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Abstract

We have established an in vitro 3D system which recapitulates the human tracheo-bron-
chial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal
tissue. In particular, we reported that the mature model, entirely constituted of primary cells
of human origin, develops key markers proper of the native tissue such as the mucociliary
differentiation of the epithelial sheet and the formation of the basement membrane. The
infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results
in bacteria association and crossing of the mucus layer leading to an apparent targeting of
the stromal space where they release large amounts of vesicles and form macro-structures.
In summary, we propose our in vitro model as a reliable and potentially customizable sys-
tem to study mid/long term host-pathogen processes.

Introduction

In the last decades, the exploitation of transformed and/or immortalized cell line monocultures
turned out to be a powerful approach not only to unravel the mechanisms of infection for vari-
ous microbial pathogens, but to allow the characterization of thousands of drug compounds.
Despite their proved utility, the need for more accurate and physiological systems has driven
researchers to develop models based on two or more cellular lineages, including epithelial and
immune cells [1]. Recently, to develop structured 3D models, scientists have engineered bio-
compatible scaffolds and bioreactor-based culture systems that have brought the biological rel-
evance of these models to a very high level. For example, supporting scaffolds and biomaterials
provide the framework in which cells can deposit extracellular matrix components and differ-
entiate to form a functionally relevant tissue. In this context the use of different cellular types
allows a nearly exact reproduction of human specific anatomical districts that are of excep-
tional value if one wants to follow host-pathogen interaction phenomena [2, 3]. The complex-
ity of these systems not only allows the characterization of basic interactions such as bacterial
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adhesion or internalization patterns, but could also potentially open new perspective on the
study of elaborate bacterial-host interaction phenomena, such as the assessment of immune
clearance mechanisms within the mucosal environment and the long-term characterization of
microbial persistence strategies. One of the major concerns about the use of animal models to
study bacterial infectiveness is that the vast majority of pathogens have a strict specificity for
their host. Likewise, the use of human tissue explants is confined to a limited number of models
due to the complex cyto-architecture that hinders the circulation of nutrients leading to the
deterioration of the sample within few days [4, 5]. Therefore, in some cases, assembling physio-
logical in vitro systems that faithfully reproduce the native tissue represents a valid alternative
to the use of animals or human explant cultures. A number of models reconstituting the
human respiratory mucosa in vitro have been successfully established during the last years. Fre-
quently these models comprise the co-culture of fibroblasts and bronchial epithelial cells that
are assembled on biocompatible scaffolds or porous membranes. Fibroblasts have a positive
effect on the epithelial cell function by increasing proliferation, guiding the differentiation,
modulating mucin secretion and inducing a correct spatial distribution [6-8]. These events
contribute to an appropriate assembling of the bronchial epithelium and, by establishing a spa-
tially defined structure, to the maintenance of the mucociliary phenotype for a long period [9].
In recent years, a number of strategies have been proposed to optimally embed fibroblasts in
3D airway models [10-13]. Nevertheless, Pageau and colleagues have shown that the source of
fibroblasts is critical to the differentiation of the epithelial cells [8].

Dual or triple co-culture models implanting immune system components in pseudo-tissues,
have also been used to characterize immune defense mechanisms and elucidate the paracrine
signaling of cytokines on the epithelium [2]. In particular immune-competent in vitro 3D mod-
els of the airways have been used to characterize the response to allergens or foreign particles
exposure and the human dendritic cell function within the lung environment [14-16]. Of inter-
est, models of the airway wall providing the use of mesenchymal stem cells (MSCs) in combi-
nation with epithelial cells have been exploited for the characterization of regenerative and
wound repair mechanisms [17, 18].

The aim of our study is to recreate a physiological model mimicking the human tracheo-
bronchial mucosa, including the epithelium and the supporting stromal tissue. The use of a
porous inert scaffold provided the mechanical support and the in vivo-like scale for co-cultur-
ing the cells forming the basic system (named BEM, acronym of Bronchial Epithelial Model),
constituted by human normal fibroblasts and epithelial cells. The characterization of the BEM
highlighted the correct formation of the basal membrane (BM) and the presence of a sustained
mucociliary differentiation of the epithelium. The exploitation of the proposed model to moni-
tor nontypeable Haemophilus influenzae (NTHI) infections, by confirming the invasive pheno-
type observed in human explants supports the use of this reconstituted mucosal pseudo-tissue
for a number of pharmaceutical and medical applications.

