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We find exact static solutions of the Einstein equations in the spacetime with plane symmetry, where 
an infinite slab with finite thickness and homogeneous energy (mass) density is present. In the first 
solution the pressure is isotropic, while in the second solution the tangential components of the pressure 
are equal to zero. In both cases the pressure vanishes at the boundaries of the slab. Outside the slab 
these solutions are matched with the Rindler spacetime and with the Weyl-Levi-Civita spacetime, which 
represent special cases of the Kasner solution.
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1. Introduction

It is known that even in the absence of matter sources the 
Einstein equations of General relativity can have very nontriv-
ial solutions. Historically the first such solution was the external 
Schwarzschild solution for a static spherically symmetric geometry 
[1]. It was extremely useful for study of general relativistic cor-
rections to the Newtonian gravity and for the description of such 
effects as the precession of the Mercury perihelion and the light 
deflection in the gravitational field. This solution also opened a 
fruitful field of black hole physics. The Schwarzschild solution con-
tains a genuine singularity in the centre of the spherical symmetry. 
To avoid it and to describe real spherically symmetric objects like 
stars, Schwarzschild also invented an internal solution [2] gener-
ated by a ball with constant energy density and with isotropic 
pressure. At the boundary of the ball the pressure disappears and 
the external and internal solutions are matched. In this case there 
is no singularity in the centre of the ball. Later, more general 
spherically symmetric geometries were studied in the papers by 
Tolman [3], Oppenheimer-Volkoff [4], Buchdahl [5] and many oth-
ers. Similar problems with cylindrical axial symmetry were also 
studied (see, e.g. [6] and references therein). In paper [7] the ques-
tion of existence of solutions of the Einstein equations in the pres-
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ence of concentrated matter sources, described by the generalised 
functions (distributions) was studied. It was shown, that in con-
trast to the case of electrodynamics, where the charged ball can 
be contracted to the point and the charge density becomes pro-
portional to the Dirac delta function while the Poisson equation 
is still valid, we cannot do it in the General Relativity. The reason 
lies in the non-linearity of the Einstein equations. It was shown 
in [7] that the solutions with distributional sources cannot ex-
ist for zero-dimensional (point-like particles) and one-dimensional 
(strings) objects, but can exist for two-dimensional (shells) objects. 
This fact makes the study of geometries possessing plane symme-
tries particularly interesting. Indeed, the plane-symmetric solutions 
of the Einstein equations were also studied in literature (see e.g. [8,
9] and the references therein).

However, to our knowledge, exact static solutions of the Ein-
stein equations, in the spacetimes with plane symmetry in the 
presence of an infinite slab with a finite thickness were not stud-
ied. Thus, our objective in the present paper was to find such 
solutions with the matching between the geometry inside the slab 
and that outside of it. Here, we would like to say that the first 
static solution in an empty spacetime possessing plane symmetry 
is almost as old as the Schwarzschild solution. This is the spa-
tial Kasner solution [10] found in 1921 and its particular case – 
the Weyl-Levi-Civita solution [11,12], found even earlier. Hence, 
we wanted to find for the case of plane symmetry some analog of 
matching between Schwarzschild external and internal solutions. 
We have considered an infinite slab with a finite thickness and 
a constant mass (energy) density and have found two particular 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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solutions: one with isotropic pressure and one for tangential pres-
sure equal to zero. In both cases we require that all components of 
pressure vanish at the boundary of the slab, just like in the case of 
the Schwarzschild internal solution. The structure of the paper is 
the following: in the second section we write down some general 
formulae for the spacetimes with the spatial geometry possess-
ing plane symmetry; in section 3 we describe the solution with 
isotropic pressure, while the section 4 is devoted to the solutions 
with vanishing tangential pressure. The fifth section contains some 
concluding remarks.

2. Einstein equations for spacetimes with spatial geometry 
possessing plane symmetry

Let us consider the metric with plane symmetry, where the 
metric coefficients depend on one spatial coordinate x:

ds2 = a2(x)dt2 − dx2 − b2(x)dy2 − c2(x)dz2. (1)

Before plunging into technical details connected with the search 
for the solutions for the thick slab, let us recall briefly what is 
known about the empty spacetime solutions and the solutions in 
the presence of thin shells.

