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driven by Infinite Variance Innovations∗

Giuseppe Cavalierea, Iliyan Georgieva and A.M.Robert Taylorb
aDepartment of Statistical Sciences, University of Bologna

bEssex Business School, University of Essex

February 15, 2016

Abstract

The contribution of this paper is two-fold. First, we derive the asymptotic null dis-
tribution of the familiar augmented Dickey-Fuller [ADF] statistics in the case where the
shocks follow a linear process driven by infinite variance innovations. We show that these
distributions are free of serial correlation nuisance parameters but depend on the tail
index of the infinite variance process. These distributions are shown to coincide with
the corresponding results for the case where the shocks follow a finite autoregression,
provided the lag length in the ADF regression satisfies the same o(T 1/3) rate condition
as is required in the finite variance case. In addition, we establish the rates of consistency
and (where they exist) the asymptotic distributions of the ordinary least squares sieve
estimates from the ADF regression. Given the dependence of their null distributions on
the unknown tail index, our second contribution is to explore sieve wild bootstrap imple-
mentations of the ADF tests. Under the assumption of symmetry, we demonstrate the
asymptotic validity (bootstrap consistency) of the wild bootstrap ADF tests. This is done
by establishing that (conditional on the data) the wild bootstrap ADF statistics attain
the same limiting distribution as that of the original ADF statistics taken conditional on
the magnitude of the innovations.

Keywords: Unit root; infinite variance; linear process; sieve estimator; wild bootstrap.

J.E.L. Classifications: C12, C14, C22.

1 Introduction

Practitioners routinely report the outcomes of unit root tests applied to macroeconomic and
financial data. These tests are invariably constructed with reference to published asymp-
totic critical values which have been obtained under the assumption that the innovations
driving the time series process display finite variance. However, it is well known that many
macroeconomic and financial series appear to violate this assumption having heavy-tailed
distributions; see, inter alia, Adler et al. (1998) and Embrechts et al. (1997).
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The asymptotic null distributions of conventional regression-based unit root statistics,
such as the ordinary least squares (OLS) based statistics of Dickey and Fuller (1979), Said
and Dickey (1987) and the semi-parametric statistic of Phillips (1987), differ from the finite
variance case when the innovations lie in the domain of attraction of a stable law, such that
they have infinite variance [InfV]; see, in particular, Chan and Tran (1989), Phillips (1990),
Samarakoon and Knight (2009), Rachev et al. (1998) and Caner (1998). Indeed, in such
cases these limiting null distributions are no longer pivotal, depending on the so-called tail
index of the stable law and on the relative weights of the left and right tails of the stable
distribution. Comparing these statistics to critical values tabulated for the finite variance
case therefore leads to incorrectly sized unit root tests. Rachev and Mittnik (2000) tabulate
critical values from these limiting distributions for various values of the tail index and these
could be used for the case where the innovations are symmetric as approximate critical values
based on estimates of the tail index, as might be obtained using the method of McCulloch
(1986), as is done for inflation data in Charemza et al. (2005). However, it is known that it
is very difficult to estimate the tail index well; see, for example, Resnick (1997).

Where the innovations display InfV the properties of unit root tests are strongly affected
by the way in which inference procedures treat extreme observations. In particular, Knight
(1989,1991) and Samarakoon and Knight (2009) show that robust estimation methods based
on the down-weighting of large errors through appropriate M -estimators can result in order
of magnitude gains in efficiency compared to standard OLS estimation in cases where the
innovations display InfV. The same phenomenon occurs if large outliers are dummied out in
an iterated OLS regression, as is not uncommon in applied work; see Cavaliere and Georgiev
(2013). Knight (1989,1991) and Samarakoon and Knight (2009) develop unit root tests
based on M estimation (some of these papers additionally propose unit root tests based on
least absolute deviation estimation) and demonstrate that these have Gaussian limiting null
distributions (which do not depend on the tail index).

The use of these robust estimators remains uncommon in the empirical analysis of eco-
nomic and financial time series, however, possibly because applied researchers typically do
not want to commit to the assumption of infinite variance innovations, but rather view this
as a possibility they would ideally like their results to be robust against. Moreover, the M
estimators are dominated by OLS in the finite variance case; see, for example, Maronna et al.
(2006,p.269) for a comparison of M and OLS estimators. Related to this, while simulations
presented in Moreno and Romo (2012) suggest that under InfV the M -based unit root tests
can display significant finite sample power gains over the OLS-based tests, these gains remain
relatively small when the tail index is close to two, whereas under finite variance the situation
tends to be reversed with OLS-based tests displaying greater power. In practice, therefore,
OLS remains an attractive estimation method for applied workers in economics and finance
and so for the purposes of this paper we restrict our attention to OLS-based unit root tests
with the goal to develop implementations of these which are robust to InfV.

To that end, the contribution of this paper is two-fold. Our first contribution is to extend
upon the work of Chan and Tran (1989) and Samarakoon and Knight (2009) to derive the
limiting null distribution of the usual OLS-based augmented Dickey-Fuller [ADF] test in the
case where the shocks follow a linear process which is driven by InfV innovations. We show
that, provided the lag length used in the ADF regression satisfies the standard o(T 1/3) rate
condition, these distributions are free of serial correlation nuisance parameters and coincide
with those given in Chan and Tran (1989) and Samarakoon and Knight (2009) who assume
a first-order and finite-order autoregressive process respectively. The required rate condition
therefore coincides with that required for analogous results to hold in the case where the
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innovations have finite variance; cf. Chang and Park (2002). We also establish the rates of
consistency and (where they exist) the asymptotic distributions of the OLS sieve estimates
from the ADF regression, in each case again establishing the rate conditions required on the
lag length for these results to hold. These rates are shown to depend on the tail index.

The second contribution of this paper is to explore sieve wild bootstrap implementa-
tions of the ADF tests. While the formulation of the OLS-based ADF statistics gives no
special treatment to large innovations, these could still be taken into account through the
choice of reference population with respect to which the statistics are compared in forming
a test and bootstrap methods can be used to achieve this. It should be stressed that extant
bootstrap methods proposed in this literature do not do this. Zarepour and Knight (1999)
and Moreno and Romo (2012) establish the asymptotic validity of the m-out-of-n bootstrap
with respect to the unconditional asymptotic null distribution of the M -based Dickey-Fuller
statistic for a first-order autoregression driven by InfV errors. These authors also demonstrate
the invalidity of i.i.d. bootstrap unit root tests when applied to InfV data. For OLS-based
Dickey-Fuller statistics, again in the context of a first-order autoregression driven by InfV
innovations, Horvath and Kokoszka (2003) and Jach and Kokoszka (2004) do the same for
the m-out-of-n bootstrap and for subsampling inference, respectively. These approaches are
also valid under finite variance and do not require estimation of the tail index. However, the
simulation evidence provided by their authors suggests that they can be rather over-sized in
finite samples.

The wild bootstrap approach we examine is one based on approximating the limiting
null distributions of the ADF statistics conditional on the absolute sizes of the innovations.
Doing so restricts the reference population and hence should be expected to gain precision.
The rationale behind this is that the restricted reference population corresponds to outcomes
whose information content is compatible with that of the sample. Lepage and Podgórski
(1996) propose this idea and implement it by means of a permutations bootstrap in the
context of fixed-design regressions, though their formal analysis is incomplete; Cavaliere
et al. (2013) choose a wild bootstrap implementation and complete the analysis in the
representative case of inference on the location parameter of an i.i.d. sample. A similar
approach is applied by Aue et al. (2008) to the distribution of the CUSUM statistic. As
with the bootstrap approximations to the unconditional limiting distribution of the ADF
statistics mentioned above, the wild bootstrap ADF tests we discuss are known to be valid in
the finite-variance case, though without the conditioning interpretation of their null limits;
see, for example, Cavaliere and Taylor (2008,2009).

Under the assumption that the innovations are symmetrically distributed, we demonstrate
the asymptotic validity (bootstrap consistency) of the sieve wild bootstrap ADF tests by
showing that the wild bootstrap ADF statistics attain the same limiting distribution as that
of the original ADF statistics when taken conditional on the magnitude of the innovations.
We show that for this result to hold a Rademacher distribution (i.e., a two point, symmetric
distribution) needs to be employed in the wild bootstrap re-sampling scheme. Importantly,
our results are established under a general linear process framework rather than the first-order
autoregressive model considered in the previous bootstrap approaches outlined above. We
establish that valid wild bootstrap ADF tests can be formed using either the unrestricted sieve
estimates from the ADF regression or the sieve estimates obtained from a sieve regression
which imposes the unit root null hypothesis, as is done in the finite variance case in the
context of i.i.d. bootstrap ADF tests in Chang and Park (2003).

It should be stressed that our conditioning proposal does not require the practitioner to
do anything different from what is done in the finite variance case; that is, the wild bootstrap
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ADF tests we discuss are constructed in exactly the same way as outlined for the finite
variance case in Cavaliere and Taylor (2008,2009). Conditioning is simply a useful concept in
understanding the meaning of an otherwise standard wild bootstrap inference procedure when
the variance happens to be infinite. The bootstrap procedure can therefore be successfully
applied in ignorance of whether the innovations display finite or infinite variance, and lies
fully in the regression framework.

The plan of the paper is as follows. In section 2 we detail our reference InfV linear
process data generating process (DGP) together with the usual ADF tests obtained from
a sieve approximation to this DGP. In section 3 we derive the asymptotic null distribution
of the ADF test statistics, thereby extending the results of Said and Dickey (1987) and
Chang and Park (2002) to the InfV case. We do this assuming that the order of the sieve
approximation increases with the sample size at the same rate as is required under finite
variance. The asymptotic properties of the (appropriately normalised) sieve estimators from
the ADF regression are also established and related back to the extant results in the literature.
In section 4 we outline how the sieve wild bootstrap principle can be applied to the ADF
testing problem. Here we also develop the necessary asymptotic theory to demonstrate the
validity of the sieve wild bootstrap ADF tests. The finite sample properties of these tests are
explored in section 5 and compared with those of standard ADF tests together with m-out-of-
n and sub-sampling implementations of the ADF tests. Extensions to allow for deterministic
components are briefly discussed in section 6. Some conclusions and directions for further
research are offered in section 7. Proofs are contained in the Appendix.

In the following we use P ∗, E∗ and Var∗ respectively to denote probability, expectation
and variance, conditional on the original sample. We denote weak convergence and con-
vergence in probability by w→ and P→, respectively. The Euclidean norm of the vector x is
‖x‖ := (x′x)1/2, where x := y indicates that x is defined by y. Also, I(·) denotes the indicator
function; b·c denotes the integer part of its argument; Ik denotes the k × k identity matrix,
I is the infinite identity matrix and 0j×k the j × k matrix of zeroes; ik ∈ Rk denote a vector
of ones and i ∈ R∞ an infinite column-sequence of ones. The space of càdlàg functions from
the unit interval [0, 1] to Rk is denoted by Dk[0, 1] (or D[0, 1] for k = 1) and is endowed with
the Skorokhod topology.

2 The Model, Assumptions and ADF Tests

We consider the time series process {yt} generated according to the recursion

yt = ρyt−1 + ut, (t ∈ N) (1)

where the initial value y0 is assumed to be OP (1) and available to the practitioner, and where
{ut} is a stationary and invertible linear process of potentially infinite order with innovations
following an InfV distribution.

Our primary interest in this paper is on testing the usual unit root null hypothesis H0 :
ρ = 1 in (1) against the stable root (stationary) alternative H1 : |ρ| < 1. The key feature of
our setup is that the innovations driving the linear process ut display infinite variance. More
precisely, ut is taken to satisfy the MA(∞) scheme

ut =
∞∑

i=0

γiεt−i, (t ∈ Z), (2)

with the following set of assumptions, collectively labelled Assumption 1 in what follows,
taken to hold.
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Assumption 1

(i) The random variables εt (t ∈ Z) form an i.i.d. sequence which is in the domain of
attraction of an α-stable law, α ∈ (0, 2); that is, the tails of the distribution of εt exhibit
the power law decay:

P (|εt| > x) = x−αL (x) for x > 0

with L(·) a slowly varying function at infinity, and lim x→∞ P (εt > x)/P (|εt| > x) =:
p ∈ [0, 1], lim x→∞ P (εt < −x)/P (|εt| > x) = 1 − p. Where E |ε1| < ∞, it is assumed
that E ε1 = 0; that is, where the mean of ε1 exists, it is assumed to be zero. Moreover,
we assume that there exists a normalising sequence aT such that a−1

T

∑bT ·c
t=1 εt

w→ S(·)
as random elements of D[0, 1], where S is an α-stable process (or α-stable motion).

(ii) There exists a δ ∈ (0, α) ∩ [0, 1] such that
∑∞

i=0 i|γi|δ/2 <∞.
(iii) The power series γ (z) :=

∑∞
i=0 γiz

i, where we set γ0 = 1 with no loss of generality in
what follows, has no roots on the closed complex unit disk.

(iv) Its reciprocal
∑∞

i=0 βiz
i := (

∑∞
i=0 γiz

i)−1 satisfies
∑∞

i=0 |βi|δ <∞ where δ is as defined
in part (ii).

Some remarks are in order.

Remark 2.1. The parameter α in part (i) of Assumption 1, which will be treated as unknown
in this paper, controls the thickness of the tails of the distribution of εt, and, as such, is often
referred to as the tail index, index of stability or characteristic exponent; for further details
see Chapter XVII of Feller (1971). The parameter p, also defined in part (i), is a measure
of the relative heaviness of the two tails of the distribution of εt. Where εt has a symmetric
distribution, p = 0.5. Moments E |εt|r are finite for r < α and infinite for r > α; the
moment E |εt|α can be either finite or infinite, discriminating between some results in section
3. The tail index, α, is inherited by the limiting process S. Heavy tailed data are widely
encountered in financial, macroeconomic, actuarial, telecommunication network traffic, and
meteorological time series; see, inter alia, Embrechts et al (1997), Finkenstädt and Rootzén
(2003) and Davis (2010) for examples and references. Reported estimates of α include 1.85
for stock returns (McCulloch, 1997), above 1.5 for income, about 1.5 for wealth and trading
volumes, about 1 for firm and city sizes (all in Gabaix, 2009, and references therein) and even
below 1 for returns from technological innovations (Silverberg and Verspagen, 2007).

Remark 2.2. In part (i) of Assumption 1, choosing aT := inf{x : P (|ε1| > x) ≤ T−1},
which implies the existence of a slowly varying sequence lT such that aT = T 1/αlT , ensures
that the stated invariance principle holds without extra conditions for all α ∈ (0, 1). It also
holds for this choice of aT when α ∈ (1, 2) and E ε1 = 0. For α = 1 a sufficient condition for
it to hold, again for this choice of aT , is that the distribution of εt is symmetric around zero;
see Resnick and Greenwood (1979). In all the three cases the limiting process S(·) induces
on D[0, 1] the same measure as the pure jump process

∑∞
i=1 δiΓ

−1/α
i I({Ui ≤ (·)}), where

{Γi} is the sequence of arrival times of a Poisson process of unit intensity, {δi} is an i.i.d.
binomial sequence with P (δi = 1) = p = 1−P (δi = −1), {Ui} is an i.i.d. sequence of uniform
[0, 1] random variables, and the sequences {Γi}, {δi} and {Ui} are jointly independent of one
another; see LePage et al. (1997). The sequence of jump magnitudes {Γ−1/α

i } is the weak
limit in R∞ of the order statistics of {|εt|Tt=1}, {δi} is the weak limit of their respective signs,
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and {Ui}, of their relative location in the sample. Where the invariance principle holds with
aT = aT 1/α, εt is said to be in the normal domain of attraction of a stable law.

Remark 2.3. Most of the unit root literature deals with cases where εt has finite variance.
Under finite variance, the invariance principle in part (i) of Assumption 1 is satisfied with
aT = aT 1/2 and with S replaced by a standard Brownian motion (or 2-stable motion). In this
case εt therefore belongs to the normal domain of attraction of the Gaussian distribution.