Results

The bronchial equivalent model strictly resembles the human respiratory
mucosa

With the aim of reconstituting a human bronchial equivalent model, we co-cultured human-
derived primary cells isolated from healthy individuals and spatially organized on a porous
inert scaffold (see Materials and Methods). We firstly seeded the scaffold with fibroblasts
(NHLFs) and cultured to allow fibroblasts to deposit ECM components such as fibronectin
and collagen (S1 Fig). Subsequently a layer of rat tail collagen I was poured on top of the scaf-
fold to offer support to the epithelial sheet constituted of primary human tracheo-bronchial
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cells (NHBE). The obtained pseudo-tissue (Fig 1A) was finally cultured at air-liquid interface
(ALI) for three weeks to allow the full differentiation of the epithelial sheet. The characteriza-
tion of the BEM was based on the analysis of 4 independent experiments, each consisting in the
assembly of more than 3 replicates. In order to exclude that the results could be subject-bound,
we used cells from different human sources during the first two experiments with respect to
the last two. The mature BEM was typically 300 microns thick and highly resembled the
human respiratory mucosa. Indeed, as shown in Fig 1B, toluidine blue staining of BEM sections
revealed the presence of a well-formed columnar epithelium typical of the native tissue. The
formation of a thick mucus film covering the epithelium was also evident. We observed that
the thickness of the formed mucus layer could be influenced by culture conditions, such as ALI
phase duration, stromal cellular density and composition and/or washing frequency of the api-
cal surface to simulate the physiological displacement of mucus substances (data not shown).
Differences in epithelial cell profiles were observed when the BEM was compared with classical
transwell system (Fig 2). Indeed, NHBE cells grown under 3D conditions develop an elongated
columnar morphology (Fig 2A) while when cultured on transwells usually have a flat cuboidal
shape (Fig 2B). Moreover, the BEM shows a well-defined line of nuclei just above the collagen
sheet suggesting the formation of a basal layer typical of the human pluristratified mucosal epi-
thelium. Generally the BEM had an increased rate of mucus accumulation, as a consequence of
a higher number of mucus-secreting cells with respect to NHBEs cultured on transwell mem-
branes (data not shown). The mucociliary escalator is essential for the respiratory tract physiol-
ogy and requires the participation of both ciliated (CCs) and goblet cells (GCs) [19, 20].
Scanning electron microscopy (SEM) analysis of the BEM indicated a high-grade of mucinous
differentiation (Fig 3a) and a well-distributed carpet of cilia covering the apical surface of the
epithelium (Fig 3d). The presence of mucus-producing GCs was confirmed by both TEM anal-
ysis and MUC5AC-specific fluorescent immunostaining (Fig 3b and 3c). Outstretched cilia
protruded from the basal bodies to the extracellular space and displayed the typical length
described for in vivo tissues (~7um)[21] (Fig 3e and 3f).

The BEM forms a basement membrane and constitutes sealing junctions

The epithelium is a physical barrier against pathogens colonizing the human respiratory tract
and its integrity is a key requirement. The functionality of a physiological epithelium typically
relies on the establishment of tight junctions (T7Js) that seal together the epithelial cells forming
the barrier [22]. Zonula occludens 1 (ZO-1) protein is an essential component of TJs and, in
our BEM, ZO-1 properly delineated inter-cellular contour at the apical side of the NHBE layer
(Fig 4a and 4b). In vivo epithelial cell polarity is controlled by the basement membrane (BM), a
physical extracellular component preserving also host defense capacity [23]. Major compo-
nents of the BM are laminins that form a network to which epithelial cells can anchor through
hemidesmosomes [24]. Immunostaining on BEM cross-sections revealed a notable deposition
of laminin (Fig 4d) and also the distinctive presence of the integrin alpha-6 (ITGA6) hemides-
mosomal component. Accordingly, both markers co-localized with the collagen layer that sepa-
rates the epithelial and stromal regions of the BEM (Fig 4c). These data support the evidence
that epithelial and fibroblast respiratory cells may synergistically reproduce the formation of
the BM in vitro.