For the metric (1) in the empty spacetime we have two general 
solutions. One of them is the Minkowski metric, where a = b = c =
1 and another one is the Kasner solution [10] with

a(x) = a0(x− x1)
p1 , b(x) = b0(x− x1)

p2 , c(x) = c0(x− x1)
p3 , (2)

where the Kasner indices p1, p2 and p3 satisfy the equations

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1. (3)

The Kasner solution is more often used in a “cosmological form”:

ds2 = dt2 − a2
0t2p1dx2 − b2

0t2p2dy2 − c2
0t2p3 . (4)

This form of the Kasner metric was rediscovered in papers [13–15]
and has played an important role in cosmology. The study of Kas-
ner dynamics in paper [15] has led to the discovery of the oscilla-
tory approach to the cosmological singularity [16], known also as 
the Mixmaster universe [17]. The further development of this line 
of research has brought the establishment of the connection be-
tween the chaotic behaviour of the universe in superstring models 
and the infinite-dimensional Lie algebras [18].

Coming back to the spatial form of the Kasner metric (2)-(3), 
one sees that the requirement of symmetry in the plane between 
the y and z directions implies the condition

p2 = p3. (5)

It is easy to see that there are two solutions of Eqs. (3) satisfying 
the condition (5). One of them is the Rindler spacetime [19] with

p1 = 1, p2 = p3 = 0. (6)

It is well-known that the Rindler spacetime represents a part of 
the Minkowski spacetime rewritten in the coordinates connected 
with an accelerated observer. There is a coordinate singularity 
(horizon) at x = x1. Another solution is

p1 = −1
, p2 = p3 = 2

. (7)

3 3
This particular solution was found by Weyl [11] and Levi-Civita 
[12] before the work of Kasner.1 This solution describes a universe, 
where a real curvature singularity is present at x = x1.

The detailed account of the solutions in the presence of a thin 
plate with constant energy density was given in paper [9]. These 
solutions have some distinguishing features. First of all the en-
ergy density of the plate and its tangential pressure should both 
be proportional to the delta function, while the component of the 
pressure, perpendicular to the plate is equal to zero. Furthermore, 
the metric is continuous everywhere, but its derivative has a fi-
nite jump at the location of the plate. The spacetimes on the right 
and on the left from the plane are of the type described above: 
Minkowski, Rindler or Weyl-Levi-Civita. The reflection symmetry is 
present, i.e. the spacetimes on both sides are the same, if and only 
if the energy density and the pressure are connected by the rela-
tion p = − 1

4 ρ or ρ = 0. Otherwise this symmetry is lost.
In the paper [9] the solutions in the presence of a finite-

thickness slab were also discussed. Some features of such solutions 
were analysed qualitatively or numerically, but exact solutions 
were not found. One of these interesting features is the absence 
of the reflection symmetry. Here we obtain some exact solutions 
manifesting this feature. Concerning the properties of the matter 
constituting the slab, being inspired by the internal Schwarzschild 
solution [2], we assume that the energy density is constant while 
the pressure should disappear at the boundaries of the slab.

Now we write down some general formulae necessary for the 
metric with the plane symmetry (1). The non-vanishing Christoffel 
symbols are

�x
tt = a′a, �x

yy = −b′b, �x
zz = −c′c,

�t
tx = a′

a
, �

y
yx = b′

b
, �z

zx = c′

c
. (8)

The components of the Ricci tensor are

Rtt = a′′a + a′b′a
b

+ a′c′a
c

,

Rt
t = a′′

a
+ a′b′

ab
+ a′c′

ac
,

Rxx = −a′′

a
− b′′

b
− c′′

c
,

Rx
x = a′′

a
+ b′′

b
+ c′′

c
,

R yy = −b′′b − a′b′b
a

− b′c′b
c

,

R y
y = +b′′

b
+ a′b′

ab
+ b′c′

bc
,

Rzz = −c′′c − a′c′c
a

− b′c′c
b

,

Rz
z = c′′

c
+ a′c′

ac
+ b′c′

bc
. (9)

The Ricci scalar is

R = 2

(
a′′

a
+ b′′

b
+ c′′

c
+ a′b′

ab
+ a′c′

ac
+ b′c′

bc

)
. (10)

1 In paper [15] a convenient parametrization of the Kasner indices was presented:

p1 = − u

1 + u + u2
, p2 = 1 + u

1 + u + u2
, p3 = u(1 + u)

1 + u + u2
.