Remark 2.4. Part (ii) of Assumption 1 guarantees the almost sure convergence of the
series

∑∞
i=0 γiεt−i (as well as certain series in ε2

t ) and underlies the asymptotics for sample
correlations (see Davis and Resnick 1985b, p.270, and 1986, p.547). It also implies that∑∞

i=1 i
2/δ|γi| < ∞ holds on the γi coefficients in (2). It can therefore be seen that part

(ii) of Assumption 1 would also impose weak stationarity on ut in the case where the mean
and variance of εt were both finite and constant. Part (iii) ensures that the MA polynomial,
γ(z), is invertible, while part (iv) implies, among other things, that the infinite autoregressive
series in (3) below converges absolutely with probability one. �

Under Assumption 1 the process ut is strictly stationary and invertible and, equivalently,
solves the (potentially) infinite order difference equation

ut =
∞∑

i=1

βiut−i + εt, t ∈ Z. (3)

Notice that the coefficients in (3) satisfy
∑∞

i=1 i
2/δ|βi| < ∞ due to the analogous property

imposed on the {γi} coefficients in part (ii) of Assumption 1; see Brillinger (2001, pp.76-77).
Assumption 1 therefore allows us to re-write (1)-(2) as

∆yt = φyt−1 +
∞∑

i=1

βiut−i + εt (4)

where φ := ρ− 1.
In order to obtain an operational unit root test, the ADF sieve-based regression of Said

and Dickey (1984) is then formed by truncating the autoregression in (4) at a given order
k = k (T ) and substituting ut−j by ∆yt−j , j = 1, ...k, yielding

∆yt = φyt−1 +
k∑

i=1

βi∆yt−i + εt,k (5)

where εt,k := εt + ρt,k with ρt,k :=
∑∞

i=k+1 βiut−i. As will be formally established in section
3, in order to ensure that the error associated with the sieve approximation is asymptotically
negligible, it is sufficient that the lag truncation k used in (5) increases with the sample size,
though at a sufficiently slow rate such that consistent estimation of the sieve coefficients, βi,
i = 1, ..., k, remains feasible.

Dickey and Fuller (1979) and Said and Dickey (1984) proposed the use of the so-called
normalised bias and t-ratio ADF unit root statistics, each based on OLS estimation of (5),
for testing H0 : φ = 0 against H1 : φ < 0; see also Chang and Park (2002). To define the
ADF statistics, first let φ̂k and β̂k denote the OLS estimators of φ and βk := (β1, ..., βk)

′

respectively from (5), based on the sample data y0, ..., yT ; that is estimating (5) over t =
k + 1, ..., T . The normalised bias ADF statistic is then given by

RT :=
Tkφ̂k

β̂ (1)
(6)
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where Tk := T − k and β̂ (z) := 1−∑k
i=1 β̂iz

i. The corresponding ADF regression t-statistic
from (5) is given by

QT :=
φ̂k

s(φ̂k)
(7)

where s(φ̂k) denotes the usual OLS standard error of φ̂k from (5).
In each case, H0 is rejected for large negative values of these statistics. Critical values

from the limiting null distributions of these statistics, obtained for the case where εt is a
finite variance process with finite fourth moments, are provided in Fuller (1996). Bootstrap
implementations of these sieve-based ADF tests have been provided based on standard i.i.d.
re-sampling in Chang and Park (2003) and on wild bootstrap re-sampling in Cavaliere and
Taylor (2009). In both cases the validity of the bootstrap tests is demonstrated under the
assumption that the variance of εt is finite (although in the case of the wild bootstrap ADF
tests it can be time-varying) with finite fourth moments.

In what follows, we will show that the sieve wild bootstrap ADF unit root tests, imple-
mented using a Rademacher distribution in the wild bootstrap re-sampling scheme, developed
in Cavaliere and Taylor (2009) are also valid for symmetrically distributed innovations sat-
isfying Assumption 1, so that neither the fourth order moment nor the variance are finite.
As a result, the wild bootstrap ADF test can be validly applied regardless of whether the
innovations have finite or infinite variance and, in the case of the latter, without knowledge of
the tail index, α. The same is not true of the standard ADF tests based on the critical values
from Fuller (1996) since, as we show in the next section, the null distribution of these under
Assumption 1 differs from the finite variance case and, moreover, depends on the unknown
tail index, α. The i.i.d. sieve bootstrap ADF tests of Chang and Park (2003) are invalid
under InfV innovations; see Zarepour and Knight (1999), to which the reader is referred for
further discussion on this point.

3 Asymptotic Results

In this section we establish the large sample properties of the OLS estimators φ̂k and β̂k from
(5). We first establish the result that these estimators are consistent. We then derive the
asymptotic null distributions of the sieve ADF unit root statistics RT and QT from section 2,
along with those (where they exist) for the sieve estimates, β̂1, ..., β̂k, thereby establishing the
consistency rates of the estimators from (5). The results for the latter are shown to coincide
with the corresponding results which obtain in the stationary case provided α > 1 but to
differ otherwise.

In Theorem 1 we first establish the consistency of the OLS estimators from (5), in the
sense that under H0, both φ̂k and β̂k − βk become arbitrarily small (in probability) as the
sample size increases.

Theorem 1 Let yt be generated according to (1)-(2) under Assumption 1. Then, under
H0 : φ = 0, the OLS estimates φ̂k and β̂k from the ADF regression (5) are such that:

(i) if 1/k + k2/T → 0 and (aT /T )
∑∞

i=k+1 |βi| → 0, in each case as T → ∞, then φ̂k =
oP (1);

(ii) if, in addition to the conditions given in part (i), it also holds that k1/2(aT /T )
∑∞

i=k+1 |βi|
→ 0, as T →∞, then ‖β̂k − βk‖ = oP (1).
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Remark 3.1. The conditions (aT /T )
∑∞

i=k+1 |βi| → 0 and k1/2(aT /T )
∑∞

i=k+1 |βi| → 0
required in parts (i) and (ii) of Theorem 1, respectively, are redundant for α ∈ (1, 2), since
they are then implied by the summability condition

∑∞
i=1 i

2/δ|βi| <∞ ensured by Assumption
1(ii). It is stronger than its standard finite-variance counterpart

∑∞
i=k+1 i

1/2|βi| < ∞; see,
for example, Lütkepohl (2005, Proposition 15.1). �

In Theorem 2 we present the asymptotic null distributions of the ADF statistics RT and
QT from section 2.

Theorem 2 Let yt be generated according to (1)-(2) under Assumption 1 and let H0 : φ = 0
hold. Then, provided 1/k + k3/T → 0 and aT

∑∞
i=k+1 |βi| → 0 in each case as T →∞:

RT
w→

(∫ 1

0
S2

)−1 ∫ 1

0
SdS (8)

QT
w→

(
[S]1

∫ 1

0
S2

)−1/2 ∫ 1

0
SdS (9)

where S is the α-stable process defined in part (i) of Assumption 1 and [S]1 denotes the
quadratic variation of the semimartingale S at unity; that is, [S]1 := S(1)2 − 2

∫ 1
0 SdS.1

Remark 3.2. The asymptotic distributions in (8) and (9) first appeared in Chan and Tran
(1989). They are expressed as the same functionals of the α-stable motion S (with α < 2)
as the so-called Dickey-Fuller distributions are of a standard Brownian motion (an α-stable
motion with α = 2). A graphical comparison of the distribution in (8) for α = 1 with the
corresponding Dickey-Fuller distribution is given in Figure 1 in Chan and Tran (1989, p.361).
Although scale-invariant, the distributions in (8) and (9) depend on the distribution of εt
through the two scalar quantities α and p defined in part (i) of Assumption 1. Where the
distribution of εt is symmetric (so that p = 1/2), this dependence is characterised by the tail
index, α, alone.

Remark 3.3. For the case where the lag length k is set to zero in (5), Phillips (1990)
shows that the limiting null distribution of φ̂0 := (

∑
t y

2
t−1)−1

∑
t yt−1∆yt is given by (under

technical conditions similar to our Assumption 1)

Tkφ̂0
w→
(∫ 1

0
S2

)−1(∫ 1

0
SdS + 1

2(1− κ2
u)[S]1

)

where κ2
u := (

∑∞
i=0 γ

2
i )/(

∑∞
i=0 γi)

2. He further demonstrates that the semi-parametric ana-
logues of RT and QT proposed in Phillips (1987) and Phillips and Perron (1988), which use a
non-parametric correction for the weak dependence in ut rather than an autoregressive sieve
device, achieve the same limiting null distributions as given for those statistics in Theorem 2
above.

Remark 3.4. The analogue of our condition that aT
∑∞

i=k+1 |βi| → 0 in the finite-variance
case is that T 1/2

∑∞
i=k+1 |βi| → 0; see Berk (1974) and Lewis and Reinsel (1985). Both

conditions involve the order of magnitude of the (possibly centred) error sums
∑T

t=1 εt, re-
spectively aT and T 1/2 for infinite and finite variance. Our condition entails that k is, in

1Notice that because S is a pure jump process for α ∈ (0, 2), it holds that [S]1 =
P
u∈(0,1][∆S (u)]2, where

∆S (u) := S (u)− S (u−) is non-zero when a jump occurs in S at time u (see also Remark 2.2).
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general, required to grow at a faster rate the smaller is α. Nevertheless, in the important
special case of a finite-order autoregression, it would suffice to choose k at least as large as
the true autoregressive order, while in the case where the βi, i = 1, 2, ... exhibit exponential
decay (as happens for finite-order ARMA processes), any power rate of the form k = T r

(r ∈ (0, 1)) would be sufficient uniformly in α.

Remark 3.5. In common with most of the literature on unit root testing when the inno-
vations are infinite variance, we have assumed that no deterministic component is present
in either the DGP (1)-(2) or in the ADF regression (5); this amounts to assuming that the
distribution of the innovations is (known to be) centred on zero. More generally, one could
consider replacing (1) with (yt − dt) = ρ(yt−1 − dt−1) + ut, where dt is a purely determinis-
tic component. In the case where dt was a slowly evolving deterministic component (which
includes a constant as a special case) of the form considered in Elliott et al. (1996,p.816),
the results given in this paper should not alter, at least for α > 1, if the ADF regression
in (5) was constructed using the appropriate quasi-difference de-trended data in place of yt;
see Elliott et al. (1996,p.824) for details. Where dt is either a constant or a linear trend,
inference should be based on the appropriately de-trended data; as in Phillips (1990, p.55),
we will discuss this extension for the case of OLS de-trending further in section 6 below. It
is also worth noting that where α < 1, the usual constant and linear trend cases of dt both
cease to be an issue so far as the results in Theorem 2 are concerned because here the scaling
term a−1

T is of o(T−1). �

We now move to establishing the asymptotic distributions of the OLS sieve estimators,
β̂1, ..., β̂k, from (5) under H0. A by-product of this is to provide us with the rate at which
‖β̂k − βk‖ shrinks to zero under the unit root null, information which will be subsequently
used for establishing the validity of the bootstrap ADF tests discussed in section 4. There
we shall also discuss the sieve estimator of βk obtained under the restriction of H0. This
estimator, employed in the bootstrap tests of Chang and Park (2003), will be denoted β̌k :=
(β̌1, ..., β̌k)′and is computed by OLS regression of ∆yt on Xk

t−1 := (∆yt−1, ...,∆yt−k)′, t =
k + 1, ..., T . Therefore β̌k under H0 coincides with the sieve estimator analysed for the case
of stationary linear processes driven by InfV innovations in Cavaliere et al. (2016a). The
results therein show that three kinds of asymptotic behaviour are possible under H0 for β̌k,
depending on the existence of the α-order moment E |εt|α and, moreover, on the behaviour
of the ratio P (|ε1ε2| > n)/P (|ε1| > n) in the tails of the distribution, i.e. for n → ∞. This
feature was first observed by Davis and Resnick (1985b, 1986) for the case of stationary
finite-order autoregressions driven by InfV innovations. Theorem 3, below, shows that the
same trichotomy occurs with the unrestricted sieve estimator β̂k for α > 1, albeit not for
α < 1 where also the consistency rate is affected.

Before we present Theorem 3 we need to define some additional notation. First, for
E |ε1|α < ∞ and limn→∞ P (|ε1ε2| > n)/P (|ε1| > n) = 2 E |ε1|α define ãT := aT , whereas
otherwise define ãT := inf{x : P (|ε1ε2| > x) ≤ T−1}. In the latter case, ãT = aT l̃T for some
l̃T , slowly varying at infinity, such that l̃T → ∞ as T → ∞ (see Davis and Resnick,1985b,
p.263, 1986, p.542). Second, define the cross-product matrices Sk00 :=

∑T
t=k+1 Xk

t−1(Xk
t−1)′

and Sk01 :=
∑T

t=k+1 Xk
t−1yt−1. Third, define the infinite Toeplitz matrix Σ := (r|i−j|)∞i,j=0

formed from the scale-free autocovariances, r|i−j| :=
∑∞

s=0 γsγs+|i−j|. Finally, denote by
L a generic m × ∞ selection matrix of constants, with (i, j)th element lij , and let Lk :=
(L·1, ..., L·k) denote the matrix formed from the first k columns of L.
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Theorem 3 Let the conditions of Theorem 2 hold, including the rate conditions on k imposed
therein, with the additional condition that k is not a slowly varying function of T for the
particular value α = 1. Also assume that there exists some δ′ ∈ (δ, 2α

2+α), where δ is as
defined in part (i) of Assumption 1, such that the selection matrix L has δ′-summable rows
under linear weighting; that is, such that

∑∞
j=1 j|lij |δ

′
<∞, i = 1, ...,m. Then:

Case (i): If E |εt|α =∞, then

a2
T ã
−1
T Lk

{
(β̂k − βk)− gT

}
w→ S−1

∞∑

j=1

AjSj , (10)

where gT := dT − φ̂k(Sk00)−1Sk01 with dT := Tkγ (1)µT (Sk00)−1ik, µT := E(ε1ε2I{|ε1ε2|≤ãT }),
Aj ∈ Rm and are given by Aj :=

∑j
i=1 LΣ−1

·i γj−i (j ∈ N), {Sj}∞j=1 is an i.i.d. sequence
of α-stable random variables and S is an almost surely positive α/2-stable random variable
independent of {Sj}∞j=1. For α ∈ (1, 2), the term φ̂k(Sk00)−1Sk01 in the definition of gT above
can be omitted.

Case (ii): If E |εt|α < ∞ and limn→∞ P (|ε1ε2| > n)/P (|ε1| > n) = E |ε1|α, then the con-
vergence result in (10) holds with a2

T ã
−1
T = aT , and where {Sj}∞j=1 and S are as described in

Case (i) except that they are now dependent with joint distribution as given in Theorem 3.5
of Davis and Resnick (1985b).

Case (iii): If E |εt|α < ∞ and P (|ε1ε2| > n)/P (|ε1| > n) does not converge to E |ε1|α as
n→∞, then

‖Lk{(β̂k − βk)− gT } − σ−2
T

∞∑

j=1

Aj

T∑

t=k+1

(εt−jεt − µT )‖ = oP (a−2
T ãT ), (11)

where σ2
T :=

∑T
t=k+1 ε

2
t , although no limiting distribution for Lk{(β̂k − βk) − gT } needs to

exist.

Remark 3.6. The need to place a summability condition on the rows of L in order to
obtain the consistency rates and, where appropriate, distributional results (rather than simply
establishing consistency) given in Theorem 3 is standard in the sieve literature. A similar
condition is, for example, imposed on L in the finite-variance case; see Theorem 2(iv) of Lewis
and Reinsel (1985).

Remark 3.7. In the finite variance case the condition T 1/2
∑∞

i=k+1 |βi| → 0, which as
discussed in Remark 3.4 is the analogue of our condition that aT

∑∞
i=k+1 |βi| → 0, is required;

see Berk (1974) and Lewis and Reinsel (1985).

Remark 3.8. Given part (i) of Assumption 1 and the assumption of δ′-row-summability
of L under linear weighting, the Aj (j ∈ N) are also row-wise δ′-summable under linear
weighting; that is,

∑∞
j=1 j|Aij |δ

′
<∞, i = 1, ...,m. This property allows us to employ Davis

and Resnick’s (1985b and 1986) asymptotic theory for sample autocovariances. The upper
bound on δ′ is used to control the convergence rate of the quantity LkΣ−1

k to LΣ.

Remark 3.9. The results stated in Theorem 3 also hold for the restricted sieve estimator,
β̌k, which imposes the unit root null hypothesis, on deleting the term φ̂k(Sk00)−1Sk01 from the
definition of gT given in Theorem 3. These results therefore coincide with those given for sieve
estimators in the case of stationary linear processes driven by InfV innovations in Cavaliere
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et al. (2016a). As a consequence, it would be possible to develop bootstrap specification tests
on the elements of βk, based on either β̂k or β̌k as is done in Cavaliere et al. (2016a), which
could then be used for data-based selection of the lag truncation k to use in (5). It should
also be possible to select k via standard information criteria; Burridge and Hristova (2008)
show that k can be consistently estimated in (5) by standard information criteria in cases
where the true autoregressive order in (4) is finite. We conjecture that their results should
carry over to the setting considered in this paper.

