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Abstract. We introduce a computational model based on Deontic Defeasible Logic
to handle the issue of Pragmatic Oddity. The key idea is that a conjunctive obligation
is allowed only when each individual obligation is independent of the violation of
the other obligations. The solution makes essential use of the constructive proof
theory of the logic.
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1. Introduction

The problem of Pragmatic Oddity, one of the issues related to the formal treatment of
the so called contrary-to-duty obligations, introduced by Prakken and Sergot [10], is
illustrated by the scenario that when you make a promise, you have to keep. But if you do
not, then you have to apologise. The oddity is that when you fail to keep your promise,
you have the obligation to keep the promise and the obligation to apologise. In our view,
what is odd, is not that the two obligations are in force at the same time, but that if one
admits for form a conjunctive obligation from the two individual obligations then we
get an obligation that is impossible to comply with. In the scenario, when the promise
is broken, we have the conjunctive obligation of keeping the promise and to apologise
from not having kept the promise. The Pragmatic Oddity problem arises when we have a
conjunctive obligation, i.e., O(a A b) derived from the two individual obligations (Oa and
Ob) where one of the conjuncts is contrary-to-duty obligations triggered by the violation
of the other individual obligation, for example when —a entails that Ob is in force.

Most of the work on Pragmatic Oddity (e.g., [10, 3]) focuses on the issue of how to
distinguish the mechanisms leading to the derivation of the two individual obligations,
and create different classes of obligations. Consequently, the solution to the Pragmatic
Oddity problem is to prevent the conjunction when the obligations are from different
classes. Accordingly, if the problem is to prevent to have a conjunctive obligation in force
when the individual obligations are in force themselves, the simplest solution is to have
a deontic logic that does not support the aggregation axiom?:

(Oa A Ob) — O(a A b)
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However, a less drastic solution, advocated by Parent and van der Torre [8, 9], is to restrict
the aggregation axiom to independent obligations (meaning that one obligation should
not depend on the violation of the other obligation).

We are going to take Parent and van der Torre’s suggestion and propose a simple
mechanism in Defeasible Deontic Logic to guard the derivation of conjunctive obligations.
The mechanism guarantees that the obligations in a conjunctive obligation are independent
of the violations of the individual obligations. The mechanism is founded on the proof
theory of the logic.

2. Defeasible Deontic Logic

Defeasible Deontic Logic [5] (DDL) is a sceptical computationally oriented rule-based
formalism designed for the representation of norms. The logic extends Defeasible
Logic [1] with deontic operators to model obligations and (different types of) permissions
and provides an integration with the logic of violation proposed in [7]. The logic is based
on a constructive proof theory that allows for full traceability of the conclusions In the rest
of this section we are going to show how the proof theory can be use to propose a simple
and (arguably) elegant treatment of the issue of Pragmatic Oddity. To this aim, here, we
restrict ourselves to the fragment of DDL that excludes permission and permissive rules,
since they do not affect the way we handle Pragmatic Oddity: Definition 10 describing the
mechanisms for Pragmatic Oddity, is independent from any issue related to permission,
and can be used directly in the full version of the logic. Accordingly, We consider a logic
whose language is defined as follows.

Definition 1. Let PROP be a set of propositional atoms, O the modal operator for obliga-
tion. The set Lit = PROPU {—p | p € PROP} denotes the set of literals. The complement
of a literal g is denoted by ~g; if g is a positive literal p, then ~q is —p, and if g is a neg-
ative literal —p, then ~q is p. The set of deontic literals is DLit = {Ol, -0l | € Lit}. If
c1,...,cn € Lit,then O(cy A -+ A ¢p) is a conjunctive obligation.

We introduce the compensation operator ®. This operator builds chains of compensation
called ®-expressions, where an ®-expression is a sequence of one or more literals con-
catenated by the ® operator. In addition we stipulate that ® obeys the following property
(duplication and contraction on the right):

®?=1 di = (@Zl ai) ® (®?=k+l ai)

where there exists j such thata; = ax and j < k.

Given an ®-expression A, the length of A is the number of literals in it. Given an
®-expression A ® b ® C (where A and C can be empty), the index of b is the length of
A ® b. We also say that b appears at index n in A ® b if the length of A ® b is n.

The meaning of a compensation chain ¢; ® ¢ ® - - - ® ¢, is that Oc is the primary
obligation, and when violated (i.e., =c holds), then Oc, is in force and it compensates
for the violation of the obligation of c¢;. Moreover, when Oc; is violated, then Ocj is in
force, and so on until we reach the end of the chain when a violation of the last element
is a non-compensable violation where the norm corresponding to the rule in which the
chain appears is not complied with.