The bronchial model develops features associated with epithelial
homeostasis and repair function

The respiratory system possesses homeostatic mechanisms and a facultative regenerative
capacity upon injury that are in charge of different multi-potent progenitors cells, such as basal
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Fig 1. Schematic representation of the bronchial equivalent model. a) Schematic representation of the
basic BEM, consisting of NHLFs and NHBE cells. b) Toluidine blue staining of a mature standard BEM.

doi:10.1371/journal.pone.0153985.g001

(BCs) and Club cells (CICs) [25]. Interestingly the cell layer oriented along the reconstituted
BM expressed BC-specific markers as shown in BEM cryosections. Indeed markers as cytokera-
tin-5 (CK5), nerve growth factor receptor (NGFR) and p63, constitutively present in human
airway epithelia, almost uninterruptedly delineated the basal layer of the BEM (Fig 5A-5C). In
addition, as shown in Fig 5d and 5e, we found that a minor subset of the p63™ cell pool was also
positive for CK14 staining. Since CK14 has been described to be upregulated in airways during
regeneration after damage [26], the presence of this marker could imply a possible physiologi-
cal cellular turnover within the BEM epithelium. Altogether these results indicate consistent
BC presence in the BEM in line with what has been reported for human respiratory mucosae
[27]. Notably, we were able to detect the presence of CICs within the upper epithelial layer of
the differentiated epithelium, as detected by fluorescent staining specific for uteroglobin (also
known as CCSP) (Fig 6a). Finally, dual immunofluorescence staining highlighted not only a
balance between GCs and CICs, but also the existence of rare double positive CCSP/MUC5AC

Fig 2. Different morphology of NHBE cells grown on BEM or transwell. Haematoxylin-eosin-alcian blue
staining of NHBE cells differentiated on a BEM (a) or on a transwell system (b). The arrow indicates the basal
layer that forms when NHBE cells are grown on a BEM. Images are representative of 4 different experiments.

doi:10.1371/journal.pone.0153985.9g002
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Fig 3. Mucociliary differentiation of NHBE cells grown on a BEM. Mucus granules are visible by SEM (a)
(indicated by arrows), TEM (b) and confocal analysis (c) (blue is DNA, green is MUC5AC, red is F-actin). Cilia
are visible by SEM (d), TEM (e) and confocal analysis (f) (blue is DNA, white is B-tubulin, red is F-actin).
Images are representative of 3 independent experiments.

doi:10.1371/journal.pone.0153985.g003

population, hypothesizing a linkage between the two strict secretory phenotypes (Fig 6b and
6¢).

Cytokine production is augmented during differentiation time of BEM

In order to define a baseline level for cell signaling molecule secretion by the standard BEM, we
monitored the production of a panel of 27 cytokines, by using a Luminex bead-based assay (for
experimental details see Materials and Methods). This panel included the main mediators of
the inflammatory state, various chemotactic factors and several growth factors indicators of a
stromal-epithelial interaction.

The majority of analyzed secreted factors augmented during the differentiation period
(post-ALI) respect to pre-ALI conditions in the standard BEM configuration (Fig 7). In
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Fig 4. Characterization of differentiation markers of the BEM epithelial barrier. Immunofluorescence staining for a) ZO-1 (green, blue is DNA) and b) F-
actin (red). c) Immunofluorescence staining of laminin and integrin alpha-6 (ITGA6) (blue is DNA; red is laminin; green is ITGAB). d) IHC staining of laminin.
The arrow indicates the presence of a continuous layer of laminin at the interface between the epithelial sheet and the stromal compartment; antibody isotype
control is represented in (e). Images are representative of 4 different experiments.

doi:10.1371/journal.pone.0153985.9004

absolute values major secretion levels were identified for IL6, IP-10, MCP-1, IL8, eotaxin,
G-CSF, IL-12p70, indicating a sustained chemo-attractive profile.