In terms of this parametrization, the Rindler solution corresponds to u = 0, while 
the Weyl-Levi-Civita solution is given by u = 1.
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The energy-momentum tensor for a fluid with isotropic pressure is

Tμν = (ρ + p(x))uμuν − p(x)gμν, (11)

where we shall write

ρ = 4k2

3
= constant (12)

for convenience. Then

ut = a, ux = u y = uz = 0. (13)

The equation

T ν
μ;ν = 0 (14)

for μ = x gives

p′ = −a′

a
(ρ + p), (15)

where “prime” means the derivative with respect to x. The inte-
gration of Eq. (15) gives

p = −4k2

3
+ p0

a
, (16)

where p0 is an arbitrary constant. The Einstein equations are

−b′′

b
− c′′

c
− b′c′

bc
= 4k2

3
, (17)

a′b′

ab
+ a′c′

ac
+ b′c′

bc
= p, (18)

+a′′

a
+ c′′

c
+ a′c′

ac
= p, (19)

+a′′

a
+ b′′

b
+ a′b′

ab
= p. (20)

Introducing new functions

A = a′

a
, B = b′

b
, C = c′

c
, (21)

we can rewrite the Einstein equations (17)-(20) as follows:

−B ′ − B2 − C ′ − C2 − BC = 4k2

3
, (22)

AB + AC + BC = p, (23)

A′ + A2 + C ′ + C2 + AC = p, (24)

A′ + A2 + B ′ + B2 + AB = p. (25)

3. Solution with isotropic pressure

In what follows we shall consider only the solutions where the 
symmetry between the directions along the coordinate axes y and 
z is present. Then

B = C, (26)

and we obtain from Eq. (22)

−2B ′ − 3B2 = 4k2

3
. (27)

Integrating this equation, we obtain

B = C = −2

3
k tan k(x + x0). (28)

Using the definitions (21), we obtain
b = b0(cos k(x + x0))
2
3 , (29)

c = c0(cos k(x + x0))
2
3 . (30)

Let us note that in order to not have singularities in the metric, we 
need to require that

[−L + x0, L + x0] ⊂ (−π/2,π/2), (31)

where x = −L and x = L are the locations of the boundary of the 
slab. Substituting Eqs. (28) and (16) into Eq. (23), we obtain

−a′

a

4k

3
tan k(x + x0) + 4k2

9
tan2 k(x + x0) = −4k2

3
+ p0

a
. (32)

This equation can be rewritten as

a′ − k

3
tan k(x + x0)a − k cot k(x + x0)a + 3p0

4k
cot k(x + x0) = 0.

(33)

The general solution of the corresponding homogeneous equation 
is

a(x) = a1 sin k(x + x0)(cos k(x + x0))
− 1

3 , (34)

where a1 is an integration constant. We shall look for the solution 
of the inhomogeneous equation (33) in the following form

a(x) = ã(x) sin k(x + x0)(cos k(x + x0))
− 1

3 . (35)

Substituting the expression (35) into Eq. (33), we have

ã′ = −3p0

4k

(cos k(x + x0))
4
3

sin2 k(x + x0)
. (36)

Integrating by parts, we obtain

ã(x) = 3p0

4k2
cot k(x + x0)(cos k(x + x0))

4
3

+ p0

k

∫
dx (cos k(x + x0))

4
3 + a2, (37)

where a2 is an integration constant. Introducing a variable

u ≡ sin2 k(x + x0)

one can find that

p0

k

x∫
−x0

dy(cos k(y + x0))
4
3

= p0

2k2
B

(
sin2 k(x + x0); 1

2
,

7

6

)
Sign[sin k(x + x0)], (38)

where the incomplete Euler function is defined as

B(x, r, s) ≡
x∫

0

duur−1(1 − u)s−1. (39)

Thus, the general solution of Eq. (33) is

a(x) = 3p0

4k2
cos2 k(x + x0)

+ p0

2k2
(cos k(x + x0))

1
3 | sin k(x + x0)|B

(
sin2 k(x + x0); 1

2
,

7

6

)

+ a3 sin k(x + x0)(cos k(x + x0))
− 1

3 . (40)
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)

Looking at the expression (16), we see that the disappearance of 
the pressure on the boundary of the slab is equivalent to the re-
quirement that

a(−L) = a(L) = 3p0

4k2
. (41)

On using Eq. (40) this condition can be rewritten as

− 3p0

4k2
sin2 k(±L + x0)

+ p0

2k2
(cos k(±L + x0))

1
3 | sin k(±L + x0)|

× B
(

sin2 k(±L + x0); 1

2
,

7

6

)

+ a3k sin(±L + x0)(cos k(±L + x0))
− 1

3 = 0. (42)

Now, we have two free parameters x0 and a3, which we can fix 
in such a way to provide the disappearance of the pressure on the 
border of the slab. Let us first choose

x0 = L. (43)

It guarantees that

a(−L) = 3p0

4k2
(44)

and, hence,

p(−L) = 0. (45)

With this choice of x0 the requirement (31) becomes

2kL <
π

2
. (46)

It is easy to see, that if the inequality (46) is broken, the cosine is 
equal to zero at some value of the coordinate x inside the slab and 
one encounters a singularity.

