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Mixed multiplicities, Segre numbers and Segre classes

To the memory of Professor David Rees (1918–2013)

R. Achillesa,1,∗, M. Manaresia,1, T. Pruschkeb

aDipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, I-40126
Bologna, Italy

bFranz-Kocks-Str. 6, D-33104 Paderborn, Germany

Abstract

Based on classical results of Rees and on multivariate Hilbert polynomials, we
define new mixed multiplicities of two arbitrary ideals in a local ring (A,m) and
use them to express the local degrees of all varieties appearing in the Gaffney-
Gassler construction of Segre cycles. We prove that the classical mixed mul-
tiplicities of m and an arbitrary ideal I, which are a special case of the new
ones, are equal to the generalized Samuel multiplicities of an ideal in the Rees
algebra RI(A). This equality is used to improve a result of Jeffries, Montaño
and Varbaro on the degree of the fiber cone of an ideal.

We conclude the paper with formulas (and their inverses) which express the
degrees of Segre classes of subschemes of arbitrary projective varieties by gener-
alized Samuel multiplicities or by classical mixed multiplicities. Using the mixed
multiplicities of balanced rational normal scrolls, which have been computed by
Hoang and Lam, we find the mixed multiplicities of all rational normal scrolls
as well as their Segre classes and their generalized Samuel multiplicities.

Keywords: Mixed multiplicity, generalized Samuel multiplicity, Segre class,
rational normal scroll, fiber cone.
2000 MSC: 13H15 (primary), 14C17, 13A30, 14Q99 (secondary)

1. Introduction

The scope of this paper is to express the local degrees of all varieties ap-
pearing in the construction of Segre cycles as mixed multiplicities in order to
avoid the use of general hypersurfaces. In doing so, a new mixed multiplicity is
introduced and studied.
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Local variants of the intersection cycle of Stückrad and Vogel ([34], [13])
were introduced in 1990 by Massey [27], [28] (Lê cycles), in 1995 by Tworzewski
[38] and in 1999 by Gaffney and Gassler [15], who defined Segre numbers and
polar multiplicities of an ideal in the local ring of a reduced analytic space germ.
They used general hyperplanes in the blowup of the germ along the ideal or, al-
ternatively, residual intersections of the polar varieties with hypersurfaces given
by general elements of the ideal. In 1997, for ideals in a local ring, Achilles
and Manaresi [3] introduced “generalized Samuel multiplicities”as the normal-
ized leading coefficients of a bivariate Hilbert polynomial and applied them to
the intersection cycle of Stückrad and Vogel. In the set-ups of Tworzewski and
Gaffney-Gassler, the generalized Samuel multiplicities are equal to the extended
degree and the Segre numbers, respectively.

In this paper we give the missing description of the local degrees of the
intersection of polar varieties with general hypersurfaces as mixed multiplici-
ties. To do this, we introduce new mixed multiplicities ek(I|J,A) for an ordered
pair (I, J) of arbitrary ideals in a local ring (A,m). They are defined to be
the normalized leading coefficients of a Hilbert polynomial of a trigraded ring.
The mixed multiplicities ek(I|m, A) of the pair (I,m) are the local multiplici-
ties of the intersection of the polar varieties with a hypersurface defined by a
general element from I, and the mixed multiplicities ek(m|I, A) are the polar
multiplicities of Gaffney and Gassler [15]. Moreover, the new mixed multiplicity
ek(I|m, A) turns out to be equal to the j-multiplicity of the extension of I in
the quotient ring of A by k general elements of m. This result can be seen as an
algebraic generalization of Teissier’s µ∗-sequence [35] of an isolated hypersurface
singularity.

When I and J are m-primary, the new multiplicities of (I, J) coincide with
the classical mixed multiplicities which are the normalized leading coefficients of
the Bhattacharya polynomial [5] and have been defined and studied by Teissier
and Risler [35], Katz and Verma [26], Trung [36] and others.

Our main result Theorem 2.4 expresses the degrees of all varieties appearing
in the intersection algorithm of [3] as mixed multiplicities and relates them
to each other. The constructions of the Lê cycle, the Segre cycle and of the
Stückrad-Vogel cycle are special cases. The new mixed multiplicities are needed
in the case of Lê and Segre cycles, while for the Stückrad-Vogel cycle the classical
mixed multiplicities are sufficient, see Trung [36, Theorem 4.6].