BEM represents a suitable in vitro model to study bacterial adaptation to
the respiratory tract

The ultimate goal of our study was the validation of BEM under conditions that would mimic
the in vivo host-pathogen interplay occurring during the adaptation/infection of microbial
organisms to the mucosal environment. As a model microorganism we chose NTHi, a human
commensal bacterium that is part of the normal flora of the upper airways and for which are
available in vivo evidences for the capacity to reside inside the bronchial epithelium. In addition
to being commensal, NTHi is implicated in mucosal infections, including otitis media and in
the exacerbation from chronic obstructive pulmonary disease [28]. NTHi strain Fil76, a
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Fig 5. Characterization of epithelial markers by confocal microscopy. a) Immunofluorescence staining
of cytokeratin 5 (blue is DNA; green is CK5; white is transmitted light). b) Immunofluorescence staining of
nerve growth factor receptor and integrin alpha-6 (blue is DNA; red is NGFR; green is ITGA6; white is
transmitted light). c) Immunofluorescence double staining for cytokeratin 5 and nerve growth factor receptor
(blue is DNA; red is NGFR; green is CK5). d) Differential expression of basal cells CK14 and p63 markers
(blue is DNA; red is CK14; green is p63). €) Enlargement of an area represented in d); the yellow arrow
indicates positivity for both p63 and CK14. Images are representative of 4 different experiments.

doi:10.1371/journal.pone.0153985.g005

clinical isolate strain derived from a case of otitis media [29, 30], was used to apically infect the
BEM. After 40h of infection the pseudo-tissue was fixed and cryo-sectioned for microscopic
analysis. As expected, NTHi was detected within the mucus layer that acts as the principal bar-
rier to hinder bacterial contact with the epithelium (Fig 8a). According to pre-existing evi-
dences of NTHi mucosal infection indicating that the bacterium is actively involved in crossing
the epithelial barrier [31-33], we were able to detect bacteria infiltrating within the epithelial
sheet (Fig 8b) or in the stromal compartment organized in macro-aggregates (Fig 8c). This
phenotype resembled the initial stage of colonization of respiratory tissues by mucosal patho-
gens, which is characterized by the formation of stable communities contributing to the persis-
tence of bacteria in the host. Importantly, numerous vesicles of bacterial origin (named OMVs,
outer membrane vesicles) were identified at the bottom side of the stromal compartment (Fig
8d). This observation is in accordance with in vivo evidence suggesting that NTHi releases
large amount of membrane-based vesicles during infection [34]. These data further support the
importance of the model as a valid surrogate for studying microbial infections.

Discussion

The scientific understanding of how microbes emerge, persist and adapt to the host is continu-
ously growing. This result has been achieved thanks to a number of new technological applica-
tions that have greatly helped the deep comprehension of the mechanisms exploited by
pathogens to benefit from humans. In this context, the in vitro reconstitution of human tissues
by 3D cellular models represents a unique opportunity to overcome a number of issues related
to the use of traditional cell lines or animal models far from representing the natural environ-
ment in which microorganisms usually reside. The relevance of this aspect, along with strong
ethical concerns, is also driving governments and regulatory organizations to support the
implementation of alternative methods to animal testing. The model proposed in this paper by
attempting to rebuild the airway wall is expected to provide to the scientific community an in
vitro tool suitable for the study of respiratory infections. Bacterial colonization of the human
airway mucosa is a complex multiphasic process, involving different cellular subtypes. Indeed,
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Fig 6. Club and goblet secretory cells are both present in the epithelial space of the BEM. a)
Immunofluorescence staining of CICs (positive for CCSP, red). b) Immunofluorescence staining of CICs
(positive for CCSP, red) and goblet cells (positive for MUC5AC, green). ¢) Immunofluorescence staining
reveals the presence of cells positive for both Club cells and goblet cells markers (blue is DNA; red is CCSP;
green is MUC5AC). White dotted lines separate the epithelium from the scaffold. Images are representative
of 4 different experiments.