Remark 3.10. Using standard least squares algebra, the restricted sieve estimator β̌k can
be written in terms of the unrestricted estimator as β̌k = β̂k + φ̂k(Sk00)−1Sk01. Hence,

Lk(β̂k − βk − dT ) = Lk(β̌k − βk − dT )− φ̂kLk(Sk00)−1Sk01. (12)

For α ∈ (0, 1), the first term on the right hand side of (12), Lk(β̌k−βk−dT ), is asymptotically
dominated by the second term, φ̂kLk(Sk00)−1Sk01, under H0. It is shown in the Appendix that
in this case, without correcting for the latter term,

TLk(β̂k − βk − dT ) w→ −
∫ SdS∫ S2

(
γ (1)

∫ SdS
[S]1

LΣ−1i + γ (1)−1 Li
)
, (13)

where dT = o(T−1) can be omitted. For α = 1, (13) holds if a2
T /(T ãT ) → ∞, whereas its

right-hand side is replaced by A + B limT→∞ a2
T /(T ãT ) if 0 ≤ limT→∞ a2

T /(T ãT ) < ∞ and
cases (i) or (ii) of Theorem 3 apply; here A and B are the right hand sides of (10) and (13),
respectively. As a consequence, when α ∈ (0, 1) the rate of consistency of the unrestricted
sieve estimator β̂k under H0 is reduced to T , slower than that of β̌k, while they attain the same
rate of consistency when α ∈ (1, 2); at α = 1 the consistency rates differ by a slowly varying
factor. For the wild bootstrap to be asymptotically valid a sufficiently fast consistency rate
is required on the sieve estimates, such that the corresponding sieve residuals are sufficiently
close to the true innovations. As we shall see in section 4.2, the consistency rates established
here for both the restricted and unrestricted sieve estimates are sufficient for these purposes,
regardless of the value of α.

Remark 3.11. The results given in this section are also sufficient to determine correspond-
ing results for the class of modified unit root tests originally proposed in Stock (1999) and
developed further in Perron and Ng (1996) and Ng and Perron (2001); see also Haldrup and
Jansson (2006). Where these are based on semi-parameteric estimation of the serial correla-
tion nuisance parameters, the limiting null distributions of these statistics are an immediate
corollary of the results given in Phillips (1990). Results for the analogous tests based on
an autoregressive spectral density (ASD) estimator of the type proposed in Berk (1974) fol-
low immediately from the results given here. Moreover, the sieve wild bootstrap principle
outlined in section 4 can also be applied to these modified unit root tests using the ASD
estimator from Cavaliere and Taylor (2009). The results given in this paper are sufficient to
show that these would also constitute asymptotically valid bootstrap tests in the presence of
infinite variance innovations, under the same conditions as given for the sieve wild bootstrap
ADF tests here. �

4 Wild Bootstrap ADF Tests

It is well known that in the case where the innovations have InfV, commonly used bootstrap
re-sampling methods such as those based on either i.i.d. re-sampling or the wild bootstrap are
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unable to replicate the (first-order) asymptotic null distribution of test statistics; see Athreya
(1987) for an early general reference and Zarepour and Knight (1999) for the specific case of
unit root statistics. Valid bootstrap solutions can, however, be obtained based on either sub-
sampling techniques (see, inter alia, Romano and Wolf, 1999) or the m-out-of-n bootstrap
(see, inter alia, Arcones and Giné, 1989, 1991). The validity of the latter is shown by
Zarepour and Knight (1999), Horvath and Kokoszka (2003) and Moreno and Romo (2012),
and for the former by Jach and Kokoszka (2004). However, in many testing problems these
methods, which entail the use of a bootstrap sample which has a smaller sample size than the
original sample, have been shown to result in tests with somewhat unreliable finite sample
size properties; see, in particular, Cornea and Davidson (2015). Moreover, the validity of
these methods is only demonstrated by the aforementioned authors for an AR(1) process.

In this section we establish the result that a particular version of the sieve wild bootstrap
ADF unit root test, originally proposed in Cavaliere and Taylor (2009) for time series driven
by unconditionally heteroskedastic shocks with finite variance, can provide p-values which are
(first order) asymptotically valid (such that they are uniformly distributed on [0, 1] under the
unit root null hypothesis) also in the presence of symmetric InfV innovations. We show that
a sufficient requirement for this to hold is that the wild bootstrap innovations are generated
by multiplying the sieve residuals obtained in section 3 by a sequence of i.i.d. symmetric two
point (Rademacher) distributions. In the finite variance case, Cavaliere and Taylor (2009)
show that the wild bootstrap ADF tests are valid for any i.i.d. sequence with mean zero, unit
variance and bounded fourth moment. As a result, the wild bootstrap ADF tests discussed
here are asymptotically valid, when implemented using the Rademacher form, for both finite
and infinite variance innovations.

The key feature of our approach is that we do not attempt to deliver a bootstrap al-
gorithm which is able to approximate the unconditional asymptotic distribution of the unit
root test statistics given in (8) and (9). Instead, in contrast to the finite variance frame-
work, we show that the sieve wild bootstrap tests we propose replicate particular conditional
asymptotic distributions, where the conditioning is upon the absolute values of the original
innovations. Because the sieve wild bootstrap replicates the asymptotic distribution of the
unit root statistics conditional on the sample extremes, it has several potential advantages;
see Cavaliere et al. (2013), who applied this idea to a simple location model. Specifically:
(i) the unit root statistics are evaluated with respect to a more concentrated distribution
than the unconditional distribution so power gains might be expected; (ii) the sample size
of the bootstrap sample coincides with the original sample size; (iii) preliminary knowledge
or estimation of the tail index α is not required. The downside of conditioning on the abso-
lute values of the innovations is that these will need to be assumed symmetric. While this
assumption is commonly made in the InfV literature it is still important to stress that our
proposed unit root tests would not be valid if this assumption did not hold. A property close
to symmetry is also imposed by Zarepour and Knight (1999) in establishing the asymptotic
validity of their m-out-of-n unit root tests.

In section 4.1 we now detail our sieve wild bootstrap algorithm. Proof of its asymptotic
validity is then given in section 4.2.

4.1 The Sieve Wild Bootstrap Algorithm

Our bootstrap algorithm involves the OLS estimators of φ and βk = (β1, ..., βk)′ from (5). As
discussed in section 3 these can either be obtained unrestrictedly, denoted by (φ̂k, β̂

′
k)
′, or un-

der the restriction of the null hypothesis φ = 0, denoted by (φ̌k, β̌
′
k)
′ = (0, β̌′k)′. Additionally,
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let (φ̃k, β̃
′
k)
′ generically denote either the unrestricted or the restricted estimator.

Algorithm 1

(i) Compute the OLS residuals, ε̂t := ∆yt − φ̃kyt−1 −
∑k

i=1 β̃i∆yt−i, t = k + 1, ..., T .

(ii) Using the OLS residuals, ε̂t, from step (i), generate the bootstrap innovations ε∗t := ε̂twt,
t = k + 1, ..., T , where the wt are i.i.d. Rademacher random variables, i.e. such that wt ∈
{−1,+1}, each outcome occurring with probability 1

2 , and are independent of the original
data.

(iii) Construct the bootstrap shocks u∗t using the recursion

u∗t =
k∑

i=1

β̃iu
∗
t−i + ε∗t , t = k + 1, ..., T (14)

initialized at (u∗1, ..., u
∗
k) = (0, ..., 0); accordingly, the bootstrap data are generated as

y∗t = y∗0 +
t∑

i=1

u∗i , t = 1, ..., T (15)

initialized at y∗0 = 0.

(iv) Estimate the ADF regression

∆y∗t = φy∗t−1 +
k∑

i=1

βi∆y
∗
t−i + ε∗t,k, t = k + 1, ..., T

on the bootstrap sample, yielding the corresponding OLS estimators φ̂
∗
k and β̂

∗
k := (β̂

∗
1, ..., β̂

∗
k)
′,

together with s(φ̂
∗
k), the OLS estimate of the standard error of φ̂

∗
k.

(v) Define the bootstrap statistics

R∗T :=
Tkφ̂

∗
k

1−∑k
i=1 β̂

∗
i

and Q∗T :=
φ̂
∗
k

s(φ̂
∗
k)
.

(vi) The associated bootstrap p-values are defined as p∗R,T := G∗R,T (RT ) and p∗Q,T := G∗Q,T (QT ),
where G∗R,T and G∗Q,T denote the cumulative distribution functions (cdfs) of R∗T and Q∗T , in
each case conditional on the original data.

Some remarks are in order.

Remark 4.1. In step (iii) of Algorithm 1 the bootstrap process u∗t is initialized at zero. This
is not strictly necessary; for instance, one may alternatively set u∗t = ∆yt, t = 1, ..., k (i.e.,
the initial values are set to the corresponding value that ut takes under the null hypothesis),
or u∗t = ∆yt − φ̂0yt−1, where φ̂0 is the OLS estimator from the regression of ∆yt on yt−1.
These alternative initialisations for u∗t would not alter the asymptotic results given in section
4.2. Other initialisations for y∗t could also be considered; Chang and Park (2003, p.390), for
example, set y∗0 = y0.
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Remark 4.2. Algorithm 1 uses the OLS estimates of β1, ..., βk to recolour the bootstrap
shocks ε∗t through the recursion in (14) of step (iii). Although it seems likely this will
improve the finite sample properties of the bootstrap test, this step is not strictly required.
One could in fact simply set u∗t = ε∗t in place of (14) so that the bootstrap sample obtained
in step (iv) would be the random walk with (conditionally on the data) i.i.d. increments,
y∗t = y∗0 +

∑t
i=1 ε

∗
i , t = 1, ..., T . The asymptotic results given in section 4.2 relate to the use of

the recoloured bootstrap shocks but apply equally where no recolouring is used. Some finite
sample comparisons between these two versions of Algorithm 1 are reported in section 5.

Remark 4.3. The sieve estimates used in step (i) of Algorithm 1 to generate the residuals
ε̂t can be either the unrestricted OLS estimates (φ̂k, β̂

′
k)
′ or the restricted ones (0, β̌′k)′. In

order to prove bootstrap validity under the null hypothesis (which is based on a conditional
argument, where conditioning is upon the absolute values of the innovations, |εt|), it is crucial
that the estimator used in step (i) is sufficiently precise to guarantee that the residuals ε̂t and
the true innovations εt are sufficiently close. In section 4.2 we shall show that both (φ̂k, β̂

′
k)
′

and (0, β̌′k)′ satisfy this requirement for any α ∈ (0, 2). However, it should be noted that
under the alternative hypothesis β̌k will not necessarily be close to the true βk and this may
affect the finite sample power of the corresponding test. These issues will be explored further
by Monte Carlo simulation in Section 5.

Remark 4.4. Computation of the bootstrap p-values in step (vi) of Algorithm 1 requires
the (conditional) cdfs to be known. Taking RT to illustrate, these can be approximated
numerically in practice by generating B (conditionally) independent bootstrap statistics,
R∗T :b, b = 1, ..., B, computed as in Algorithm 1, steps (i)–(v). Then, p∗R,T is approximated by
p̂∗R,T,B := B−1

∑B
b=1 I(R∗T :b ≤ RT ), and is such that p̂∗R,T,B

a.s.→ p∗R,T as B → ∞; cf. Hansen
(1996), Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000). �

4.2 Bootstrap Asymptotic Theory

In this section we establish that the sieve wild bootstrap tests from Algorithm 1 deliver
asymptotically valid inference conditional on the (unobservable) vector of magnitudes of
the innovations, |εT | := (|ε1|, ..., |εT |), under the assumption that the distribution of the
innovations is symmetric. In order to simplify exposition and save on space we will only
present the results relating to the normalised bias test. Analogous results for the t-ratio test
follow similarly as does the fundamental result that the wild bootstrap t-test is asymptotically
valid in exactly the same sense as the normalised bias test.

Specifically, in the remainder of this section we will show that under the unit root null
hypothesis the distribution of RT , conditional on |εT |, is consistently estimated by the distri-
bution of R∗T , conditional on the data. More formally, we will establish that the distributions
of RT conditional on |εT | and of R∗T conditional on the data converge jointly to the same
random distribution. We obtain this result as a consequence of a consistency property of the
wild bootstrap that we formulate in Theorem 4 below in a general setup, abstracting both
from the particular unit root inference problem and the InfV assumption.

Theorem 4 is based on a few ingredients which we now define:

(a) Let ZT := (Z0, ..., ZT ) denote a possible sample of observables which may depend on
a vector εT := (ε1, ..., εT ) of (potentially unobservable) i.i.d. shocks, defined on the
same probability space as the data ZT . In applications of Theorem 4, the data ZT
will typically be a function of some random ‘shocks’, including εT , and possibly other
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random variables. For instance, in our unit root testing problem ZT corresponds to the
data {yt}Tt=0, which depend on the shocks εT := (ε1, ..., εT ) as well as on the pre-sample
innovations {εt}0t=−∞ (which are not included in εT ). It is important to stress that, for
the purposes of Theorem 4, we do not need to assume that εT satisfies Assumption 1;
only symmetry is further imposed on εT .

(b) The shocks εT are re-sampled using the wild bootstrap, based on Rademacher bootstrap
signs. In particular, we let wT := (w1, ..., wT ) denote a vector of i.i.d. Rademacher
random variables (possibly defined upon expansion of the probability space on which
ZT and εT are defined), independent of ZT and εT . The corresponding wild bootstrap
process is then denoted as ε†T = (ε†1, ..., ε

†
T ), where ε†t := εtwt, t = 1, ..., T . Notice that

this bootstrap is in general a merely theoretical device, except in the special case where
εT is observable.

(c) We consider two statistics: the first, denoted by gT , which depends on the original
data ZT only; the second, denoted by g∗T , which is a classical wild bootstrap statistic,
depending on both ZT and the wild bootstrap Rademacher shocks wT .

The results in Theorem 4 will allow us to detail the proximity in distribution of gT and
g∗T . Specifically, it provides sufficient conditions such that, conditionally on the original data,
the bootstrap quantiles of g∗T can be consistently used in order to evaluate gT .

Theorem 4 Let ZT , εT and ε†T be as defined above, with the additional requirement that εT
has a symmetric distribution. Moreover, let there be given:

(a) a statistic gT = gT (ZT ) and a wild bootstrap statistic g∗T = g∗T (ZT ,wT );

(b) a measurable function γT : RT → R, T ∈ N.

As T →∞, if the following two conditions hold:

(i) for every η > 0,

P|ε| (|gT − γT (εT )| > η) P→ 0 and PZ,ε(|g∗T − γT (ε†T )| > η) P→ 0,

where P|ε| and PZ,ε denote probability conditional on |εT | := (|ε1|, ..., |εT |) and {ZT ,εT },
respectively;

(ii) the distribution of γT (εT ) conditional on |εT | converges weakly to a random measure ϕ
with cumulative distribution process ϕ((−∞, ·]) which is a.s. continuous at every point
in R,2

then,
PZ (g∗T ≤ gT ) w→ U [0, 1], (16)

where PZ denotes probability conditional on the data ZT and U [0, 1] denotes the uniform
distribution on [0, 1].

2For the relation between weak convergence to random measures and the associated cumulative processes,
see e.g. Daley and Vere-Jones (2008, pp.143-144).
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Remark 4.5. The consistency of the wild bootstrap established in Theorem 4 is based on
the following triangular argument. First, under condition (i), the statistic of interest gT
is well approximated, in P|ε|-probability, by a function of the shocks εT , namely γT (εT ).
Second, the bootstrap statistic g∗T is well approximated, in PZ,ε-probability, by the same
function, but evaluated at the bootstrap shocks ε†T . Third, due to the assumed symmetry
of εT , the (random) distributions of the approximating quantities γT (εT ) under P|ε| and
γT (ε†T ) under PZ,ε (equivalently, under Pε) coincide a.s. Notice that the specification of wt
to be Rademacher random variables is crucial for this distributional equality to hold; see
also Remark 4.8 below. By combining these three facts we can conclude that the cumulative
distribution process of gT under P|ε| is close to that of g∗T under PZ,ε (equivalently, under PZ).
Moreover, as both processes converge weakly to the same a.s. continuous limiting process
under condition (ii), their proximity is uniform:

sup
x∈R

∣∣P|ε|(gT ≤ x)− PZ(g∗T ≤ x)
∣∣ P→ 0

as T → ∞. It is in this sense that the wild bootstrap approximates the distribution of
gT conditional on the shock magnitudes, |εT |. Again using a.s. continuity of the limiting
cumulative distribution process, (16) follows.