We also prove that the classical mixed multiplicities are equal to the gen-
eralized Samuel multiplicities of an ideal in the Rees algebra RJ (A), see Theo-
rem 3.1. As an application of this result we can describe the degree of the fiber
cone of an ideal in terms of a classical mixed multiplicity, see Theorem 3.3 and
Remark 5. This generalizes a recent result of Jeffries, Montaño and Varbaro
[25, Theorem 3.1].

We conclude the paper with a collection of explicit formulas which express
the degree of Segre classes of subschemes of projective varieties by generalized
Samuel multiplicities or classical mixed multiplicities. The first of such formulas
has been given by van Gastel [16, Corollary 3.7] in 1991 and they have been
used by Achilles and Manaresi in 1997 [3, Corollary 4.3] to give a method for
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the computation of the Segre class. A slightly more general formula has been
implemented in Reduce by Achilles and Aliffi [1] and allows to compute Segre
classes in projective varieties with arbitrary singularities. Recently Harris [17]
has given another approach via linear projections. Several other algorithms to
compute Segre classes of subschemes of projective space have been presented by
Aluffi [4], Eklund, Jost and Peterson [11], and Helmer [20].

Using the mixed multiplicities of balanced rational normal scrolls, which
have been computed by Hoang and Lam [23], we find the mixed multiplicities
of all rational normal scrolls. Then, by the conversion formulas, we obtain the
Segre class and the generalized Samuel multiplicities of rational normal scrolls.
For the first generalized Samuel multiplicity, the so-called j-multiplicity, there
was already a formula by Jeffries, Montaño and Varbaro [25, Theorem 3.3].

2. Hilbert functions of multigraded rings and mixed multiplicities

In this section we first recall some well-known facts on Hilbert functions and
Hilbert polynomials of standard multigraded rings, then we introduce new mul-
tiplicities for ordered couples of arbitrary ideals in local rings, which generalize
the classical mixed multiplicities.

We shall use multi-index notation: if α = (α1, . . . , αm) is an m-tuple of
non-negative integers, that is, α ∈ Nm, then |α| = α1 + · · · + αm and

(
α
β

)
=(

α1

β1

)
. . .
(
αm

βm

)
.

In the following, by a standard multigraded ring we mean a ring
S =

⊕
α∈Nm Sα such that

(i) Sα are additive subgroups,

(ii) Sα · Sβ ⊆ Sα+β for all α, β ∈ Nm,

(iii) S is as an S0-algebra (0 = (0,. . . ,0)) finitely generated by homoge-
neous elements of total degree one, that is, by all Sα with |α| = 1.

Let S =
⊕

α∈Nm Sα be a standard multigraded ring of (Krull-)dimension δ and
assume that S0 is an Artinian ring. The Hilbert function of S is defined to be

h(α) = hS(α) = lengthS0
(Sα) .

For α1, . . . , αm sufficiently large, the function hS(α) becomes a polynomial
pS(α), the Hilbert polynomial of S, which can be written in the form

pS(α) =
∑
β∈Nm

|β|≤δ−m

aβ

(
α

β

)

with aβ ∈ Z. Of special importance are the coefficients aβ with |β| = δ − m,
which are all non-negative (see [42, Thm. 7, p. 757 and Thm. 11, p. 759], [5] for
the bigraded case and [21, Thm. 4.1] for the m-graded case) but could be all
zero (see Trung [36] for results on their positivity). Despite of this fact we shall
call them the normalized leading coefficients of pS .
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Also the so-called sum transforms of h become polynomials with integer
coefficients. For example, the sum transform of h with respect to the first
variable is defined to be the function g(α) =

∑α1

u=0 h(u, α2, . . . , αm), which for
α1, . . . , αm sufficiently large can be written as∑

β∈Nm
|β|≤δ−m+1

bβ

(
α

β

)

with bβ ∈ Z. If |β| = δ −m + 1, then bβ ≥ 0 and if furthermore β1 ≥ 1, then
bβ = a(β1−1,β2,...,βm). We observe that b(0,β2,...,βm), β2 + · · ·+ βm = δ −m+ 1,
is a new leading coefficient.