Now, substituting the value (43) into Eq. (42), we can choose 
the constant a3 requiring the disappearance of the pressure on the 
other border of the slab x = L. This constant is

a3 = p0

4k2

(
3 sin 2kL cos1/3 2kL

− 2 cos2/3 2kL B(sin2 2kL;1/2,7/6)
)

. (47)

Finally we can write

a(x) = 3p0

4k2
cos2 k(x + L)

+ p0

2k2
(cos k(x + L))

1
3 sin k(x + L)B

(
sin2 k(x + L); 1

2
,

7

6

)

+ p0

4k2

(
3 sin 2kL cos1/3 2kL − 2 cos2/3 2kL B(sin2 2kL;1/2,7/6)

)

× sin k(x + L)(cos k(x + L))−
1
3 . (48

Thus, we have obtained a complete solution of the Einstein equa-
tions in the slab, where the energy density is constant and the 
pressure disappears on the boundary between the slab and an 
empty space. Let us make some comments here. First, the scale 
factors a, b and c and hence the metric coefficients are not even 
and the solution is not invariant with respect to the inversion

x → −x.

However, making the change x → −x we obtain another solution of 
our equations. It can be obtained also by choosing x0 = −L instead 
of x0 = L and by the corresponding change of the expression for 
the coefficient a3, which is reduced to the change of the sign of the 
argument of the trigonometrical functions. There is no qualitative 
difference between these two solutions. Thus, we shall study the 
first one. Let us emphasise that the choice x0 = ±L is obligatory 
in order for the pressure to vanish on both boundaries of the slab 
and, hence, the asymmetry of these two solutions is an essential 
feature of the problem. It arises in spite of the initial symmetry of 
the Einstein equations and of the position of the slab. Thus, one 
can speak about some kind of symmetry breaking phenomenon.

Let us consider the question of matching of the solutions in 
the slab with the vacuum solutions outside the slab. Our solution 
inside the slab possesses symmetry in the plane (y, z). Thus, we 
shall try to match it at x < −L and at x > L with one of these 
three solutions: Minkowski, Rindler or Weyl-Levi-Civita (7).

Consider the plane x = −L. We shall require that

aext(−L) = a(−L), bext(−L) = b(−L), cext(−L) = c(−L),

a′
ext(−L) = a′(−L), b′

ext(−L) = b′(−L), c′
ext(−L) = c′(−L). (49)

Looking at the expressions (48), (29), (30) we see that at x = −L
the derivatives of b and c disappear (provided x0 = L), while the 
derivative of a at this point is different from zero. Thus, we should 
choose the Rindler geometry for x < −L

ds2 = a2
R(x − xR)2dt2 − dx2 − b2

R(dy2 + dz2). (50)

We can consider the analogous matching conditions at x = L. Here 
the derivatives of all three scale factors are non-vanishing. Thus, 
for x > L we have a Weyl-Levi-Civita solution

ds2 = a2
W LC (x − xW LC )−2/3dt2 − dx2

− b2
W LC (x − xW LC )4/3(dy2 + dz2). (51)

Let us discuss now these matching conditions in more detail. 
On the plane x = −L, we have

3p0

4k2
= aR(−L − xR), (52)

to match the scale factors (the subscript “R” means “Rindler”) and

a3k = aR , (53)

where a3 is given by Eq. (47) to match their derivatives. It follows 
from Eqs. (52) and (53) that

xR = −L − 3p0

4a3k3
. (54)

Plotting (47) as a function of 2kL, we can see that for values 
smaller than 2kL ≈ 1.05 a3 < 0 and thus

xR > −L. (55)

Therefore there is no horizon for these values of kL.
At the boundary x = L it is more convenient to write down the 

conditions of matching of the tangential scale factors b:

b0(cos 2kL)2/3 = bW LC (L − xW LC )2/3, (56)

−2

3
b0k(cos 2kL)−1/3 sin 2kL = 2

3
bW LC (L − xW LC )−1/3. (57)

From these two equations we easily find that

xW LC = L + 1
cot 2kL. (58)
k
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Provided the condition (46) we see that xW LC is necessarily bigger 
than L and we can’t avoid having a singularity in the space on the 
right side of the slab, at least not if the energy density ρ of the 
slab is positive. To obtain the solution for the case ρ < 0, we can 
replace k by ik in the solution that we already have. Then trigono-
metric functions turn into hyperbolic ones and the expression (58)
is replaced by

xW LC = L − 1

k
coth 2kL. (59)

The above expression is smaller than L; therefore, there is no sin-
gularity. In the case of an infinitely thin slab, the conclusion that 
the singularity is unavoidable for ρ > 0 was obtained in [9].