We adopt the standard DL definitions of strict rules, defeasible rules, and defeaters
[1]. However, for the sake of simplicity, and to better focus on the non-monotonic aspects
that DDL offers, in the remainder, we use only defeasible rules and defeaters.
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Definition 2. Let Lab be a set of arbitrary labels. Every rule is of the typer: A(r) <— C(r)
where r € Lab is the name of the rule; A(r) = {ay,...,ay}, the antecedent (or body)
of the rule, is the set of the premises of the rule (alternatively, it can be understood as
the conjunction of all the elements in it). Each a; is either a literal, a deontic literal or a
conjunctive obligation; —¢€ {=, =0, ~», ~»o} denotes the type of the rule. If — is =,
the rule is a defeasible rule, while if — is ~», the rule is a defeater. Rules without the
subscript O are constitutive rules, while rules with such a subscript are prescriptive rules,
and in case the rule is defeasible, the conclusion derived from the rule is an obligation.
C(r) is the consequent (or head) of the rule is a single literal for defeaters and constitutive
rules, and an ®-expressions for prescriptive defeasible rules.

Given a set of rules R, we use the following abbreviations for specific subsets of rules:
Rge s denotes the set of all defeaters in the set R; R[g,n] is the set of rules where ¢
appears at index n in the consequent. The set of (defeasible) rules where g appears at any
index 7 is denoted by R[g]; R® denotes the set of all rules in R with O as their subscript.
RC[q, n] is the set of (defeasible) prescriptive rules where ¢ appears at index n. The set
of (defeasible) prescriptive rules where g appears at any index n is denoted by R®[¢];

Definition 3. A Defeasible Theory is a structure D = (F, R, >), where F, the set of facts,
is a set of literals and modal literals, R is a set of rules and >, the superiority relation, is
a binary relation over R.

A theory corresponds to a normative system, i.e., a set of norms, where every norm
is modelled by some rules. The superiority relation is used for conflicting rules, i.e.,
rules whose conclusions are complementary literals, in case both rules fire. Namely, the
superiority just determines the relative strength between two rules.

Definition 4. A proof P in a defeasible theory D is a linear sequence P(1)...P(n) of
tagged literals in the form of +0, —d, +doq and —doq, where P(1) ... P(n) satisfy the
proof conditions given in Definitions 8—10.

The tagged literal +0g means that g is defeasibly provable as an institutional statement,
or in other terms, that g holds in the normative system encoded by the theory. The tagged
literal —0g means that g is defeasibly refuted by the normative system. Similarly, the
tagged literal +0oq means that g is defeasibly provable in D as an obligation, while —dpq
means that g is defeasibly refuted as an obligation. The initial part of length i of a proof
P is denoted by P(1..i).

A rule is applicable for a literal g if g occurs in the head of the rule have already
been proved with the appropriate mode. On the other hand, a rule is discarded if at least
one of the literals in the antecedent has not been proved. However, as literal ¢ might not
appear as the first element in an ®-expression in the head of the rule, some additional
conditions on the consequent of rules must be satisfied. Defining when a rule is applicable
or discarded is essential to characterise the notion of provability for constitutive rules and
then for obligations (+£0p).

Definition 5. A rule r € R|q, j] is body-applicable iff for all a; € A(r):
1. if a; = Ol then +dpl € P(1..n);
2. if a; = =0l then —dpl € P(1..n);
3.ifa; =0(ci A+ Acyy) then +0ocy A -+ A ey, € P(1..0);
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4. if a; =1 € Lit then +dl € P(1..n).
Arule r € R[q, j] is body-discarded ift 3a; € A(r) such that
1. if a; = Ol then —0p! € P(1..n);
2. if a; = =0l then +dpl € P(1..n);
3.ifa; =0(ci A+ Acy) then —=0oct A -+ A ey € P(1..0);
4. ifa; = [ € Lit then -9l € P(1..n).

Definition 6. A rule r € R°[g, j] such that C(r) = ¢| ® - - - ® c,, is applicable for literal
g atindex j, with 1 < j < n, in the condition for +dg iff

1. r is body-applicable; and

2. forallcy € C(r), 1 < k < j,+dock € P(1..n) and +0~cy € P(1..n).

Conditions (1) represents the requirements on the antecedent stated in Definition 5;
condition (2) on the head of the rule states that each element c prior to ¢ must be derived
as an obligation, and a violation of such obligation has occurred.

Definition 7. A ruler € R[q, j] suchthat C(r) =c¢; ® - - - ® ¢, is discarded for literal g
at index j, with 1 < j < n in the condition for +do
1. r is body—discarded; or
2. there exists cx € C(r), 1 < k < [, such that either —docr € P(1..n) or +0cy €
P(1..n).

In this case, condition (2) ensures that an obligation prior to ¢ in the chain is not in force
or has already been fulfilled (thus, no reparation is required).

For space reasons we only provide the proof conditions for the positive tags. The
definitions of the negative tags can be obtained from the definition of the corresponding
positive tag by apply the principle of strong negation (that transform the Boolean operators
and quantifiers in their dual, and swapping “applicable” and “discarded” [2, 6]. We now
introduce the proof conditions for d and dop.

Definition 8 (Defeasible provability for an institutional statement).
+0: If P(n+ 1) = +dq then
(1)g € F or
(2.1) ~q ¢ F and
(2.2) 3r € R[q] such that r is applicable, and
(2.3) Vs € R[~q], either
(2.3.1) s is discarded, or either
(2.3.2) 3t € R[q] such that ¢ is applicable and 7 > s.