Let A be a d-dimensional Noetherian local ring with unique maximal ideal
m) or a standard graded algebra such that (A0, n) is an Artinian local ring and
m = (n, A1) is the unique homogeneous maximal ideal of A. For an ideal I ⊂ A
we denote by

R = RI(A) = A[It] ⊂ A[t] (t is an indeterminate)

the Rees algebra of I and by

G = GI(A) =
⊕
i≥0

Ii/Ii+1

the associated graded ring of A with respect to I. We remember that dimG = d
while dimR = d+1 if there exists a d-dimensional prime ideal p ⊂ A such that
I * p and dimR = d otherwise, see, for example [22, Thm. 9.7, p. 51].

For ideals I, J ⊂ A we set

I : ⟨J⟩ := {a ∈ A | there is a positive integer n such that a · Jn ⊆ I} .

Then dimRI(A) = dimA if and only if dimA/(0 : ⟨I⟩) < dimA.
Now, in order to define mixed multiplicities ei(I|J) (i = 0, . . . , d − 1) for

arbitrary proper ideals I, J ⊂ A, we consider the trigraded ring

S = S(I, J ;A) =
⊕

k,i,j≥0

S(k,i,j) = Gm(GI(RJ(A))) =
⊕

k,i,j≥0

mkIiJj + Ii+1Jj

mk+1IiJj + Ii+1Jj

whose dimension is d+ 1 if there exist a d-dimensional prime ideal p ⊂ A such
that J * p and d otherwise.

The sum transform of the Hilbert function hS(k, i, j) = length(S(k,i,j)) of S
with respect to k is

h
(1,0,0)
S (k, i, j) = length

(
IiJj

mk+1IiJj + Ii+1Jj

)
,

which for k, i, j sufficiently large becomes a polynomial of the form∑
ℓ,m,n≥0

ℓ+m+n≤d−1

a(ℓ,m,n)(I, J ;A)

(
k

ℓ

)(
i

m

)(
j

n

)
, (1)

where a(ℓ,m,n)(I, J ;A) are non-negative integers, possibly all equal to zero.
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Definition 1. Themixed multiplicities of the ordered pair (I, J) of ideals I, J ⊂
A are defined to be

ei(I|J) = ei(I|J,A) = a(0,i,d−1−i)(I, J ;A), i = 0, . . . , d− 1.

Remark 1. If both I and J are m-primary ideals, then ei(I|J) (i = 0, . . . , d−1)
are the first d normalized leading coefficients of the Bhattacharya polynomial
[5] and if only I is m-primary and J has positive height, then the ei(I|J) are
the mixed multiplicities introduced and studied by Katz and Verma, see [26],
[39], [40]. In fact, if I is m-primary, then for sufficiently large k we have

IiJj

mk+1IiJj + Ii+1Jj
=

IiJj

Ii+1Jj

and the length of the latter term was used by Katz and Verma to define ei(I|J).

Remark 2. If dimRJ (A) = d := dimA, or equivalently, if for all d-dimensional
prime ideals p ⊂ A one has J ⊆ p, that is, dimA/(0 : ⟨J⟩) < dimA, then the
degree of the Hilbert polynomial (1) is strictly smaller than d − 1. Hence by
Definition 1 for all i = 0, . . . , d− 1 it holds ei(I|J) = 0.

Trung’s mixed multiplicities ([36], p. 34) are different from ours since they
are defined using the actual degree of the Hilbert polynomial and under the
hypothesis that I is m-primary. Under this hypothesis, they coincide with ours
if dimRJ(A) = dimA + 1, that is, dimA = dimA/(0 : ⟨J⟩) (see also [36],
Lemma 3.1).

Remark 3. We can define ed(I|J,A) using the sum transform h
(1,1,0)
S of the

function h
(1,0,0)
S (k, i, j) with respect to the variable i and it turns out that

ed(I|J,A) = 0.

In fact, by contradiction, assume ed ̸= 0. Fix a sufficiently large integer k
and set

S̃(i,j) = IiJj/(mk+1IiJj + Ii+1Jj) and S̃ =
⊕
i,j≥0

S̃(i,j). (2)

The assumption ed ̸= 0 is equivalent to the existence of a highest dimensional
prime ideal p of S̃, such that S̃(1,0) ⊆ p (cf. e.g. [3, 1.2, 1.5]). If S̃(1,0) ⊆ p then

dim S̃ = dim S̃/p ≤ dim S̃/S̃(1,0)S̃ =

= dim
⊕
j≥0

Jj

mk+1Jj + IJj
≤ dim

⊕
j≥0

Jj

mk+1Jj
= s(J) ≤ d ,

where s(J) denotes the analytic spread of J . From dim S̃ ≤ d and h
(1,0)