doi:10.1371/journal.pone.0153985.g006

to successfully persist in the mucosal epithelium, microbes would not only need to compete for
nutrients with other resident bacteria but also to avoid mucociliary and immune clearance. An
important limitation of the models currently used to study host-bacterial processes in the air-
ways is that they do not provide a thick significant 3D structure, leading to the accumulation of
growing bacteria within few layers of cells. This aspect limits the infecting time to few hours as
the epithelium is heavily impacted as soon as bacteria form a critical mass. In our model this
phenomenon is partially avoided by the fact that bacteria do not accumulate within the epithe-
lial space as they have the opportunity to proceed through their colonization route by passing
this intermediate barrier and forming large aggregates in the stromal compartment with no
apparent damage of the surrounding tissue. The infiltration underneath the epithelial barrier
of respiratory pathogens such as NTHI, Streptococcus pneumoniae and Staphylococcus aureus
seems to be the mechanisms by which these bacteria are able to avoid immune system clear-
ance and produce recurrent infections [35, 36]. According to this scenario, the formation of a
physiological epithelial barrier is of extreme importance in order to study the mechanisms by
which pathogens traverse the respiratory epithelium.

PLOS ONE | DOI:10.1371/journal.pone.0153985 April 21,2016 8/15



el e
@ ) PLOS ‘ ONE 3D Airway Models and NTHi Infection

100000;

*kkk

10000

*
*
*

*%

QQ \;%

~z° 4

,go@b‘so'\:be,\a‘be\,@oQ&@

2 K
\V\V\V\V\\’WQ\V\\'\QQQ\Q\QQO Q/o

AR

Fig 7. BEM cytokine secretion profile. Histogram plot representing cytokine concentration (pg/mL) in culture basal supernatants collected after 7 days from
the model assembly before ALI transition (pre-ALI) and after 28 days from the model assembly at the end of the differentiation protocol (post-ALl). Data are
represented as mean values (+ SD) of 3 biological replicates. Multiple t-test was performed to determine statistical significance. ****p<0.0001; ***p<0.001;
*¥p<0.01; *p<0.05.

doi:10.1371/journal.pone.0153985.9007

Our data indicate that a basal membrane forms in the BEM, constituted of a continuous
laminin layer to which epithelial cells can anchor through the ITGA-6 component. By taking
into account that under these conditions epithelial cells present in the BEM also develop seal-
ing tight junctions, we postulate that our model could be successfully implemented for the
study of epithelial barrier crossing by respiratory pathogens. A nice example of the exploitation
of the model to study host-pathogen interaction was also reported in our study. Indeed, we
monitored the infection of the BEM by a strain of NTHi and observed an invasive phenotype
comparable to the one reported for bronchial and lung COPD explants [32, 37], in which bac-
teria actively transverse the epithelial barrier in order to reach the stromal compartment where
they can better protect from antibodies and immune cell clearance [38]. Notably, the macro-
scopic morphological structure of the tissue seemed not to be influenced by NTHi since the
epithelial sheet and the underlying compartment preserved their integrity also if proliferating
bacteria were invading the whole tissue. We did not observe evident damage signals also in the
epithelial sheet, confirming the innocuous status of the pathogen during its occupancy of the
human respiratory tract of healthy individuals.

The fact that we spotted the presence of BCs and CICs within the epithelium opens interest-
ing perspective on the fact that these cells could play a role in repairing the tissue after damage
induced by pathogens. Under the reported infection conditions, we also detected high amounts
of OMVs within the BEM. These secreted lipid-based structures are known to be produced by
NTHi during infection and to stimulate the release of anti-microbial peptides and immuno-
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Fig 8. Immunofluorescence characterization of NTHi-infected BEM. a) Bacteria (red), revealed by using
polyclonal antibodies against the whole bacterium, are embedded into a thick mucus layer (white). The
contour of epithelial cells is delineated by phalloidin staining (green). b) Bacteria (red) associated with and
traversing the epithelial layer (phalloidin, green; DNA, blue). ¢) NTHi bacteria (red) colonizing the stromal
compartment (transmitted light, grey; DNA, blue). d) Outer Membrane Vesicles (red) detected within the
bottom side of the BEM stromal compartment (transmitted light, grey; DNA, blue) and bacteria (red),
highlighted by asterisks.

doi:10.1371/journal.pone.0153985.g008

modulatory molecules by epithelial cells [39, 40]. Interestingly, even though the presence of
OMVs was associated with all the BEM, a clear enrichment of the vesicles was noted at the bot-
tom level of the stromal compartment.

In conclusion, we think that the BEM can be a valuable tool to dissect long-term host-bacte-
rial interplay opening new opportunities to design efficacious intervention strategies to treat
fastidious pathogen-driven respiratory diseases.