Remark 4.6. The triangular argument used to prove the result in (16), relies on the dis-
tributional equality of εT under P|ε| and ε†T under Pε. Given symmetry of εT , this property
is ensured by choosing the Rademacher distribution for the bootstrap signs in wT . Other
choices, such as the N (0, 1) distribution proposed in Cavaliere and Taylor (2008), will, in
general, compromise the required distributional equality. �

As anticipated earlier in this section, our approach to formally establishing bootstrap
validity of sieve bootstrap ADF tests under InfV is to verify that the conditions of Theorem 4
are satisfied by the unit root statistic gT = RT of (8) and its sieve wild bootstrap counterpart,
g∗T = R∗T from Algorithm 1, with ZT = {yt}Tt=0. In order to do so, we choose the function
γT (·) appearing in Theorem 4 as follows. For any vector xT := (x1, ..., xT ) in RT , T ∈ N, we
let

γT (xT ) := T

∑T
t=1 xt

∑t−1
s=1 xs∑T

t=1(
∑t−1

s=1 xs)2
. (17)

Notice that γT (xT ) is the normalised OLS estimator of φ for a random walk starting at 0
and steps collected in the vector xT .

Our interest therefore centres on the two quantities

γT (εT ) = T

∑T
t=1 εt

∑t−1
s=1 εs∑T

t=1(
∑t−1

s=1 εs)2
and γT (ε†T ) = T

∑T
t=1 ε

†
t

∑t−1
s=1 ε

†
s∑T

t=1(
∑t−1

s=1 ε
†
s)2

.

Again, these two quantities correspond to the normalised OLS estimator of φ for a random
walk with steps collected in the vectors εT and ε†T , respectively.

Verification that condition (i) of Theorem 4 holds in our framework is given in Lemmas
A.2 and A.3 in the Appendix. In particular, in these lemmas we show that, as T →∞,

P|ε|(|RT − γT (εT )| > η) P→ 0 and P ∗(|R∗T − γT (ε†T )| > η) P→ 0,

as required in (i).
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That condition (ii) also holds is established in the following lemma, which provides a weak
convergence result for the distribution of γT (εT ) conditionally on the magnitude of the shocks,
|εT |. The lemma provides a representation for the relevant (random) limiting measure and
states the required result that this measure has an a.s. continuous cumulative distribution
process. To establish the latter, we assume that the unconditional limiting distribution in
(8) has a continuous distribution function; although this property appears to be treated as
known in the profession (e.g., Jach and Kokoszka, 2004, p.78), we could not find reference
to a formal proof. Before introducing the lemma, recall from Remark 2.2 the distributional
equality S(·) d=

∑∞
i=1 Γ−1/α

i δiI{Ui ≤ (·)} in D[0, 1].

Lemma 1 Let Γ := {Γi}i∈N denote the sequence of arrival times of a Poisson process with
unit intensity, U := {Ui}i∈N denote an i.i.d. sequence of uniform random variables on [0, 1],
and let δ = {δi} denote a sequence of i.i.d. Rademacher random variables, such that Γ, U
and δ are independent. Finally define J (·) :=

∑∞
i=1 Γ−1/α

i δiI{Ui ≤ (·)}. Under Assumption
1, if the distribution of εt is symmetric, it holds that

L (γT (εT )| |εT |) w→ L
(

1
2
J(1)2 −∑∞i=1 Γ−2/α

i∫ 1
0 J

2

∣∣∣∣∣Γ, U
)

d= L
( ∫ 1

0 SdS∫ 1
0 S2

∣∣∣∣∣ {|∆S(u)|}u∈(0,1]

)
(18)

in the sense of weak convergence of random measures on R, with conditioning on the magni-
tude and the location of the jumps of J and S respectively. Moreover, the cumulative process
of the limiting random measure is a.s. continuous at every point in R.

We are now in a position to use Theorem 4 and show our main theoretical result; that is,
the consistency of the sieve wild bootstrap ADF test under the unit root null hypothesis. This
is provided in Theorem 5 below. The theorem also allows us to conclude that the bootstrap
unit root statistic R∗T approximates the same limit distribution as that found in Lemma 1.

Theorem 5 Under the conditions of Theorem 2 and if the distribution of εt is symmetric,
it holds under the unit root hypothesis H0 : φ = 0 that

L (R∗T | y0, ..., yT ) w→ L
( ∫ 1

0 SdS∫ 1
0 S2

∣∣∣∣∣ {|∆S(u)|}u∈(0,1]

)
(19)

in the sense of weak convergence of random measures on R, provided the shocks wt used in
step (ii) of Algorithm 1 form an i.i.d. sequence of Rademacher random variables, i.e. such
that P (wt = 1) = P (wt = −1) = 0.5, and are independent of {yt}Tt=0. Under this condition,
it also holds that

p∗R,T = P ∗ (R∗T ≤ RT ) w→ U [0, 1]. (20)

Remark 4.7. An immediate implication of the result in (20) is that the wild bootstrap
implementation of the RT tests (the same holds for the wild bootstrap QT tests) detailed in
Algorithm 1 of section 4 will have correct asymptotic size in the presence of InfV innovations,
regardless of the value of tail index, α, provided the Rademacher distribution is used in
step (ii) of the algorithm. Combined with the results in Cavaliere and Taylor (2008,2009),
this therefore establishes the result that the Rademacher-based wild bootstrap RT and QT
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ADF tests are asymptotically valid regardless of whether the innovations display finite or
infinite variance. From a practical perspective this is a powerful result as it implies that
using these wild bootstrap implementations of the ADF tests allows the practitioner to take
an ambivalent stance on whether the innovations have finite or infinite variance.

Remark 4.8 It could be shown that if the Rademacher assumption on wt was dropped and
a different zero-mean finite-variance symmetric distribution was used instead, then the limit
in (19) would involve, in place of S, a process Sw(·) d=

∑∞
i=1 Γ−1/α

i wiI{Ui ≤ (·)}. Such a limit
would differ from that of γT (εT ) in (18) and, more importantly, it is not obvious that such
a limit could be attained by γT (εT ) upon any change of the conditioning σ-algebra in (18).
In this sense the requirement of a Rademacher distribution for wt is essential for showing
bootstrap validity. �

5 Finite Sample Simulations

In this section we use Monte Carlo simulation methods to investigate the finite-sample perfor-
mance of the wild bootstrap implementations of the RT and QT ADF unit root tests outlined
in the previous section. We will report results for both recoloured and non recoloured versions
of the wild bootstrap tests from Algorithm 1 (see Remark 4.2). We only report results for the
wild bootstrap tests based on restricted residuals (see Remark 4.3). Corresponding results
for (recoloured and non-recoloured) wild bootstrap tests based on unrestricted residuals were
inferior and, hence, are not reported here, but can be found in the accompanying working
paper, Cavaliere et al. (2016b). Comparison will also be made with analogous tests derived
using the sub-sampling procedure of Jach and Kokoszka (2004) and the m-out-of-n bootstrap
of Zarepour and Knight (1999), in each case extended to include a sieve element and asso-
ciated recolouring. We will also include results for tests based on the RT and QT statistics
using either the asymptotic critical values appropriate to the finite variance case from Fuller
(1996) or critical values simulated from the asymptotic null distributions in Theorem 2. The
latter are of course infeasible in practice as they are based on knowledge of α; they do, how-
ever provide a useful benchmark to compare the performance of the bootstrap tests against
and, moreover, the power results for these tests essentially quantify the size-adjusted power
of the tests based on the asymptotic critical values from Fuller (1996).

As our reference DGP we consider the MA(1)

∆yt = φyt−1 + ut, t = 1, ..., T,
ut = εt + θεt−1, t = 1, ..., T,

with ε−1 = y0 = 0, and where εt was generated as an i.i.d. sequence of α-stable random
variables; that is, εt ∼ i.i.d. stable(α). Results are reported for the following values of the
tail index, α ∈ {2, 1.5, 1}. The Gaussian case α = 2 is included to illustrate the uniform
behaviour of the wild bootstrap across finite and infinite variance. Corresponding results for
α = 1.7 are reported in the accompanying working paper, Cavaliere et al. (2016b); these
were little different to the results reported here for α = 2 and, hence, have been omitted.
We consider the following values of the MA parameter, θ ∈ {0,±0.5,±0.8}, allowing both
positive and negative and moderate and large MA behaviour, as well as the i.i.d. case. We
report results both for the null hypothesis, φ = 0, and for alternatives of the form φ = −c/T
where we set c = 7.

Following Schwert (1989), the lag length used in the ADF regression, (5), for the purposes
of computing the ADF statistics, RT and QT , was set to k =

⌊
κ(T/100)1/4

⌋
, and as is common
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in the literature, we report results for κ = 4 and κ = 12. For all of the procedures considered,
this lag length was also used in the corresponding bootstrap analogue of (5) (for the wild
bootstrap procedures, see step (iv) of Algorithm 1), regardless of whether recolouring was
used or not. Where recolouring was employed this was also based on this same choice of k.

In Table 1 we report results for empirical size while Table 2 reports results for empirical
power (non size-adjusted). Results are reported for the following tests: (i) the (non-bootstrap)
RT and QT tests of section 2 based on either the critical values from Fuller (1996), denoted
R2
T and Q2

T or using critical values where α is assumed known, denoted RαT and QαT ; (ii)
wild bootstrap implementations of the RT and QT tests constructed as in Algorithm 1 using
recolouring and restricted residuals, denoted Rrc,rT and Qrc,rT ; (iii) tests as in (ii) but with no
recolouring used, denoted Rn,rT and Qn,rT .

Tables 1-2 also report results relating to the m-out-of-n bootstrap testing approach of
Zarepour and Knight (1999), extended to allow for the same recolouring device as we use
with the wild bootstrap tests discussed in this paper. This procedure parallels Algorithm 1
except that the bootstrap errors in step (ii) are generated using the m-out-of-n re-sampling
scheme with m = bT/ ln lnT c, and with the lag length again set to k in both the original and
bootstrap ADF regressions.3 We denote these tests RmT and QmT . The reported results relate
to the use of the unrestricted sieve residuals in step (i) of the algorithm; we also considered
versions of the m-out-of-n bootstrap ADF tests based on restricted residuals and without the
use of recolouring - these alternatives delivered no discernible improvements over the results
reported here. Finally, we also report corresponding results for implementations of the RT
and QT tests based on the sub-sampling approach outlined in Jach and Kokoszka (2004).
The procedure we adopted is as outlined on page 76 of their paper but applied to the sieve
residuals in order to construct the bootstrap sample. In particular, the sieve residuals are
centred and all possible blocks of consecutive residuals of length b = b0.125× T c are then
sub-sampled from the centred residuals and then cumulated with no recolouring employed
(since the residuals are re-sampled in blocks). A regression of order k is then fitted to the
bootstrap sample. These tests will be denoted RjkT and QjkT .

All simulations were programmed in Ox 7.01 using 10,000 Monte Carlo replications and
B = 399 bootstrap replications (see Remark 4.4) using an implementation of the algorithm
of Chambers et al. (1976) to generate the α-stable random variables. Results are reported
here for T = 100. Results for T = 500 are available on request.

Table 1 about here

Consider first the results reported in Table 1 relating to the empirical size properties of the
various tests considered. There are two striking features in these results. First, the näıve ADF
Q2
T t-type test, based on the standard critical values from Fuller (1996), is surprisingly robust

to InfV. Abstracting away from the large negative MA case (θ = −0.8) which causes oversize
in most of the tests, size is reasonably well controlled regardless of the value of α, although
there is a tendency to undersizing for the smaller values of α considered. The same cannot
be said for the corresponding normalised bias test, R2

T , which is often significantly over-sized,
most notably when κ = 12, suggesting that the standard (Dickey-Fuller) asymptotic critical
value may be an increasingly poor approximation to the true finite sample critical value as
k is increased in the ADF regression (5). The same pattern is seen with the infeasible RαT

3While one might consider setting the lag length in the m-out-of-n bootstrap ADF regression to
bκ(m/100)1/4)c (reflecting the smaller bootstrap sample size under this method of re-sampling) this would
not be appropriate because of the k-th order recolouring polynomial employed in the analogue of step (iii) of
Algorithm 1.

19



test which uses the simulated asymptotic critical value based on the knowledge of α. These
patterns are not replicated in either the corresponding wild or m-out-of-n bootstrap tests,
further supporting this conjecture. The second striking feature is the failure of the tests based
on sub-sampling, QjkT and RjkT . These tend to be over-sized when θ is large and negative with
κ = 4 but are often very heavily under-sized when κ = 12 regardless of the value of θ. As we
will see when we discuss the results in Table 2 this has dramatic implications for their finite
sample power properties.

Among the wild bootstrap tests considered some variation is seen between the results
based on recoloured data vis-à-vis non-recoloured data. These differences are relatively small,
although the tests based on non-recoloured data do perhaps perform slightly better overall.
While it is clearly seen from the results in Table 1 that the wild bootstrap does tend to deliver
significant improvements on the näıve normalised bias R2

T test, it is also fair to say from the
results in Table 1 that any improvements seen in the finite sample size of the corresponding
Q2
T test are far from spectacular. This is perhaps not too surprising given the apparent

robustness to InfV shown by this test, noted above. However, excepting some cases where
θ = −0.8, the wild bootstrap procedure does consistently deliver, albeit relatively small,
improvements on the size of the Q2

T test.
The m-out-of-n bootstrap, despite being calculated from a bootstrap sample which has

a smaller sample size than the original sample, also performs well in our experiments. It
is much less affected than the wild bootstrap tests by large negative values of θ when α is
relatively small (α = 1.5 and α = 1.0), but on the other hand tends to be more affected by
such MA behaviour when α = 2 (and also when α = 1.7; see Cavaliere et al., 2016b). These
cases aside, the m-out-of-n bootstrap performs very well overall with broadly comparable size
control to the wild bootstrap tests.

Table 2 about here

Turning to the results in Table 2 relating to empirical power, perhaps the most obvious
feature is the tendency to very low power in the tests based on sub-sampling, consistent with
the heavy under-sizing in these cases observed in Table 1. Based on the results in Tables 1
and 2, the QjkT and RjkT tests cannot be recommended for use in practice.

In terms of the näıve Q2
T and R2

T tests, a comparison with those for the corresponding
tests based on known α critical values, QαT and RαT , shows that the latter can be significantly
more powerful than the former, although this may in part be attributable to size differences
between these tests; cf. Table 1. Focusing on the t-type tests (given the lack of size control
seen in the R2

T and RαT tests), the best performing (in terms of size control) among the wild
bootstrap tests display similar power to the corresponding QαT and Q2

T tests in the Gaussian
case, α = 2.0 (the same is also seen for α = 1.7; see Cavaliere et al., 2016b), but outperform
the QαT test (and often even more so the Q2

T test) for α = 1.5 and smaller. This suggests
that the wild bootstrap tests simultaneously improve on the finite sample size properties of
the näıve ADF tests, and deliver gains in finite sample power over both these tests and on
the benchmark given by the infeasible ADF tests based on knowledge of α. The m-out-of-n
t-type bootstrap test, QmT , also performs well although its power is more comparable with
the infeasible ADF tests than the wild bootstrap tests. It is also apparent from the results
in Table 2 that the m-out-of-n implementation of the normalised bias test, RmT , can display
very low power relative to the other tests when κ = 12.

To conclude this section it is worth commenting that the usual trade-off between empirical
size and power relating to the choice of the lag length k (see, in particular, Schwert, 1989)
is apparent for all of the tests (except for the ill-behaved R2

T and sub-sample unit root tests
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discussed above) in the results in Tables 1 and 2. In those cases where significant oversize
is seen, empirical size is often considerably improved by increasing κ from 4 to 12; these
improvements are most obvious for those values of θ where the size distortions are the most
pronounced and in particular in the near cancellation region where θ = −0.8. The usual flip
side of the coin is that empirical power is decreased between κ = 4 and κ = 12, other things
equal. That this usual trade-off exists in the InfV case, just as it does in the finite variance
case, is not surprising and suggests that the use of data-based lag selection methods, see
Remark 3.10, is likely to be a useful tool here too and the development and evaluation of
such methods in the InfV environment constitutes a useful topic for further research.