The expression for xW LC given by Eq. (58) guarantees the sat-
isfaction of the matching conditions also for the scale factor a and 
its derivative. It follows from the fact that both for the Weyl-Levi-
Civita solution and for our internal solution

a′

a
(L) = −1

2

b′

b
(L), (60)

which in turn follows from Eq. (23) and from the disappearance of 
the pressure on the border of the slab.

As we mentioned earlier the solution (48) is not invariant with 
respect to the inversion of the coordinate x. However, for a par-
ticular value of kL one can have an even solution, invariant with 
respect to this inversion. Indeed, we can transform the general so-
lution for the scale factor a (40) into an even function of x by 
putting a3 = 0 and x0 = 0. Then also b(x) and c(x) become even. 
One can check numerically that at kL ≈ 1.05 the expression for a at 
the boundaries x = ±L is such that the pressure disappears. The ar-
gument of the trigonometric functions runs between −1.05 > −π

2
and 1.05 < π

2 , the cosine is always different from zero and the 
singularity does not arise. Besides, at both boundaries the deriva-
tives of the scale factors are different from zero. Hence, in both 
half-spaces outside the slab this solution should be matched with 
the Weyl-Levi-Civita solutions. Let us stress once again that this 
symmetric solution is a very particular one, arising at some spe-
cial value of kL, while generally we have a pair of solutions, each 
of which is not symmetric with respect to the reflection x → −x, 
instead this reflection transforms one solution into another and 
vice versa. One can trace here an analogy with a well-known case 
of two-well potential, which is often considered when introduc-
ing the spontaneous symmetry breaking phenomenon in quantum 
field theory (see e.g. [20])

V (φ) = (φ2 − φ2
0)2,

which is symmetric with respect to φ → −φ, while its minimum 
values φ = ±φ0 are not symmetric.

4. Solution with vanishing tangential pressure

In the preceding section we have considered a situation where 
the tangential pressure coincides with the transversal pressure, just 
like in the internal Schwarzschild solution [2]. In the case of the 
Schwarzschild spherically symmetric geometry, such a choice is 
obligatory because otherwise the pressure becomes infinite in the 
centre of the ball and a non-singular internal solution does not 
exist (unless it is assumed that radial pressure is identically zero 
and tangential pressure does not vanish at the boundary; see [21]). 
However, it is not obvious that in the case of the plane symmetry 
the situation is the same. Let us consider a more general energy-
momentum tensor
T t
t = ρ, T x

x = −px, T y
y = −p y, T z

z = −pz. (61)

Then the energy-momentum tensor conservation condition (14)
takes the following form

p′
x + A(ρ + px) + B(px − p y) + C(px − pz) = 0. (62)

In our case B = C and, hence, p y = pz . We shall consider the case, 
where the tangential pressure p y = pz = 0. Now the equation (62)
becomes

p′ + A(ρ + p) + 2Bp = 0, (63)

where p ≡ px . We have two unknown functions: p and A. How-
ever, it is not convenient to try to find the relation between these 
functions using Eq. (63). It is better to take Eq. (25) with the van-
ishing right-hand side:

A′ + A2 + B ′ + B2 + AB = 0. (64)

The function B still satisfies (27) and (28); using (28) we can 
rewrite (64) in terms of the function a:

a′′ − 2

3
tan k(x + x0)a

′ +
(

4

3
k2 tan2 k(x + x0)

− 2

3

k2

cos2 k(x + x0)

)
a = 0. (65)

Looking for the solution of these second order linear differential 
equation in the form

a(x)(cos k(x + x0))
α(sin k(x + x0))

βekγ (x+x0), (66)

we find two sets of the parameters giving the solution of Eq. (65):

α = −1

3
, β = 0, γ = 1√

3
,

α = −1

3
, β = 0, γ = − 1√

3
. (67)

Thus, the general solution of Eq. (65) is

a(x) = (cos k(x + x0))
−1/3(a4e

1√
3

k(x+x0) + a5e
− 1√

3
k(x+x0)

). (68)

Now, we find

A = a′

a
= k

3
tan k(x + x0) + k√

3

a4e
1√
3

k(x+x0) − a5e
− 1√

3
k(x+x0)

a4e
1√
3

k(x+x0) + a5e
− 1√

3
k(x+x0)

.