Materials and Methods
Cell culture

Human normal lung fibroblasts (NHLFs) (Clonetics™) were expanded in FGM-2 (Lonza)
medium and used for 10 passages. Normal human tracheobronchial epithelial cells (NHBE)
(Clonetics™) were expanded at early passages and maintained in BEGM (Lonza). NHFLs and
NHBE cells used in this study originate from two adults (1 male, 1 female) of age comprised
between 43 and 62 years. PneumaCult™-ALI (STEMCELL Technologies™) was used during the
last 3 weeks of differentiation in air liquid interface (ALI) conditions. StemPro Accutase
(Gibco) solution was used to detach the cells during the passaging.

3D cell culture assembly

Alvetex inserts (Reinnervate) were pretreated and coated with Puramatrix (BD Falcon) (0,8
mg/mL) to support fibroblasts adhesion. 5'10° NHLF cells were seeded and cultured in FGM2
medium inside Alvetex scaffolds for 3 days to allow the formation of a stromal tissue equiva-
lent. Subsequently 180uL of 2 mg/mL type I rat tail collagen solution (Sigma) were loaded on
top of the insert to obtain a coating support for epithelial cells. On day 5, NHBE cells (1'10%/
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cm?) were layered on the collagen sheet and cultured until confluence in BEGM medium
(Lonza). From day 7 and for the next 3 weeks, the NHBE cells were cultured in PneumaCult-
ALI (Stemcell Technologies) according to producer instructions to induce bronchial epithelial
differentiation.

Preparation of histological sections

The samples were fixed O/N in 4% buffered formaldehyde pH 7.6, cut in 2 equal halves along
the sagittal plane and processed for paraffin embedding. 3um sections were cut from the paraf-
fin-embedded sample with Leica RM2255 microtome. Deparaffinized and re-hydrated histo-
logical sections were stained with Carazzi’s Hematoxylin and eosin and finally dehydrated.
Images were acquired by using a Leica DM5000B microscope. For hematoxylin-eosin-alcian
blue staining a first staining step was done for 30 min with Alcian Blue 8GS 1% pH 2.5 (Sigma)
leaving the samples unwashed before fixation.

Samples previously fixed for at least 24 h as above were soaked O/N at 4°C in sucrose 15%
and then in sucrose 30% bath before being included in O.C.T. Samples were then snap-frozen
with liquid nitrogen-cooled isopentane and stored at -80°C until processed for cryosectioning.
10 pm or 20 um thick sections were used for immunofluorescence labeling.

Immunostaining

For immunofluorescent staining of the unsectioned BEM, intact samples were washed with
PBS and fixed as above for 12 h. For mucin detection samples were alternatively fixed in cold
Acetone/ Methanol solution for 10 minutes. Samples were then cut in different parts and
washed twice in PBS. Fixed samples were also incubated in permeabilizing solution containing
PBS 1% Triton X-100. Nonspecific binding was blocked incubating samples with PBS contain-
ing 10% goat serum, 3% BSA and 0,1% triton. Primary antibodies were diluted 1:250 in anti-
body dilution buffer (PBS 1% BSA) and left O/N at 4°C with gentle rocking. Subsequently
samples were incubated for 1h at RT with Alexafluor-conjugated secondary antibodies (1:500)
and phalloidin (1:100) (Molecular Probes). DNA was labeled with Hoechst 33342 (1:10000) or
DAPL

For the staining of cryosectioned BEM slices, samples were rehydrated with PBS and
blocked for 30 minutes. After 1 wash in PBS 1% BSA, slides were incubated with primary anti-
bodies diluted in PBS 0,1% Triton for 1 h RT. After 3 washes, samples were incubated with
Alexafluor-conjugated secondary antibodies and phalloidin for 30 minutes. Finally, after 2
washes with PBS samples were counterstained with Hoechst 33342 and the slides were
mounted using Antifade Reagent (Molecular Probes). Images were acquired by using an
LSM710 confocal microscope (Zeiss).

Overlapping tiled images were acquired with an epifluorescent Zeiss Observer microscope
and assembled by using the MosaiX module of AxioVision suite software (Zeiss).

