optimal level of coverage q is lower than 1 (partial coverage), which means that the usual trade-o¤

between risk-sharing and incentives arises.

Note that the fair contribution P = pqL(a) is coherent both with the case of a benevolent

monopolistic insurer (i.e. a public/social insurance) and with the case of a large number of forpro�t

insurers in a competitive market.

9.6 Proof of Proposition 3

Since q�C = 1, the level of utility achieved in the optimal risk-sharing agreement is written

uC (n) = max
a
E

"
U

 
w �

Pn
i=1
e�i

n
L (a)

!#

Now, as the ~�i are i.i.d. with �nite expectation, we know that w�
Pn

i=1
e�i

n L (a) is a mean preserving

spread of w �
Pn+1

i=1
e�i

n+1 L (a) for all a so that :

E

"
U

 
w �

Pn
i=1
e�i

n
L (a)

!#
� E

"
U

 
w �

Pn+1
i=1

e�i
n+ 1

L (a)

!#
8a

Therefore:

uC (n) = max
a
E

"
U

 
w �

Pn
i=1
e�i

n
L (a)

!#
� uC (n+ 1) = max

a
E

"
U

 
w �

Pn+1
i=1

e�i
n+ 1

L (a)

!#
:

9.7 Proof of Proposition 4

We show below that the left-hand side (lhs) of (10) is equal to its right-hand side for n = 1; whereas

the lhs is lower than the right-hand side (rhs) for n = +1:

� For n = 1; the sole individual will always choose the optimal action level. Thus, uC (n) =
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uD (n)) = uP (n) and condition (10) holds with equality.

� When n! +1 the impact of one individual�s action on the contribution is negligible so that

deviation is always pro�table. This can be seen by rewriting inequality (10) with n! +1

1

1� �
�
U(w � pL

�
aC
�
)� C

�
aC
��
�

1

1� � (1� p)

�
U(w � pL

�
aC
�
) +

p�

1� �u
N (0; 1;1)

�

where

uN (0; 1;1) = uP (1) = U (w � pL(0))

because incentives to free ride are the highest as possible when the size of the pool is in�nite

and the optimal action is aN (1;1) = 0, implying C
�
aN
�
= 0:

Rearranging we can write:

C
�
aC
�
� p�

"
U [w � pL(0)]�

U(w � pL
�
aC
�
)

1� � (1� p)

#
:

Since 1
1��(1�p) > 1 and U (w � pL(0)) < U(w�pL

�
aC
�
); the rhs of the previous inequality is

negative so that the latter is never satis�ed. Thus, deviation is always pro�table for n! +1

and (10) does not hold.

From Proposition 3 we also know that uC (n) is monotonically increasing in n.

We conclude that either the rhs of (10) is always above its lhs and the optimal risk sharing

agreement is never enforceable, or it exists a pool size n̂ > 1 such that the rhs crosses from below

the lhs in n̂ and the rhs lies above the lhs for n > n̂: Thus, a necessary condition for the optimal

risk-sharing to be enforceable is that n < n̂: The condition n < n̂ is necessary but not su¢ cient

because it is possible that the rhs crosses the lhs more than once so that subsets of n belonging to

the interval (1; n̂) and such that the lhs lies above the rhs may in principle exist. However, in our

simulations with CARA and CRRA utility functions, the lhs and rhs cross just once.
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Figure 1. In the simulations with CARA and CRRA functions, the risk-sharing agreement with 

free-riding is monotonically increasing in the size of the pool.  
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Figure 2. In the simulations with CARA utility function the curve which depicts the left-hand 

side of equation (10) lies above the curve representing its right-hand side for n̂ ≤1000. 
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Figure 3. Simulations with CARA utility function. Solid lines describe the whole equilibrium 

schedule as a function of the size of the pool in the case where the optimal risk-sharing can be 

sustained as equilibrium for n̂ ≤1000. 
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Figure 4. Members' welfare with the first-best policy with fixed premium, with the second-best 

policy with fixed premium, and in the risk-sharing agreement with and without free-riding using 

CARA utility functions. 
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