6 Deterministic Terms

We now provide some brief discussion of how deterministic terms, in particular a constant or
a linear trend, can be introduced into the model.

To that end, let yt satisfy (1)-(2), but now suppose that we have observations on zµt = yt+µ
or zτt = yt + µ + τt, where µ, τ are unknown parameters.4 Then suppose zµt is demeaned,
yielding ŷµt := zµt −T−1

∑T
s=1 z

µ
s , or that zτt is detrended by the OLS regression of zτt on (1, t)′,

yielding residuals ŷτt . The AR sieve (5) may then be applied to either ŷµt or ŷτt , as appropriate.
We may then define, analogously to RT and QT from Section 2, the corresponding unit
root test statistics based on the de-meaned and de-trended data as RµT , QµT and RτT , QτT ,
respectively, using an obvious notation. Under the assumption that the distribution of εt is
symmetric and using the notation of Lemma 1, it could be shown that, for κ ∈ {µ, τ},

L (RκT | |εT |) w→ L
( ∫ 1

0 J
κdJ∫ 1

0 (Jκ)2

∣∣∣∣∣Γ, U
)

(21)

in the sense of weak convergence of random measures on R, where, for u ∈ [0, 1],

Jµ(u) : = J(u)−
∫ 1

0
J(r)dr =

∞∑

i=1

Γ−1/α
i δi[I{Ui ≤ u}+ Ui − 1], (22)

Jτ (u) : = J(u)−
∫ 1

0
(4− 6r)J(r)dr + 6u

∫ 1

0
(1− 2r)J(r)dr (23)

=
∞∑

i=1

Γ−1/α
i δi[I{Ui ≤ u} − 1 + (4− 6u)Ui − (3− 6u)U2

i ].

The corresponding representations for QµT and QτT are similarly obtained. Importantly, from
the expressions for Jµ and Jτ it can be seen that randomness in the conditional limit dis-
tributions (21) is fully due to the Rademacher signs δi, which are independent of Γ, U , as
in Lemma 1. Consequently, the wild bootstrap based on Rademacher signs wt could be suc-
cessfully used for inference with the reference distribution given by the limit in (21). To this
end, after estimating (5) for the demeaned data ŷµt (or the detrended data, ŷτt ), bootstrap
data could be generated exactly as in steps (i)-(iii) of Algorithm 1. Prior to conducting step
(iv), the same transformation, either demeaning or detrending, should then be applied to the

4More generally we could allow for the case where zµt = yt + dt with dt a pth order, 0 ≤ p ≤ P < ∞,
polynomial in t, but the leading constant and linear trend cases would seem sufficient for the purposes of
exposition.
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bootstrap data as was applied to the original data, zκt . Step (iv) of Algorithm 1 should then
be performed on the transformed bootstrap data.

Remark 6.1. It is worth noting that for inference based on any of the RµT , QµT , RτT and
QτT statistics, the assumption made in section 2 that y0 is of OP (1) is made without loss
of generality because all these statistics are exact similar with respect to y0; cf. Müller and
Elliott (2003).
Remark 6.2. The foregoing conclusions would continue to hold if rather than OLS de-
trended data, the appropriate quasi-difference de-trended data of Elliott et al. (1996, p.824)
were used. In such a case, replace the de-meaned and de-trended processes Jµ and Jτ in (22)
and (23), respectively, by the corresponding quasi-difference de-trended processes; see Elliott
et al. (1996, p.817) for further details. �

7 Conclusions

We have extended the corpus of available asymptotic distribution theory for the ADF test to
cover the case where the shocks follow a linear process driven by i.i.d. infinite variance [InfV]
innovations. We have demonstrated that the limiting null distributions of these statistics
coincide with those previously derived in the literature for the case where the shocks follow
a finite-order autoregression driven by InfV innovations, provided the lag length in the ADF
regression satisfies the usual rate condition given in Said and Dickey (1987) for the case
where the innovations have finite variance. Because these distributions depend on the tail
index of the innovation distribution they cannot be used directly for inference on the unit
root hypothesis. We have also established the large sample properties, including consistency
rates, of the associated sieve estimates from the ADF regression and of the corresponding sieve
estimates which are obtained under the restriction of the unit root null hypothesis. Using
these results we then established that asymptotically valid wild bootstrap ADF tests can be
formed using the residuals from either of these sieve regressions combined with a Rademacher-
based implementation of the wild bootstrap re-sampling scheme. Although these results rest
on the assumption that the innovations are symmetrically distributed they do not require
knowledge of the tail index. Monte Carlo simulation results were reported which suggested
that the sieve wild bootstrap ADF tests perform well in practice.

It would be interesting to investigate whether the symmetry assumption could be dropped.
In order to do so, we would need to find an alternative method of re-sampling to the wild
device currently used in step (ii) of Algorithm 1 such that the resulting sieve bootstrap tests
were still asymptotically valid. This would likely entail convergence to a different conditional
limiting null distribution from the one shown to hold for the wild bootstrap statistics here.
Unfortunately, we have been unable to find such a conditional distribution and so we leave
this as a suggestion for further research. An alternative approach, along the lines suggested
by Cornea-Madeira and Davidson (2015) for tests in a simple location model, would be to
base inference on direct simulation of the asymptotic limiting distribution from Theorem 2
using consistent estimates of the tail index α and the asymmetry parameter p. It should
be possible, given the results obtained in this paper, to show the asymptotic validity of
such an approach. However, it is important to note that this method will approximate the
unconditional, rather than a conditional, distribution of the ADF test statistics. The power
gains observed for the wild bootstrap tests discussed here could not then be expected. Again,
we leave a detailed exploration of this alternative approach for further research.

The Monte Carlo results reported in this paper also suggested that a sieve m-out-of-n
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bootstrap procedure also performed well in finite samples. Formally establishing the asymp-
totic validity of these tests would also constitute an interesting topic for further research,
although it should be noted that symmetry is also assumed by Zarepour and Knight (1999)
for establishing the asymptotic validity of m-out-of-n bootstrap unit root tests they consider
in the context of a first-order autoregressive model.

Finally, our focus in this paper has been on the case where the innovations driving the
linear process in (2) are drawn from a class of infinite unconditional variance processes.
In many applications in finance an equally plausible model is one where the innovations are
drawn from a class of infinite variance conditional variance processes, a leading example being
the well-known integrated GARCH (IGARCH) and explosive GARCH models considered in
Zhang, Sin and Ling (2015). An analysis of such cases is clearly beyond the scope of this
paper, but would constitute an interesting area for further research and the work of Zhang,
Sin and Ling (2015) should provide a useful basis for doing so. It is important to note,
however, that (under certain regularity conditions) the tail index of such processes is α = 2,
and so they are in the Gaussian domain of attraction. As a consequence, the wild bootstrap
approach we have outlined here would not have the conditional interpretation that is central
to the present paper and the arguments and technical results involved will be quite different.
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A Appendix

This appendix is organised as follows. In section A.1 we introduce a preliminary lemma and
subsequently we give proofs of theorems 1 and 2 from Section 3. Bootstrap asymptotics are
considered in section A.2. In section A.2.1 we provide the proof of Theorem 4 while, in section
A.2.2 we verify that condition (i) of Theorem 4 is indeed satisfied under the assumptions of
our main bootstrap theorem (Theorem 5). Finally, Section A.2.3 contains the proof of Lemma
1 and of Theorem 5.

A.1 Sieve Asymptotics

The proof of Theorem 1 relies on the following lemma where, for square matrices, ‖(·)‖2 :=
sup‖x‖=1 ‖(·)x‖ is used to denote the linear-space norm induced by the Euclidean vector norm,
with x and the matrix having matching dimensions. In particular, for positive semi-definite
matrices, ‖(·)‖2 = λmax (·), the largest eigenvalue.

Lemma A.1 Under Assumption 1 and if k2/T + 1/k → 0, for every ε > 0,
a. Sk00 :=

∑T
t=k+1 Xk

t−1(Xk
t−1)′ satisfies ‖Sk00 − Σkσ

2
T ‖2 = OP (lT ãT ) max{kεak, k}, where

σ2
T :=

∑T
t=1 ε

2
t , lT = 1 for α 6= 1 and lT is slowly varying for α = 1; Moreover, (Sk00)−1 exists

with probability approaching one and ‖(Sk00)−1 − Σ−1
k σ−2

T ‖2 = OP (lT ãTa−4
T ) max{kεak, k}.

b. Sk0ε :=
∑T

t=k+1 Xk
t−1εt,k satisfies ‖Sk0ε−

∑T
t=k+1 Xk

t−1εt‖ = oP (a1−ζ
T )+OP (a2

T )
∑∞

j=k+1 |βj |
and ‖Sk0ε‖ = oP (kεaklT ãT ) + OP (a2

T )
∑∞

j=k+1 |βj | with ζ > 0 sufficiently small and lT as in
(a).

c. Sk1ε :=
∑T

t=k+1 yt−1εt,k =
∑T

t=k+1 yt−1εt + oP (a2
T ) + oP (a3

T )
∑∞

i=k+1 |βi| if k3/T → 0.
d. Sk01 :=

∑T
t=k+1 Xk

t−1yt−1 has ‖Sk01‖ = OP (k1/2a2
T ).

e. Sk11 :=
∑T

t=k+1 y
2
t−1 = γ(1)2

∑T
t=k+1(

∑t−1
s=1 εs)

2 +OP (aT max{T, aTT ε}).

Proof. Parts (a) and (b) reproduce Lemma 2(a,b) of Cavaliere et al. (2016a). For part (c),
write

yt = γ (1)
t∑

s=1

εs + vt − v0 + y0, vt :=
∞∑

i=0

γ∗i εt−i, γ
∗
i := −

∞∑

j=i+1

γj ; (A.1)
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the series νt is a.s. well-defined since
∑∞

i=1 i|γi|δ < ∞. Then Sk1ε −
∑T

t=k+1 yt−1εt =∑T
t=k+1 yt−1ρt,k = γ(1)(R1 +R2) +R3 + (y0 − v0)R4 with

R1 =
∑T

t=k+1

∑t−1
i=k+1 βi

∑t−i−1
j=0 γjε

2
t−i−j ,

R2 =
∑∞

i=k+1 βi
∑T

t=k+1

∑t−1
s=1

∑∞
j=0 I{s 6=t−i−j}γjεsεt−i−j ,

R3 =
∑∞

i=k+1 βi
∑T

t=k+1 vt−1
∑∞

j=0 γjεt−i−j

andR4 =
∑T

t=k+1

∑∞
i=k+1 βiut−i which are evaluated next. DefineDη

k :=
∑∞

i=k+1 |βi|η
∑∞

j=0 |γj |η =
O (1)

∑∞
i=k+1 |βi|η.

First, for every M > 0 with IM,T :=
∏T
t=1 I{|εt|<MaT },

E |a−2
T IM,TR1| ≤ a−2

T T E(ε2
1I|ε1|≤MaT )D1

k = O (1)
∞∑

i=k+1

|βi|

by Karamata’s theorem [KT], so IM,TR1 = OP (a2
T )
∑∞

i=k+1 |βi|. Given any ω ∈ (0, 1), the
weak convergence of maxt=1,...,T |a−1

T εt| to an a.s. finite random variable implies the existence
of M such that P (IM,T 6= 1) < ω/2 for all T , so also R1 = OP (a2

T )
∑∞

i=k+1 |βi|.
Second, for α ∈ (0, 1) and η ∈ [δ, α), it holds that E |R2|η ≤ T 2(E |ε1|η)2Dη

k , so

R2 = OP (T 2/η)(
∞∑

i=k+1

|βi|η)1/η = oP (a2
T ) + oP (a3

T )
∞∑

i=k+1

|βi|

by Lemma S.1 in the supplement to Cavaliere et al. (2016a) with k3/T → 0 and η sufficiently
close to α. For α = 1, E(|a−2

T R2|) ≤ {a−1
T T E(|ε1|I|ε1|≤MaT )}2Dk = O (T ε)

∑∞
i=k+1 |βi| for

every ε > 0 since a−1
T T E(|ε1|I|ε1|≤MaT ) is slowly varying. Finally, for α ∈ (1, 2), R2 =∑5

i=1R2i with the following summands:
(i) R21 :=

∑∞
i=k+1 βi

∑T
t=k+1

∑t−1
s=1

∑t−i−1
j=0 I{s6=t−i−j}γjεsεt−i−jI{|εs|>aT or |εt−i−j |>aT } having

E(|a−2
T R21|) ≤ a−1

T T E |ε1|{a−1
T T E(|ε1||I|ε1|>aT )}D1

k = O(a−1
T TD1

k) = o (aT )
∞∑

i=k+1

|βi|

by KT, (ii)R22 :=
∑∞

i=k+1 βi
∑T

t=k+1

∑t−1
s=1

∑t−i−1
j=0 I{s 6=t−i−j}γj(εsI|εs|≤aT−µT )(εt−i−jI|εt−i−j |≤aT−

µT ) (with µT := E(εsI|εs|≤aT )) having

E(a−4
T R2

22) ≤ 2{a−2
T T E(ε2

1I|ε1|≤aT )}2(D1
k)

2 = O (1) (
∞∑

i=k+1

|βi|)2

by independence and KT, (iii)R23 := µT
∑∞

i=k+1 βi
∑T

t=k+1

∑t−1
s=1(εsI|εs|≤aT−µT )

∑t−i−1
j=0 I{s 6=t−i−j}γj

having

E |a−4
T R2

23| ≤ (a−2
T T 2µ2

T ){a−2
T T E(ε2

1I|ε1|≤aT )}(D1
k)

2 = O (1) (
∞∑

i=k+1

|βi|)2

as, with E εs = 0 it holds that |µT | ≤ E(|εs|I|εs|>aT ) = O (aT /T ) by KT, (iv) R24 :=
µT
∑∞

i=k+1 βi
∑T

t=k+1

∑t−1
s=1

∑t−i−1
j=0 I{s6=t−i−j}γj(εt−i−jI|εt−i−j |≤aT −µT ) having the same up-

per bound as E |a−4
T R2

24|, and (v) R25 := µ2
T

∑∞
i=k+1 βi

∑T
t=k+1

∑t−1
s=1

∑t−i−1
j=0 I{s 6=t−i−j}γj
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having |R25| ≤ T 2ν2
TD

1
k = O(a2

T )
∑∞

i=k+1 |βi|. Summarizing, R2 = oP (a3
T )
∑∞

i=k+1 |βi| for all
α ∈ (0, 2).

Third, R3 = R31 +R32 with R31 :=
∑∞

i=k+1 βi
∑T

t=k+1(
∑∞

j=0 γjγ
∗
j+i−1)ε2

t−i−j satisfying

|R31| ≤
∞∑

i=k+1

|βi|
∞∑

i=k+1

|
T∑

t=k+1

∞∑

j=0

γjγ
∗
j+i−1|ε2

t−i−j = oP (a3
T )

∞∑

i=k+1

|βi|

since, for η ∈ (δ, α) under Assumption 1,

E(
∞∑

i=k+1

|
T∑

t=k+1

∞∑

j=0

γjγ
∗
j+i−1|ε2

t−i−j)
η/2 ≤ T E |ε1|η(

∞∑

j=0

j|γj |η/2)2 = O (T ) ,

and R32 :=
∑∞

i=k+1 βi
∑T

t=k+1

∑∞
j=0

∑∞
l=0 Il 6=j−i+1γ

∗
jγlεt−1−jεt−i−l satisfying, for η ∈ [δ, α)∩

(0, 1] under Assumption 1,

E |R32|η ≤ T (E |ε1|η)2
∞∑

i=k+1

|βi|η(
∞∑

j=0

j|γj |η)2,

soR32 = oP (a2
T )
∑∞

i=k+1 |βi| for α ∈ (1, 2) (using η = 1) andR32 = oP (1)+oP (a3
T )
∑∞

i=k+1 |βi|
by Lemma S.1 of the supplement to Cavaliere et al. (2016a) for α ∈ (0, 1]. Similarly, for the
same η, E |R4|η ≤ T (E |u1|η)

∑∞
i=k+1 |βi|η, so R4 = oP (a2

T )
∑∞

i=k+1 |βi| for α ∈ (1, 2), whereas
R4 = oP (1) + oP

(
a3
T

)∑∞
i=k+1 |βi| for α ∈ (0, 1]. By collecting the magnitude orders of Ri

(i = 1, ..., 4), Sk1ε −
∑T

t=k+1 yt−1εt = oP (1) + oP (a3
T )
∑∞

i=k+1 |βi| follows.
In part (d), using partial summation and the inequality (

∑4
i=1 ai)

2 ≤ 3
∑4

i=1 a
2
i , we find

‖Sk01‖2 =
k∑

i=1

(
T∑

t=k+1

ut−iyt−1)2 =
1
4

k∑

i=1

(y2
T−i − y2

k−i +
T∑

t=k+1

u2
t−i + 2

i−1∑

j=1

T∑

t=k+1

ut−jut−i)2

≤ Φ1 + 3Φ2,

with Φ1 :=
∑k

i=1 y
4
T−i +

∑k
i=1 y

4
k−i and

Φ2 :=
k∑

i=1

(
i∑

j=1

T∑

t=k+1

ut−jut−i)2 =
k∑

i=1

{
i∑

j=1

(Sk00)ij}2.