For immunohistochemistry preparations, to preserve epitope structure paraffin embedded
slides were pretreated with Cell Conditioning 1 solution (CC1) (Roche) incubated with poly-
clonal o-laminin antibodies for 12h and revealed with ChromoMap DAB kit (Roche). A list of
the antibodies used in this study can be found in S1 Table.

Electron Microscopy

Samples were divided and fixed O/N at 4°C in sodium cacodylate buffer 0,1M containing 2,5%
glutaraldehyde and 2.5% formaldehyde and then post-fixed in 1% OsO4. Samples were then
dried by the critical point method using CO* in a Balzers Union CPD 020. For SEM they were
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sputter-coated with gold in a Balzers MED 010 unit. For TEM, the dried samples were embed-
ded in LRWhite resin and stained with uranyl acetate and lead citrate.

Cytokines Profiling

To characterize the cytokine secretion profile of the BEM, culture media were collected before
and after the ALI period. Briefly, at day 5 differentiation medium was added to the BEM and
collected at day 7 (pre-ALI condition). Regarding the post-ALI condition, BEM was main-
tained for 21 days in differentiation medium. During the post-ALI the medium was changed at
intervals of 2 days and the cytokine profile measured at day 28 from initial assembling of BEM.
For cytokine profiling, collected medium from the basal side of the well was centrifuged at
9500 g and stored at -80°C. Thawed undiluted media from biological triplicates were tested by
Bio-Plex Pro™ Human Cytokine 27-plex (Bio-Rad), according to the producer protocol. BEGM
and Pneumacult-ALI reference wells were used as basal controls.

NTHi infection

NTHi Fil76 strain grown on agar-chocolate plates (Biomerieux) was inoculated in Brain Heart
Infusion (BHI) medium supplemented with haemin and NAD until Aggo = 0.4. Bacteria were
harvested by centrifugation and resuspended in PneumaCult ALI maintenance medium,
devoid of antibiotics. The apical side of the BEM was washed with warm PBS to reduce the
mucus content and facilitate the binding of bacteria to the cells. 200 uL of bacterial suspension
(2’107 c.fu., MOI 100:1) were added on the apical side of the BEM and incubated for 2 h at
37°C with 5% CO2. Non-adherent bacteria were removed by washing with PBS and treated
BEMs were further incubated for 40h or 56h. Samples were finally fixed as above and cryosec-
tioned for immunofluorescence analysis, bacteria were detected via anti-NTHI serum pro-
duced immunizing rabbits.

Supporting Information

S1 Fig. NHLFs deposit extra cellular matrix components within the porous scaffold after 1
week of culture. a) Immunofluorescence staining for fibronectin (blue is DNA, green is F-
actin, red is fibronectin). b) Immunofluorescence staining for collagen (blue is DNA, green is
F-actin, red is collagen type I); (a) and (b) represent maximum z-projection images of two sep-
arate stack acquisitions.

(TIF)

S2 Fig. Comparison of the mucociliary phenotype between the triple co-culture model
including MSCs and the standard BEM. a-b) Representative tiled images (n = 3) of an
MSC-BEM and a standard BEM stained for DNA (blue), acetylated tubulin (red) and
MUCS5AC (green). Scale bar is 500 um. ¢ -d) Haematoxylin-eosin-alcian blue staining of a stan-
dard BEM and of an MSC-BEM, respectively (GCs are stained in blue).

(TIF)

$3 Fig. Characterization of MoDCs in tryple co-cultures after 28 days. a) Immunofluores-
cence staining of MoDCs in mature fixed DC-BEM (blue is DNA, red is F-actin, green is
CD45).

(TIF)

$4 Fig. Cytokine accumulation in different BEM configurations. a) Differential cytokine
concentrations in standard BEM and DC-BEM cultures. P-value calculated according to
unpaired t-test (*, P<0.05; **, P < 0.01; ***, P < 0.001). b) Differential RANTES and IP-10
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concentrations in standard BEM, MSC-BEM and DC-BEM. P-value calculated according to
one-way anova test (*, P<0.05; ***, P < 0.001).
(TIF)

S1 File. Appendix.
(DOC)

S1 Table. Commercial antibodies used in the study.
(DOCX)
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