The proof conditions for +0 are the standard conditions in defeasible logic, see [1]
for the full explanations.

Definition 9 (Defeasible provability for an obligation).
+00: If P(n+ 1) = +00q then
(1)Og € F or
(2.1) O~qg ¢ F and —=Ogq ¢ F and
(2.2) 3r € R®|q, i] such that r is applicable for ¢, and
(2.3)Vs € RO[~q,j], either
(2.3.1) s is discarded, or either
(2.3.2) s € R® and 3r € R°[q, k] such that ¢ is applicable for ¢ and ¢ > s.
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To show that g is defeasibly provable as an obligation, there are two ways: (1) the
obligation of ¢ is a fact, or (2) ¢ must be derived by the rules of the theory. In the second
case, three conditions must hold: (2.1) g does not appear as not obligatory as a fact, and
~q is not provable as an obligation using the set of deontic facts at hand; (2.2) there must
be a rule introducing the obligation for ¢ which can apply; (2.3) every rule s for ~g is
either discarded or defeated by a stronger rule for g.

We are now ready to provide the proof condition under which a conjunctive obligation
can be derived. The condition essentially combines two aspects: the first that a conjunction
holds when all the conjuncts hold (individually). The second aspect is to ensure that the
derivation of one of the individual obligations does not depend on the violation of the
other conjunct. To achieve this, we determine the line of the proof when the obligation
appears, and then we check that the negation of the other elements of the conjunction
does not occur in the previous derivation steps.

Definition 10 (Defeasible provability for a conjunctive obligation).

If P(n+1) =+0doci A -+ A cpy, then

Vei, 1 <1 <m,

(1) +doc; € P(1..n) and

2)if P(k) =+doc1 A+ Acm, k < n, thench, 1 <j<m, cj * ¢, +6~Cj ¢ P(1..k).

Again, the proof condition to refute a conjunctive obligation is obtained by strong negation
from the condition to defeasibly derive a conjunctive obligation.

In what follows we use - - - = ¢ to refer to an applicable rule for ¢ where we assume
that the elements are not related (directly or indirectly) to the other literals used in the
examples.

Compensatory Obligations The first case we want to discuss is when the conjunctive
obligation corresponding to the Pragmatic Oddity has as conjuncts an obligation and its
compensation. This scenario is illustrated by the rule:

o =0a®b

In this case, it is clear that we cannot derive the conjunctive obligation of a and b, since
the proof condition that allows us to derive +0dob explicitly requires that +9~a has been
already derived (condition 2 of Definition 6). In this case, it is impossible to have the
obligation of b without the violation of the obligation of a.

Contrary-to-duty The second case is when we have a CTD. The classical representa-
tion of a CTD is given by the following two rules:

X —a =0 b
In this case, it is possible to have situations when the obligation of b is in force without

having a violation of the obligation of a, namely, when «a is not obligatory. However, as
soon as we have Oa, we need to derive —a to trigger the derivation of Ob (Definition 5).

Pragmatic Oddity via Intermediate Concepts The situations in the previous two
cases can be easily detected by a simple inspection of the rules involved; there could be
more complicated cases. Specifically, when the second conjunct does not immediately
depends on the first conjunct, but it depends through a reasoning chain. The simplest
structure for this case is illustrated by the following three rules:

R X —a=b b=oc

To derive Oc, we need to prove b. To prove b we require that —a has already been proved.
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Pragmatic Un-pragmatic Oddity What about when there are multiple norms both
prescribing the contrary-to-duty obligation, and at least one of the norms is not related to
the violation of the primary norm?

r:---=0a®b ry: - =0b —a
In this situation you can have the following two proofs:
(1) +0-a fact (1) +0oa from r|
(2) +0oa from r; (2) +0ob from r;

(2) +0ob fromr; and (1) and (2) 3) +0-a fact
4) +0oa Ab from (1)and (2)
In the proof on the left Ob (+0pb) depends on the violation of the primary obligation of
r1. In this case, we cannot derive the conjunctive obligation of a and b. However, in the
other proof, that demonstrates the independence of Ob from —a, given that the derivation
of —a occurs in a line after the line where +0pb is derived.

3. Summary

We have proposed an extension of Defeasible Deontic Logic able to handle the so called
Pragmatic Oddity paradox. The mechanism we used to achieve this result was to provide
a schema that allows us to give a guard to the derivation of conjunctive obligations
ensuring that each individual obligation does not depend on the violation of the other
obligation. The mechanism is given by the proof theory of defeasible logic. The next steps
are (1) to study the complexity of the approach and to verify that the logic obtained is
still computationally feasible (a prima facie analysis, based on the structure of the proof
conditions for conjunctive obligations, seems to suggest the complexity to be quadratic
and then still feasible, and mostly practical for real life applications, where it is unlikely
to have many conjunction obligations, and they have a small number of conjuncts); (2) to
devise efficient algorithms to implement the novel proof conditions.
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