These satisfy Φ1 ≤ 2kmax1≤t≤T |yt|4 ≤ 8k(γ4(1) max1≤t≤T |
∑T

s=1 εs|4 + max1≤t≤T |vt|4 +
OP (1)) = OP (ka4

T ) as, under Assumption 1(i), max1≤t≤T |a−1
T

∑T
s=1 εs|

w→ sup[0,1] |S| < ∞
a.s. by the Continuous Mapping Theorem [CMT] and max1≤t≤T |vt| = OP (aT ) by Theorem
3.2 of Davis and Resnick (1985a), and

1
4

Φ2 ≤ 1
2
σ4
T

k∑

i=1

(
i∑

j=1

|(Σk)ij |)2 +
1
2

k∑

i=1

(
i∑

j=1

|(Sk00)ij − (Σk)ijσ2
T |)2

≤ σ4
T

k∑

i=1

(
i∑

j=1

|rij |)2 + k3‖Sk00 − Σkσ
2
T ‖22,

where a−2
T σ2

T
w→ [S]1 < ∞ a.s. by a result in section 4.4 of Resnick (1986),

∑i
j=1 |rij | ≤

(
∑∞

j=0 |γj |)2 < ∞ and k3‖Sk00 − Σkσ
2
T ‖22 = OP (ka4

T ) when k2/T → 0, from where Φ2 =
OP (ka4

T ). Thus, Sk01 = OP (k1/2a2
T ).
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Finally, using (A.1), we have Sk11 − γ(1)2
∑T

t=k+1(
∑t−1

s=1 εs)
2 = 2γ (1) Υ1 + Υ2, with, first,

|Υ1| = |
T∑

t=k+1

(
t−1∑

s=1

εs)(vt − v0 + y0)| ≤ max
t=1,...,T

|
t−1∑

s=1

εs|{
T∑

t=k+1

|vt|+ T (|v0|+ |y0|)}.

Here maxt=1,...,T |a−1
T

∑t−1
s=1 εs|

w→ sup[0,1] |S| < ∞ a.s.,
∑T

t=k+1 |vt| = OP (T ) for α > 1 by
Markov’s inequality (as E

∑T
t=k+1 |vt| ≤ T E |v1| with E |v1| ≤ E |ε1|

∑∞
i=0 i |γi| < ∞), and∑T

t=k+1 |vt| = OP (aT ) for α ∈ (0, 1] by truncation, Markov’s inequality and KT (as max1≤t≤T |vt| =
OP (aT ), see above) and E(

∑T
t=k+1 |vt|I{|vt|<MaT }) ≤ T E(|v1|I{|v1|<MaT }) = O(aT lT ) for every

M ∈ R), so Υ1 = OP (aT max{T, aT lT }) with lT as in (a). Second,

|Υ2| =
T∑

t=k+1

(vt − v0 + y0)2 ≤ 2
T∑

t=k+1

v2
t + 2T (v0 − y0)2 = OP (a2

T )

since
∑T

t=k+1 v
2
t = OP (a2

T ) by truncation, Markov’s inequality and KT:

E(
T∑

t=k+1

v2
t I{|vt|<MaT }) ≤ T E(v2

1I{|v1|<MaT }) = O(a2
T ).

Combining the magnitude orders of Υ1 and Υ2 completes the proof. �
We now provide a proof of Theorem 1.

Proof of Theorem 1. Let β̌k be the OLS estimator of βk from the regression of ∆yt on
Xk
t−1. It holds that

φ̂k = {Sk11 − Sk10(Sk00)−1Sk01}−1{Sk1ε − Sk10(β̌k − βk)},

where, for all ε > 0, first,

‖β̌k − βk‖ = OP (akaε−1
T ) +OP (1)

∞∑

j=k+1

|βj | = oP (1) (A.2)

by (7.1) of Cavaliere et al. (2016a); second,

Sk10(β̌k − βk) = OP (T εk1/2akaT ) +OP (k1/2a2
T )

∞∑

j=k+1

|βj |

= oP (a2
T ) + oP (a3

T )
∞∑

i=k+1

|βi|

using also Lemma A.1(d) and the condition k2/T → 0; third,

Sk11 − Sk10(Sk00)−1Sk01 = γ(1)2
T∑

t=k+1

(
t−1∑

s=1

εs)2 + oP (Ta2
T ) +OP (‖Sk10‖2λmax{(Sk00)−1})

= γ(1)2
T∑

t=k+1

(
t−1∑

s=1

εs)2 + oP (Ta2
T )
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using Lemma A.1(a,d,e) and the fact that λmax

(
(Sk00)−1

)
= (
∑T

t=1 ε
2
t )
−1{λmax(Σ−1

k )+oP (1)} =
OP (a−2

T ); here T−1a−2
T

∑T
t=k+1(

∑t−1
s=1 εs)

2 = T−1a−2
T

∑T
t=1(

∑t−1
s=1 εs)

2 + oP (T−1a−2
T ka2

k)
w→∫ S2 by the CMT with

∫ S2 > 0 a.s. (see p.359 of Chan and Tran, 1989). By combining
these results with Lemma A.1(c), it follows that

φ̂k = γ(1)−2{
T∑

t=1

(
t−1∑

s=1

εs)2}−1
T∑

t=k+1

yt−1εt + oP (T−1) + oP (T−1aT )
∞∑

i=k+1

|βi|. (A.3)

Using (A.1),
∑T

t=k+1 yt−1εt = γ (1)
∑T

t=1

∑t−1
s=1 εsεt−γ (1)

∑k
t=1

∑t−1
s=1 εsεt+

∑T
t=k+1 vt−1εt+

(y0 − ν0)
∑T

t=k+1 εt, where (i), a−2
k

∑k
t=1

∑t−1
s=1 εsεt

w→ 1
2(S(1)2 − [S]1) =

∫ SdS by partial

and integration summation, the joint convergence (a−1
k

∑bk·c
t=1 εt, a

−2
k

∑bk·c
t=1 ε

2
t )

w→ (S(·), [S](·))

in D2[0, 1] from section 4.4. of Resnick (1986), and the CMT, (ii), a−2
T

∑T
t=k+1 vt−1εt

P→ 0
by Theorem 4.2 of Davis and Resnick (1985a), and (iii), a−1

T

∑T
t=k+1 εt = a−1

T

∑T
t=1 εt +

oP (a−1
T ak)

w→ S (1), so a−2
T

∑T
t=k+1 yt−1εt = a−2

T γ (1)
∑T

t=1

∑t−1
s=1 εsεt + oP (1) w→ γ (1)

∫ SdS
and

φ̂k = OP (T−1) + oP (T−1aT )
∞∑

i=k+1

|βi| = oP (1).

Finally,

‖β̂k − βk‖ = ‖β̌k − βk + φ̂k(S
k
00)−1Sk01‖ ≤ ‖β̌k − βk‖+ |φ̂k|‖Sk10‖λmax{(Sk00)−1}(A.4)

= ‖β̌k − βk‖+ |φ̂k|OP (k1/2)

= ‖β̌k − βk‖+OP (k1/2/T ) + oP ((k1/2/T )aT )
∞∑

i=k+1

|βi| = oP (a−εT )

for sufficiently small ε > 0, by (A.2) and since aT
∑∞

i=k+1 |βi| → 0. �
Proof of Theorem 2. From (A.3) and its discussion, under aT

∑∞
i=k+1 |βi| → 0,

T φ̂k = γ(1)−1{
T∑

t=1

(
t−1∑

s=1

εs)2}−1
T∑

t=1

t−1∑

s=1

εsεt + oP (1) w→ 1
γ (1)

∫ SdS∫ S2
,

where T−2
∑T

t=k+1(
∑t−1

s=1 εs)
2 w→ ∫ S2 and a−2

T

∑T
t=1

∑t−1
s=1 εsεt

w→ γ (1)
∫ SdS and . Further,

|1−
k∑

i=1

β̂i −
1

γ (1)
| = |

k∑

i=1

β̂i −
∞∑

i=1

βi| ≤
k∑

i=1

|β̂i − βi|+
∞∑

i=k+1

|βi|

≤
√
k‖β̂k − βk‖+

∞∑

i=k+1

|βi| → 0

using (A.4) with k/T → 0 and aT
∑∞

i=k+1 |βi| → 0. The convergence of RT = Tkφ̂k/(1 −∑k
i=1 β̂i) obtains from the two previous displays. The convergence of QT uses also the fact

that a−2
T σ2

T
w→ [S]1 jointly with RT ; see the proof of Theorem 1. �

We now turn to convergence (13). It holds that β̂k−βk = β̌k−βk− φ̂k(Sk00)−1Sk01, where
under the unit root null,

Sk01 = ik
T−1∑

t=k

yt−1ut + UkS
k
00ek + oP (a2

T ),
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Uk is lower triangular with ones on and below the main diagonal, and ek is the first canonical
base vector in Rk. Using also Lemma A.1(a), upon substitution,

Lk(β̂k − βk − dT ) = Lk(β̌k − βk − dT )

−φ̂kLk{Σ−1
k ik(

T∑

t=1

ε2
t )
−1

T−1∑

t=k

yt−1ut + Σ−1
k UkΣkek}+ oP (T−1),

where the first term after the equality sign has magnitude order ãTa−2
T with asymptotics

given in Lemma 1 and Theorem 2 of Cavaliere et al. (2016a), whereas the term involving φ̂k
has magnitude order T−1:

T φ̂kLk{Σ−1
k ik(a−2

T

T∑

t=1

ε2
t )
−1(a−2

T

T−1∑

t=k

yt−1ut) + Σ−1
k UkΣkek}

w→
∫ SdS

γ (1)
∫ S2

L
(

Σ−1iγ (1)2

∫ SdS
[S]1

− Σ−1i
∞∑

j=0

γ∗jγj + Σ−1UΣe
)
.

As UΣe =Σi− (
∑∞

i=1 ri0)i = Σi+(
∑∞

j=0 γ
∗
jγj)i and γ0 = 1, the previous limit is the negative

of the limit in (13).

A.2 Bootstrap Asymptotics

A.2.1 Proof of Theorem 4

Proof of Theorem 4. We follow the triangular scheme outlined in Remark 4.2.5.
Denote the finite-sample cumulative process of gT under P|ε| by ΦT (·) := P|ε|(gT ≤ ·).

Hypothesis (i) implies that

ρ
(
ΦT (·), P|ε|(γT (εT ) ≤ ·)) = oP (1) and ρ(PZ,ε(g∗T ≤ ·), PZ,ε(γT (ε†T ) ≤ ·)) = oP (1),

where ρ is Lévy distance. Moreover, under symmetry of εT , and the Rademacher and inde-
pendence assumption about wT , it holds that L|ε|(εT ) = Lε(ε†T ) = LZ,ε(ε†T ) a.s., with L(·)
for law conditional on (·), the last equality because ε†T is independent of ZT given εT . By
the triangle inequality, ρ (ΦT (·), PZ,ε(g∗T ≤ ·)) = oP (1). As g∗T is independent of εT given ZT ,
also ρ (ΦT (·), PZ(g∗T ≤ ·)). The same holds for the Skorokhod distance in D[0, 1], say dS , see
Daley and Vere-Jones (2008, pp.143-144).

We now pass to uniform distance. Under hypothesis (ii), let the limiting cumulative
process of γT (εT ) under P|ε| be Φ(·) = φ((−∞, ·)) such that P|ε|(γT (εT ) ≤ ·) w→ Φ(·) in
D[0, 1]; under hypothesis (i), Φ is also the limiting cumulative process of gT under P|ε|,
such that ΦT

w→ Φ in D[0, 1]. As Φ is a.s. continuous, having dS(ΦT (·), PZ(g∗T ≤ ·)) = oP (1)
implies that supx∈R |ΦT (x)−PZ(g∗T ≤ x)| = oP (1). Therefore, PZ(g∗T ≤ gT ) = ΦT (gT )+oP (1).

Further, define the quantile transformation using the right-continuous version of the gen-
eralized inverse. As the quantile transformation is continuous in the Lévy, and hence, in the
Skorokhod metric, it holds that (ΦT ,Φ−1

T ) w→ (Φ,Φ−1) in D2[0, 1]. For θ ∈ [0, 1],

P|ε| (ΦT (gT ) ≥ θ) = P|ε|(gT ≥ Φ−1
T (θ)) = 1− P|ε|(gT < Φ−1

T (θ))

= 1− ΦT (Φ−1
T (θ)−) w→ 1− Φ(Φ−1(θ)) = θ

using the continuity of Φ, and the same holds in probability as the limit is a constant. By the
Bounded convergence theorem, integration over |εT | yields P (ΦT (gT ) ≥ θ)→ θ for θ ∈ [0, 1].
Therefore, ΦT (gT ) w→ U [0, 1]. Since PZ(g∗T ≤ gT ) = ΦT (gT ) + oP (1), equation (16) follows. �
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A.2.2 Condition (i) of Theorem 4

Our plan in what follows is to check that the conditions of Theorem 4 are satisfied by the
statistics RT and R∗T in place of gT and g∗T . We start from a conditional version of the
large-sample expansion of φ̂k.

Lemma A.2 Under the conditions of Theorem 2, it holds in P -probability that

T φ̂k = Tγ(1)−1{
T∑

t=1

(
t−1∑

s=1

εs)2}−1
T∑

t=1

(
t−1∑

s=1

εs)εt + oP|ε|(1), (A.5)

i.e., conditionally on |εT | = (|ε1|, ..., |εT |).

Proof. As in the proof of Theorem 2, expansion (A.5) holds with remainder term, say rT ,
such that rT = oP (1). But then rT = oP|ε|(1) as well. Indeed, as I{|rT | ≥ η} P→ 0 for any

η > 0, it follows that P|ε|(|rT | ≥ η) P→ 0 by the Bounded convergence theorem for conditional
expectations. This proves the lemma. �

We now turn to the derivation of a similar expansion of the bootstrap estimator

φ∗ = {S∗11 − S∗10S
∗−1
00 S∗01}−1{S∗1ε − S∗10S

∗−1
00 S∗0ε},

where S∗1ε :=
∑T

t=k+1 y
∗
t−1ε

∗
t , S

∗k
0ε :=

∑T
t=k+1 X∗kt−1ε

∗
t , S

∗k
01 :=

∑T
t=k+1 X∗kt−1y

∗
t−1 =: (S∗10)′,

S∗11 :=
∑T

t=k+1(y∗t−1)2 and S∗k00 :=
∑T

t=k+1 X∗kt−1(X∗kt−1)′. To this aim, jointly with the ac-
tual bootstrap errors ε∗t = wtε̂t, we consider the benchmark errors ε†t = wtεt with asso-
ciated (infeasible) bootstrap data y†t = 0 (t = 0, ..., k), ∆y†t =

∑t−k−1
i=0 γiε

†
t−i (t = k +

1, ..., T ) and y†t =
∑t

s=k+1 ∆y†t (t = k + 1, ..., T ). With ∆Yk†
t−1 := (∆y†t−1, ...,∆y

†
t−k)

′ =∑t−k−2
i=0 γi:kε

†
t−i−1, we define S†1ε :=

∑T
t=k+1 y

†
t−1ε

†
t , S

†
0ε :=

∑T
t=k+1 ∆Yk†

t−1ε
†
t =: (S†ε0)′, S†01 :=∑T

t=k+1 ∆Yk†
t−1y

†
t−1 =: (S†10)′, S†11 :=

∑T
t=k+1 y

†2
t−1 and S†00 :=

∑T
t=k+1 ∆Yk†

t−1(∆Yk†
t−1)′. Let

P† denote probability conditional on the data and εT , and (·)T = oP† (1) in P -probability

mean that P†(|(·)T | > ω) P→ 0 as T →∞ for every ω > 0.