(69)

Substituting this expression into Eq. (23) we find the transversal 
pressure

p = − 4k2

3
√

3
tan k(x + x0)

a4e
1√
3

k(x+x0) − a5e
− 1√

3
k(x+x0)

a4e
1√
3

k(x+x0) + a5e
− 1√

3
k(x+x0)

. (70)

In order to have the pressure vanishing at x = −L, we can again 
choose x0 = L. Then fixing

a5 = a4e
4kL√

3 , (71)

we have the pressure vanishing also at x = L. Finally, we have

p = 4k2

3
√

3
tan k(x + L) tanh

k√
3
(L − x), (72)

and
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a(x) = a6(cos k(x + L))−1/3 cosh
1√
3

k(x − L). (73)

For x > L this solution should be matched with the Weyl-Levi-
Civita solution with the same value of the parameter xW LC as in 
the previous section. For x < −L the obtained solution is matched 
with the Rindler solution with

xR = −L +
√

3 coth 2kL√
3

k
. (74)

It is easy to see that as long as 2kL < π/2 the internal metric is 
regular and the pressure (72) is finite everywhere in the slab. Thus, 
in contrast to the case of the Schwarzschild geometry, we have 
here a non-singular internal solution with an anisotropic pressure, 
namely with the pressure whose tangental components are identi-
cally zero.

5. Concluding remarks

We have found two static solutions for an infinite slab of fi-
nite thickness immersed in the spacetime with plane symmetry. 
How are these solutions related to the solutions of a matter source 
localized on an infinitely thin plane? First of all let us note that 
our solutions are non-singular inside the slab if the condition (46)
is satisfied. If we introduce the notion of the energy of the unit 
square of the slab M:

M = 2ρL = 8k2L

3
, (75)

then the condition (46) becomes

L <
π2

12M
. (76)

Thus, if we fix the value of M and begin squeezing the slab, di-
minishing L, we do not encounter anything similar to the Buchdahl 
limit for spherically symmetric configurations [5]. In other words, 
if the relation (76) is satisfied at some value of L0, it remains sat-
isfied at all finite values of L < L0. On the other hand, if we start 
increasing the thickness of the slab then at the value L = π2

12M a 
singularity arises inside the slab. Moreover, in the case considered 
in the section 4 the pressure also becomes infinite.

What happens when L → 0? Obviously, the energy density will 
tend to the delta function

ρL→0 → Mδ(x). (77)

As was discussed in paper [9], the tangential pressure should also 
tend to infinity to maintain the validity of the energy-momentum 
conservation equation (14). In our solution presented in Section 4, 
the tangential pressure is identically zero. One can show, using 
Eqs. (16) and (42), that in the solution with an isotropic pressure 
presented in Section 3, the pressure in the slab is limited by the 
value p ≈ M2 when L → 0. Thus, while both of these solutions are 
well-defined at any arbitrary small, but finite value of the thick-
ness parameter L, there is not a smooth transition to an infinitely 
thin plane configuration for these two solutions. However, these 
solutions represent some particular configurations acceptable from 
a physical point of view. Let us emphasise once again that we did 
not fix some particular equation of state for the matter filling our 
slab. We simply required that the energy density in the slab is 
constant and that the pressure disappears at the boundaries of the 
slab. These conditions are the same used in the Schwarzschild in-
ternal solution [2]. Then we considered two particular additional 
conditions: one of them requires the isotropy of the pressure, just 
like in the Schwarzschild solution [2], another requires the dis-
appearance of the tangential pressure in all the slab. For both of 
these requirements we have found exact solutions. In principle, 
one can imagine the existence of a solution where the transversal 
and tangential pressures are different functions of the coordinate x, 
vanishing on the borders of the slab. Then, one cannot exclude that 
for some solutions of this kind a smooth transition to the localised 
matter configurations is possible.

There is also another problem here: it would be interesting to 
find matter distributions, which imply the existence of solutions of 
the Einstein equations which are matched in the empty regions of 
the space with the general spatial Kasner solutions (2), (3) with 
p2 	= p3. We hope to attack these problems in a future work [22].
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