Lemma A.3 Let k3/T + 1/k → 0 and aT
∑∞

i=k+1 |βi| → 0 as T → ∞. Then the following
r.v.’s are oP† (1) in P -probability: (a) a−2

T |S∗1ε−S†1ε|, (b) a−2
T |S†1ε−γ (1)

∑T
t=k+1(

∑t−1
s=k+1 ε

†
s)ε
†
t |,

(c) a−2
T T−1|S∗11−S†11|, (d) a−2

T T−1|S†11−γ (1)2∑T
t=k+1(

∑t−1
s=k+1 ε

†
s)2|, (e) a−2

T |S†10(S†00)−1S†0ε|,
(f) a−2

T |S∗10S
∗−1
00 S∗0ε|, (g) a−2

T T−1|S†10(S†00)−1S†01|, (h) a−2
T T−1|S∗10S

∗−1
00 S∗01|. As a consequence,

it holds in P -probability that

Tφ∗k = Tγ(1)−1{
T∑

t=1

(
t−1∑

s=1

ε†s)
2}−1

T∑

t=1

(
t−1∑

s=1

ε†s)ε
†
t + oP† (1).

Proof. We give the proof for φ̃ = φ̂ and β̂k = β̃k; the restricted case is analogous. The
proof uses some known magnitude orders like ‖β̂k − βk‖ = oP (akaε−1

T + k1/2T−1) for ε > 0
(see eqs. (A.2)-(A.4)) and φ̂k = OP (T−1) that hold under the assumptions of the lemma.
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Let εt,k = εt +
∑∞

i=k+1 βiut−i so that ∆yt = β′kX
k
t−1 + εt,k under the null hypothesis.

From (ε̂t − εt,k)2 ≤ 2φ̂
2

ky
2
t−1 + 2{(β̂k − βk)′Xk

t−1}2 and Lemma A.1 2(a,e) we find that

T∑

t=k+1

(ε̂t − εt,k)2 ≤ 2φ̂
2

kS
k
11 + 2(β̂k − βk)′Sk00(β̂k − βk) = OP (a2

T {T−1 + ‖β̂k − βk‖2}),

T∑

t=k+1

(ε̂t − εt)2 ≤ 2
T∑

t=k+1

(ε̂t − εt,k)2 + 2Skρρ = oP (a2
T ), (A.6)

σ̂2
Tk :=

T∑

t=k+1

ε̂2
t ≤ 2σ2

T + 2
T∑

t=1

(ε̂t − εt)2 = OP (a2
T ), (A.7)

where Skρρ :=
∑T

t=k+1(
∑∞

i=k+1 βiut−i)
2 = oP (a2

T ) by the proof of Lemma 3 of Cavaliere et al.
(2016a) provided in the supplement thereof. Further, let γ̂i be defined by (1−∑k

i=1 β̂iz
i)(1+∑∞

i=1 γ̂iz
i) = 1, where well-definition is guaranteed with P -probability approaching one. For

t = k + 2, ..., T and i = 1, ..., t− k − 1, we obtain

(ε̂t−i
i−1∑

j=0

γ̂j − εt−i
i−1∑

j=0

γj)
2 ≤ 2(ε̂t−i − εt−i)2(

i−1∑

j=0

γ̂j)
2 + 2ε2

t−i{
i−1∑

j=0

(γ̂j − γj)}2

≤ 2(ε̂t−i − εt−i)2(
T−k−2∑

j=0

|γ̂j |)2 + 2ε2
t−i(

T−k−2∑

j=1

|γ̂j − γj |)2,(A.8)

where
∑T−k−2

j=0 |γ̂j | ≤
∑∞

j=0 |γj | +
∑T−k−2

j=1 |γ̂j − γj | and
∑T−k−2

j=1 |γ̂j − γj | = oP (1) as in
(S.4.14) of the supplement to Cavaliere et al. (2016a), so using (A.6),

max
k+1≤t≤T

t−k−1∑

i=1

(ε̂t−i
i−1∑

j=0

γ̂j−εt−i
i−1∑

j=0

γj)
2 ≤ OP (1)

T∑

t=k+1

(ε̂t−εt)2 +oP (1)σ2
T = oP (a2

T ). (A.9)

Regarding part (a), S∗1ε − S†1ε = σ1 + σ2 with σ1 =
∑T

t=k+2(ε∗t − ε†t)y
∗
t−1 and σ2 =∑T

t=k+2 ε
†
t(y
∗
t−1 − y†t−1). For expressions of the form σ =

∑T
t=k+2wtet

∑t−k−1
i=1 wt−igti, where

(et, gti) are measurable transformations of |εT | and the data, it holds that

E† σ = 0, Var† σ =
T∑

t=k+2

e2
t

t−k−1∑

i=1

g2
ti. (A.10)

To apply (A.10) to σ1,2, we write y∗t−1 =
∑t−1

s=k+1

∑s−k−1
i=0 γ̂iε

∗
s−i =

∑t−k−1
i=1 ε∗t−i

∑i−1
j=0 γ̂j and

y∗t−1 − y†t−1 =
∑t−k−1

i=1 wt−i(ε̂t−i
∑i−1

j=0 γ̂j − εt−i
∑i−1

j=0 γj). Then E† σ1 = E† σ2 = 0,

Var† σ1 =
T∑

t=k+2

(ε̂t − εt)2
t−k−1∑

i=1

ε̂2
t−i(

i−1∑

j=0

γ̂j)
2 ≤ σ̂2

Tk(
T−k−2∑

j=0

|γ̂j |)2
T∑

t=k+2

(ε̂t − εt)2 = oP (a4
T ),

Var† σ2 =
T∑

t=k+2

ε2
t

t−k−1∑

i=1

(ε̂t−i
i−1∑

j=0

γ̂j − εt−i
i−1∑

j=0

γj)
2 ≤ σ2

T oP (a2
T ) = oP (a4

T )

using (A.6), (A.7) and (A.9). This, and Chebyshev’s inequality, proves item (a).
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For part (b), let σ3 := S†1ε − γ (1)
∑T

t=k+1(
∑t−1

s=k+1 ε
†
s)ε
†
t =

∑T
t=k+1(

∑t−k−2
i=0 γ∗i ε

†
t−i−1)ε†t .

It holds that E† σ2
3 =

∑T
t=k+1 ε

2
t

∑t−k−2
i=0 (γ∗i )

2ε2
t−i−1 = oP (a4

T ) by Markov’s inequality, since
for all η ∈ [δ, α),

E |E† σ2
3|η/2 ≤ T (E |ε1|η)2

∞∑

i=0

i|γi|η = O (T ) .

Therefore, by Chebyshev’s inequality, a−2
T |σ3| = oP†(1) in P -probability.

Next, S∗11−S†11 = ρ1+ρ2 with ρ1 =
∑T

t=k+2 y
∗
t−1(y∗t−1−y†t−1) and ρ2 =

∑T
t=k+2 y

†
t−1(y∗t−1−

y†t−1). For an expression of the form ρ =
∑T

t=k+2{
∑t−k−1

i=1 wt−iet−iai
∑t−k−1

i=1 wt−igt−i,i} =∑T−1
s,t=k+1wswtes

∑T
i=max(s,t)+1 ai−sgt,i−t, where (et, ai, gt,i) are measurable functions of εT

and the data, it holds that

E† ρ =
T∑

t=k+2

t−k−1∑

i=1

et−iaigt−i,i, Var† ρ ≤ 2
T−1∑

s,t=k+1

e2
s




T∑

i=max(s,t)+1

ai−sgt,i−t




2

. (A.11)

We find

|E† ρ1| =

∣∣∣∣∣∣

T∑

t=k+2

t−k−1∑

i=1

{ε̂t−i(
i−1∑

j=0

γ̂j)(ε̂t−i
i−1∑

j=0

γ̂j − εt−i
i−1∑

j=0

γj)}
∣∣∣∣∣∣

≤ (
T−k−2∑

j=0

|γ̂j |)
T∑

t=k+2

t−k−1∑

i=1

∣∣∣∣∣∣
ε̂t−i(ε̂t−i

i−1∑

j=0

γ̂j − εt−i
i−1∑

j=0

γj)

∣∣∣∣∣∣

(Cauchy-Schwartz) ≤ (
T−k−2∑

j=0

|γ̂j |)σ̂Tk
T∑

t=k+2

{
t−k−1∑

i=1

(ε̂t−i
i−1∑

j=0

γ̂j − εt−i
i−1∑

j=0

γj)
2}1/2

≤ (
T−k−2∑

j=0

|γ̂j |)σ̂TkoP (TaT ) = oP (Ta2
T )

using (A.9), and similarly, |E† ρ2| ≤
∑∞

j=0 |γj |)σTkoP (TaT ) = oP (Ta2
T ). Regarding variances,

Var† ρ1 ≤ 2
T−1∑

s,t=k+1

ε̂2
s




T∑

i=max(s,t)+1

(
i−s−1∑

j=0

γ̂j)(ε̂t
i−t−1∑

j=0

γ̂j − εt
i−t−1∑

j=0

γj)




2

(Cauchy-Schwartz) ≤ 2T (
T−k−2∑

j=0

|γ̂j |)2
T−1∑

s,t=k+1

ε̂2
s

T∑

i=t+1

(ε̂t
i−t−1∑

j=0

γ̂j − εt
i−t−1∑

j=0

γj)
2

cf. eq. (A.8) ≤ 4T 2(
T−k−2∑

j=0

|γ̂j |)2
T−1∑

s,t=k+1

ε̂2
s



(ε̂t − εt)2(

T−k−2∑

j=0

|γ̂j |)2 + ε2
t (
T−k−2∑

j=0

|γ̂j − γj |)2





= 4T 2(
T−k−2∑

j=0

|γ̂j |)2σ̂2
Tk





T∑

t=k+1

(ε̂t − εt)2(
T−k−2∑

j=0

|γ̂j |)2 + σ2
T (
T−k−2∑

j=1

|γ̂j − γj |)2





= oP (T 2a4
T )

using (A.6) and (A.7), and analogously,

Var† ρ2 ≤ 4T 2(
T−k−2∑

j=0

|γj |)2σ2
T





T∑

t=k+1

(ε̂t − εt)2(
T−k−2∑

j=0

|γ̂j |)2 + σ2
T (
T−k−2∑

j=1

|γ̂j − γj |)2



 = o(T 2a4

T ).
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In part (d), ρ3 := S†11 − γ (1)2∑T
t=k+1(

∑t−1
s=k+1 ε

†
s)2 can be written as

ρ3 =
T∑

t=k+2

{
t−k−2∑

i=0

γ∗i ε
†
t−i−1

t−k−2∑

i=0

[γ∗i + 2γ (1)]ε†t−i−1}.

As the sequence {γ∗i + 2γ (1)}i is bounded, there is an M <∞ such that

|E† ρ3| =

∣∣∣∣∣
T∑

t=k+2

t−k−2∑

i=0

γ∗i [γ
∗
i + 2γ (1)]ε2

t−i−1

∣∣∣∣∣ ≤M
T∑

t=k+2

t−k−2∑

i=0

ε2
t−i−1|γ∗i |

≤ Mσ2
T

∞∑

i=1

i|γi| = OP (a2
T ),

Var† ρ3 ≤ 2
T−1∑

s,t=k+1

ε2
sε

2
t




T∑

i=max(s,t)+1

γ∗i−s[γ
∗
i−t−1 + 2γ (1)]




2

≤ 2M2
T−1∑

s,t=1

ε2
sε

2
t (
∞∑

i=0

|γ∗i |)2 ≤ 2Mσ4
T (
∞∑

i=1

i|γi|)2 = OP (a4
T ),

so a−2
T |ρ3| = OP†(1) in P -probability.
We proceed to S†00,S†0ε, S

†
10 and the respective S∗··’s. Under the assumptions k3/T +1/k →

0 and aT
∑∞

i=k+1 |βi| → 0, using the fact that ‖β̂k−βk‖ = oP (akaε−1
T +k1/2T−1) for ε > 0, it

follows as in Lemma 3(a) of Cavaliere et al. (2016a) that, in P -probability, (S†00)−1 exists with
P†-probability approaching one, λmax((S†00)−1) = OP†(a

−2
T ) and likewise for S∗00. Additionally,

λmax(S†00) = OP†(a
2+ε
T ) in P -probability for all ε > 0 since

S†00 =
T∑

t=k+1

t−k−1∑

i=1

γi−1:kγ
′
i−1:kε

2
t−i +

T∑

t=k+1

t−k−1∑

i6=j=1

γi−1:kγ
′
i−1:kε

†
t−iε

†
t−j =: Λ1 + Λ2,

where ‖Λ1 − σ2
TΣk‖2 = oP (a2

T ) as in the proof of Lemma 1(a) of Cavaliere et al. (2016a),
so λmax(Λ1) = λmax(σ2

TΣk) + oP (a2
T ) = OP (a2

T ) because λmax(Σk) is bounded, whereas
‖Λ2‖2 = oP†(a

2+ε
T ) in P -probability for all ε > 0 by Markov’s inequality, since

E(E† ‖Λ2‖2)η/2 ≤ (2
T∑

s,t=k+1

t−k−1∑

i,j=1+max{s−t,0}
Ii6=j‖γi−1:k‖‖γj−1:k‖‖γs−t+i−1:k‖‖γs−t+j−1:k‖ε2

t−iε
2
t−j)

η/2

≤ 2η/2(E |ε1|η)2
T∑

t=k+1

t−k−2∑

i,j=0

‖γi:k‖η/2‖γj:k‖η/2
T−k−2−max{i,j}∑

s=max{−i,−j}
‖γs+i:k‖η/2‖γs+j:k‖η/2

≤ 2η/2(E |ε1|η)2
T∑

t=k+1

t−k−2∑

i,j=0

‖γi:k‖η/2‖γj:k‖η/2
T−k−2∑

s=0

‖γs:k‖η

= O (T ) (
T−k−2∑

i=0

‖γi:k‖η/2)2(
T−k−2∑

s=0

‖γs:k‖η) = O
(
Tk3

)
= o(T 2)

for η ∈ [δ, α) under k3/T → 0.
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Using (A.10), for S†0ε =
∑T

t=k+1(
∑t−k−1

i=1 γi−1:kε
†
t−i)ε

†
t we find that E† S

†
0ε = 0 and

E† ‖S†0ε‖2 =
∑T

t=k+1

∑t−k−1
i=1 ε2

t−iε
2
t ‖γi−1:k‖2 = oP (a2

ka
2+ε
T ) for all ε > 0, since, for η ∈ [δ, α),

E(E† ‖S†0ε‖2)η/2 ≤ T (E |ε1|η)2
∞∑

i=0

‖γi:k‖η ≤ Tk(E |ε1|η)2
∞∑

i=0

|γi|η.

Thus, P†(a−1
k a−1−ε

T ‖S†0ε‖ > ω) = oP (1) for all ε, ω > 0. Further, by the same argument
as given in the proof of Lemma 3(b) in the supplement to Cavaliere et al. (2016a), under
k3/T → 0 and ‖β̂k − βk‖ = oP (akaε−1

T + k1/2T−1) for ε > 0 it follows that

‖S∗0ε‖ = ‖S†0ε‖+ ‖
T−1∑

t=k

∆Yk†
t (Xk

t )
′wt‖2‖β̂k − βk‖+ oP†(k

−1a2
T )

in P -probability. Under these conditions, given the previous evaluation of ‖S†0ε‖ it follows
that

‖S∗0ε‖ = ‖
T−1∑

t=k

∆Yk†
t (Xk

t )
′wt‖2‖β̂k − βk‖+ oP†(k

−1a2
T )

≤ λ1/2
max(S†00)λ1/2

max(Sk00)‖β̂k − βk‖+ oP†(k
−1a2

T ) = oP†(k
−1a2

T )

in P -probability, using the inequality ‖∑T−1
t=k atb

′
t‖22 ≤ λmax(

∑T−1
t=k ata

′
t)λmax(

∑T−1
t=k btb

′
t) and

the magnitude orders λmax(S†00) = OP†(a
2+ε
T ) in P -probability established previously and

λmax(Sk00) = OP (a2
T ) implied by Lemma A.1(a).

As S†01 =
∑T

t=k+1(
∑t−k−1

i=1 ε†t−iγi−1:k)(
∑t−k−1

i=1 ε†t−i
∑i−1

j=0 γj), from (A.11) in k dimensions,

‖E† S
†
01‖ = ‖

T∑

t=k+2

t−k−1∑

i=1

ε2
t−iγi−1:k

i−1∑

j=0

γj‖ ≤ (
T∑

t=k+2

t−k−1∑

i=1

ε2
t−i‖γi−1:k‖)(

∞∑

j=0

∣∣γj
∣∣)

≤ σ2
T (
∞∑

i=0

‖γi:k‖)(
∞∑

j=0

∣∣γj
∣∣) ≤ kσ2

T (
∞∑

j=0

∣∣γj
∣∣)2 = OP (ka2

T ),

E† ‖S†01‖2 − ‖E† S
†
01‖2 ≤ 2

T−1∑

s,t=k+1

ε2
sε

2
t ‖

T∑

i=max(s,t)+1

γi−s−1:k

i−t−1∑

j=0

γj‖2 ≤ 2k2σ4
T (
∞∑

j=0

∣∣γj
∣∣)4

= OP (k2a4
T ).

Similar relations hold for S∗01, with ε̂t, γ̂i−1:k, γ̂j , σ̂
2
Tk in place of, respectively, εt,γi−1:k, γj , σ

2
T .

Hence, for every η ∈ (0, 1) there exist K†η, K̃η < ∞ such that P (P†(k−1a−2
T ‖S†01‖ > K†η) <

η) > 1− η and P (P†(k−1a−2
T ‖S∗01‖ > K̃η) < η) > 1− η.

By combining the conclusions about S†00, S†0ε and S†01, parts (e) and (g) follow, and
similarly, parts (f) and (h) from the conclusions about S∗00, S∗0ε and S∗01. Next, parts (a)-(h)
jointly with the weak convergence of the distribution of a−2

T

∑T
t=k+1(

∑t−1
s=k+1 ε

†
s)2 conditional

on εT to the random distribution of
∫ S2 conditional on {|∆S(u)|}u∈(0,1] (proved similarly

to Lemma 1), it follows that

P†

(
T

∣∣∣∣∣φ
∗
k − γ(1)−1{

T∑

t=k+1

(
t−1∑

s=k+1

ε†s)
2}−1

T∑

t=k+1

(
t−1∑

s=k+1

ε†s)ε
†
t

∣∣∣∣∣ > η

)
P→ 0

for all η > 0. As maxt=1,...,k |εt| = OP†(ak) in P -probability and k3/T → 0, in the previous
display summations can start at 1, which completes the proof. �

37



A.2.3 Concluding Results

Proof of Lemma 1. By Corollary 1 of LePage et al. (1997), we can consider a probability
space where Γ, U and δ are defined together with {ε̃t}t∈N distributed like {εt}t∈N, and such
that a−1

T

∑bT ·c
t=1 ε̃t →

∑∞
i=1 δiΓ

−1/α
i I{Ui ≤ (·)} a.s. in D[0, 1]. Without loss of generality, we

proceed as if {εt}t∈N have this property themselves:

a−1
T

bT ·c∑

t=1

εt
a.s→ S(·) :=

∞∑

i=1

δiΓ
−1/α
i I{Ui ≤ (·)} (A.12)

in D[0, 1], and argue that on such a probability space it holds that

E|ε| f(2γT (εT )) P→ E

[
f(
S(1)2 −∑∞i=1 Γ−2/α

i∫ S2 (s) ds
)|Γ,U

]
(A.13)

for bounded and continuous real f , where E|ε| denotes expectation under P|ε|. Then it follows
that on a general probability space convergence in (A.13) holds in the weak sense instead of
in probability.

For every K = 1, ..., T , let eK be the K-th order statistic of {|εt|}Tt=1, and e0 := ∞. By
the continuity on D[0, 1] of ordered jumps and their locations, and since {Γi} is a.s. strictly
increasing in i, (A.12) implies that

ebT ·c,K := a−1
T

bT ·c∑

t=1

εtI{eK≤|εt|<eK−1}
a.s.→ δKΓ−1/α

K I{UK≤(·)} (A.14)

in D[0, 1]. For every K ∈ N and T ≥ K, define εt,K := εtI{|εt|≥eK} (t = 1, ..., T ) and εT,K :=
(ε1,K , ..., εT,K). As there are no ties in the order statistics of {|εt|}Tt=1 , with P|ε|-probability
converging to one in P -probability, we find by direct calculation that E|ε| f(2γT (εT,K)) equals

E|ε| f(
(
∑T

t=1 εt,K)2 −∑T
t=1 ε

2
t,K∫

(
∑bTsc

t=1 εt,K)2ds
) = 2−K

∑

b∈{−1,1}K
f(

(
∑K

i=1 bi|eT,i|)2 −∑K
i=1 e

2
T,i∫

(
∑K

i=1 bi|ebTsc,K |)2ds
) + oP (1)

P→ 2−K
∑

b∈{−1,1}K
f(

(
∑K

i=1 biΓ
−1/α
i )2 −∑K

i=1 Γ−2/α
i∫

(
∑K

i=1 biΓ
−1/α
i I{Ui≤s})2ds

)

= E

[
f(

(
∑K

i=1 δiΓ
−1/α
i )2 −∑K

i=1 Γ−2/α
i∫

(
∑K

i=1 δiΓ
−1/α
i I{Ui≤s})2ds

)

∣∣∣∣∣Γ,U
]

for bounded and continuous real f , the convergence using (A.14) and the ’in probability’
CMT. It can be further established that

lim
K→∞

lim sup
T→∞

P
{
P|ε| (|γT (εT )− γT (εT,K)| ≥ η) ≥ ω}→ 0

and

lim
K→∞

P

{
P

(∣∣∣∣∣
(
∑K

i=1 δiΓ
−1/α
i )2 −∑K

i=1 Γ−2/α
i∫

(
∑K

i=1 δiΓ
−1/α
i I{Ui≤s})2ds

− (
∑∞

i=1 δiΓ
−1/α
i )2 −∑∞i=1 Γ−2/α

i∫
(
∑∞

i=1 δiΓ
−1/α
i I{Ui≤s})2ds

∣∣∣∣∣ ≥ η
∣∣∣∣∣Γ,U

)
≥ ω

}
→ 0,
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for every η, ω > 0, implying that

E|ε| f(2γT (εT )) P.→ E

[
f{(

∑∞
i=1 δiΓ

−1/α
i )2 −∑∞i=1 Γ−2/α

i∫
(
∑∞

i=1 δiΓ
−1/α
i I{Ui≤s})2ds

}|Γ,U
]
.

To establish (A.13), it remains to notice that (
∑∞

i=1 δiΓ
−1/α
i )2 − ∑∞i=1 Γ−2/α

i = S(1)2 −∑∞
i=1 Γ−2/α

i = 2
∫ SdS and

∫
(
∑∞

i=1 δiΓ
−1/α
i I{Ui≤s})

2ds =
∫ S2.

Now we argue that for every c ∈ R,

P

((∫
S2

)−1 ∫
SdS = c

∣∣∣∣∣Γ,U
)

= 0 P -a.s. (A.15)

It is known in the literature (see Jach and Kokoszka, 2004, p.78) that the distribution function
of the limit in (8) is continuous. Thus,

EP

((∫
S2

)−1 ∫
SdS = c

∣∣∣∣∣Γ,U
)

= P

((∫
S2

)−1 ∫
SdS = c

)
= 0.

Since the conditional probability is non-negative, (A.15) follows. �
We show next that Theorem 4 is applicable to gT = RT and g∗T = R∗T .

Proof of Theorem 5. With ZT = {yt}Tt=0, gT = RT and g∗T = R∗T and γT defined in (17),
condition (i) of Theorem 4 is satisfied in view of Lemmas A.2 and A.3, and condition (ii), in
view of convergence (18), with ϕ equal to the limiting measure in (18). The convergence of
RT in conditional distribution follows by combining Lemma A.2 and (18), whereas the weak
convergence of P ∗(R∗T ≤ RT ) follows from (16) in Theorem 4. �
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Table 1: Empirical Size of the Unit Root Tests

wild bootstrap m-out of-n sub-sample ADF
recolored non-recolored bootstrap

θ Qrc,rT Rrc,rT Qn,rT Rn,rT QmT RmT QjkT RjkT QαT RαT Q2
T R2

T

α = 2 κ = 4
−0.8 28.2 27.4 28.4 27.0 35.0 31.8 18.3 5.8 28.6 32.2 28.4 31.6
−0.5 5.2 5.0 4.6 5.0 11.7 6.1 4.2 0.7 7.4 8.1 7.1 7.9

0 5.3 4.9 5.3 4.9 6.8 4.8 3.4 0.5 5.3 6.8 5.2 6.6
0.5 5.0 4.1 4.6 4.1 5.8 4.0 3.6 0.4 4.6 6.0 4.5 5.8
0.8 4.0 3.4 3.9 3.4 4.9 3.2 3.7 0.3 3.9 5.2 3.8 5.0

α = 2 κ = 12
−0.8 7.8 5.5 7.7 4.5 8.7 3.4 0.0 8.5 8.0 13.9 7.8 13.7
−0.5 5.8 3.7 5.7 3.6 5.7 3.2 0.0 6.7 6.2 11.7 6.0 11.5

0 5.8 3.7 5.7 3.8 5.1 3.7 0.0 7.3 6.0 12.3 5.9 12.0
0.5 5.7 3.9 5.9 4.0 5.1 4.0 0.0 7.6 6.1 12.4 6.0 12.2
0.8 5.5 3.7 5.6 3.8 4.9 3.7 0.0 7.3 5.9 12.0 5.8 11.8

α = 1.5 κ = 4
−0.8 28.4 28.1 30.4 28.9 32.0 29.4 14.0 7.7 25.3 28.6 23.4 27.0
−0.5 7.3 5.8 5.6 5.8 10.2 4.0 2.8 1.2 5.4 6.9 6.4 6.2

0 5.1 4.6 5.1 4.6 5.7 4.0 2.2 0.8 4.4 5.7 3.9 5.1
0.5 4.6 3.7 4.1 3.6 5.0 3.4 2.3 0.8 4.2 5.0 3.1 4.4
0.8 3.1 2.7 3.1 2.6 4.0 2.7 2.3 0.7 3.2 4.2 2.8 3.7

α = 1.5 κ = 12
−0.8 8.5 6.6 8.3 5.5 7.2 3.3 0.1 6.8 7.9 13.0 5.9 11.1
−0.5 6.1 4.3 5.9 3.9 4.7 3.0 0.0 5.6 6.2 11.2 4.8 9.6

0 5.8 4.4 5.9 4.5 4.2 3.5 0.0 6.1 6.4 11.4 4.6 9.8
0.5 5.7 4.4 5.9 4.6 3.9 3.9 0.0 6.2 6.3 11.5 4.4 9.9
0.8 5.3 4.0 5.5 4.3 3.6 3.8 0.0 6.0 6.0 11.1 4.4 9.6

α = 1.0 κ = 4
−0.8 36.4 35.9 40.1 39.0 29.6 27.7 11.3 14.3 27.5 30.7 19.7 23.8
−0.5 8.4 6.7 7.7 7.2 9.2 38.5 2.2 3.3 6.9 8.2 3.9 5.6

0 6.1 5.6 6.0 5.5 5.4 4.3 1.8 2.7 5.8 7.1 3.1 4.7
0.5 5.8 4.9 4.4 3.9 5.2 3.6 1.7 2.5 5.0 6.2 3.0 4.1
0.8 2.9 2.4 2.7 2.3 3.8 2.8 1.7 2.3 4.3 5.4 2.2 3.5

α = 1.0 κ = 12
−0.8 12.9 11.5 12.8 10.2 6.2 3.9 2.4 6.1 7.4 11.9 4.4 9.4
−0.5 7.8 6.4 7.1 5.6 4.1 3.8 1.2 5.2 6.2 10.4 3.6 8.3

0 7.4 6.2 7.3 5.9 3.8 4.3 1.4 5.5 6.4 11.2 3.8 8.7
0.5 7.3 6.0 7.4 6.0 3.7 4.6 1.2 5.8 6.6 11.2 3.7 9.0
0.8 6.7 5.5 6.7 5.3 3.5 4.5 0.7 5.6 6.3 10.8 3.6 8.7

40



Table 2: Empirical Power of the Unit Root Tests

wild bootstrap m-out of-n sub-sample ADF
recoloured non-recoloured bootstrap

θ Qrc,rT Rrc,rT Qn,rT Rn,rT QmT RmT QjkT RjkT QαT RαT Q2
T R2

T

α = 2 κ = 4
−0.8 95.8 95.4 95.9 95.0 97.4 96.1 82.5 43.4 96.3 97.6 96.1 97.5
−0.5 48.1 45.4 47.2 41.8 58.6 40.7 32.0 9.4 47.6 55.3 46.9 54.3

0 41.8 38.0 41.7 38.0 48.3 37.8 26.4 4.8 42.5 48.3 41.8 47.1
0.5 37.2 35.1 37.0 37.4 42.2 31.9 26.6 4.4 39.8 43.5 38.6 42.3
0.8 31.0 27.9 30.9 27.9 36.5 26.1 26.7 3.7 31.4 37.3 31.1 36.2

α = 2 κ = 12
−0.8 46.1 37.3 45.4 31.1 49.6 25.1 0.0 49.1 46.6 66.2 46.1 65.5
−0.5 32.6 23.2 31.9 20.4 33.4 16.4 0.0 35.2 32.7 51.4 32.2 50.8

0 30.7 21.1 30.4 19.7 29.0 16.7 0.0 33.4 31.2 49.1 30.8 48.3
0.5 29.8 20.7 29.8 19.6 27.7 16.9 0.0 32.8 30.7 48.2 30.3 47.4
0.8 28.7 19.6 28.9 18.7 26.4 16.0 0.0 31.6 29.5 47.0 29.1 46.2

α = 1.5 κ = 4
−0.8 95.4 95.4 95.6 95.3 97.9 97.6 78.7 55.4 97.1 98.6 96.4 98.1
−0.5 58.0 55.2 58.0 54.7 61.0 38.2 28.8 15.7 48.6 55.0 44.0 49.7

0 51.0 47.3 50.8 46.8 53.1 37.0 23.3 10.1 41.4 47.2 37.3 42.8
0.5 45.6 42.4 45.3 44.8 44.9 30.3 23.0 9.8 37.4 43.1 32.6 37.8
0.8 39.0 34.8 38.9 34.5 37.9 23.6 22.8 7.9 30.2 34.7 26.5 31.2

α = 1.5 κ = 12
−0.8 55.8 45.8 54.6 39.9 51.9 24.3 0.4 46.0 54.3 73.0 43.8 67.0
−0.5 42.5 31.9 42.1 29.1 31.9 14.2 0.2 30.3 38.3 54.5 29.8 47.7

0 40.1 29.1 39.7 27.1 27.8 14.0 0.3 28.1 35.9 51.3 28.0 44.9
0.5 39.1 28.4 38.8 26.9 26.1 14.1 0.2 27.8 35.2 50.2 27.3 43.7
0.8 37.9 27.1 37.7 25.8 24.7 13.3 0.3 26.5 33.8 48.3 26.3 42.1

α = 1.0 κ = 4
−0.8 94.6 95.0 94.9 94.3 97.9 98.4 74.2 72.8 97.7 99.3 96.4 98.4
−0.5 70.8 67.5 69.8 65.0 66.6 41.1 26.1 33.7 63.3 72.6 38.2 40.7

0 64.7 61.4 64.5 60.8 61.2 38.6 20.8 26.8 59.4 63.9 30.1 35.1
0.5 61.4 58.1 60.7 58.3 50.2 29.2 20.4 23.9 52.5 54.7 28.1 32.2
0.8 52.4 48.3 51.8 47.3 39.1 19.7 20.0 21.0 39.1 40.6 20.4 23.4

α = 1.0 κ = 12
−0.8 67.0 57.7 64.7 52.0 55.1 24.6 8.6 40.0 63.3 81.3 36.7 70.2
−0.5 56.2 45.6 54.5 41.7 29.5 11.8 6.5 24.8 38.3 59.0 25.2 40.4

0 53.5 42.8 52.3 40.2 24.8 11.3 7.5 22.1 35.6 51.9 23.5 37.2
0.5 53.1 42.3 51.9 40.0 23.5 11.7 6.2 23.1 34.9 50.1 23.3 36.5
0.8 51.8 41.0 51.0 39.1 22.1 11.1 6.7 20.1 33.4 47.4 22.4 34.6
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