S̃
(i, j) =

h
(1,1,0)
S (k, i, j) it follows that h

(1,1,0)
S becomes a polynomial of degree at most

d− 1, for large i, j. So el = 0, for all l = 0, . . . , d, which contradicts ed ̸= 0.
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Next we recall the definition of the generalized Samuel multiplicities of an
ideal I ⊂ A from [3]. We consider the bigraded ring

T =
⊕
i,j≥0

T(i,j) = Gm(GI(A)) =
⊕
i,j≥0

miIj + Ij+1

mi+1Ij + Ij+1
.

The double sum transform of the Hilbert function hT (i, j) = length(T(i,j)) of
T with respect to i and j for sufficiently large i, j becomes a polynomial of the
form ∑

m,n≥0
|m+n|≤d

a(m,n)(m, I;A)

(
i

m

)(
j

n

)
,

where a(m,n)(m, I;A) are non-negative integers, at least one of them positive.

Definition 2 (Achilles-Manaresi [2], [3]). The generalized Samuel multiplicities
of the ideal I are defined to be

ci(I) = ci(I, A) = a(i,d−i)(m, I;A), i = 0, . . . , d.

The j-multiplicity j(I) of the ideal I introduced in [2] is the non-negative integer
c0(I, A).

We remark that if the ideal I is m-primary then c0(I) = c0(I, A) = e(I,A),
the Samuel multiplicity of I. In the case I = m we shall simply write e(A). If
moreover A is a standard graded algebra such that A0 is a local ring, then e(A)
is the multiplicity or degree of A.

Intersection algorithm. The generalized Samuel multiplicities of I can be
computed by an algorithm mimicking the intersection algorithm of Stückrad
and Vogel [41]. This algorithm needs “generic elements” of the ideal I and
produces at the same time the generalized Samuel multiplicities ci(I, A) and
the mixed multiplicities ei(m|I) and ei(I|m).

In order to have “generic elements” of I = (ξ1, . . . , ξn)A in the sense of [12,
3.3] or [13, 1.5.13], we extend A by n2 new indeterminates U := {Uij | 1 ≤ i, j ≤
n} and pass to the localization B = A[U ]mA[U ]. Then, by Cramer’s rule, the
generic elements

xi :=

n∑
j=1

Uijξj ∈ IB, 1 ≤ i ≤ n

generate J := IB. Following [13], we call x = (x1, . . . , xn) a transformed set
of generators for IB. By the genericity of x, every subset of s = s(I) =
s(J) elements of {x1, . . . , xn} forms a minimal reduction of J , in particular√
(x1, . . . , xs) =

√
J . We remark that the ring extension A → B is faithfully

flat and dimA = dimB (see, for example [13, 1.5.14]). In the case A is an
algebra one has to consider the extension

A → Am → B = Am[U ]mAm[U ]
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[8, Proposition 1.5.15].
We define a cycle v(x,B) ofB supported on V (IB) = V (xB) by the following

intersection algorithm in B. Set b−1 := (0), x0 := 0, J := xB, and inductively

bk := (bk−1 + xkB) :B ⟨J⟩ :=
∪
n≥0

((bk−1 + xkB) :B Jn) (0 ≤ k ≤ s) . (3)

Observe that bs = B. Then

vk(x,B) :=
∑
p

length(B/(bk−1 + xkB))p [p] ,

where the sum is taken over all (d− k)-dimensional associated prime ideals p of
B/(bk−1+xkB) that contain J and [p] denotes the cycle associated with p. We
define

v(x,B) :=
s∑

k=0

vk(x,B) ,

and the degree of vk(x,B) by

deg vk(x,B) :=
∑
p

length(B/(bk−1 + xkB))p · e(B/p) .

By [3, Theorem 4.1] we have

ck(I,A) = ck(J,B) = deg vd−k(x,B), k = 0, . . . , s

and ck(I,A) = ck(J,B) = 0 for k = s+ 1, . . . , d.

We shall prove that the intersection algorithm produces not only the gener-
alized Samuel multiplicities ck(I, A) but also the mixed multiplicities ed−k(I|m)
and ek(m|I). In order to prove this, we need to know how these numbers behave
under the two operations of the intersection algorithm, that is, under factoriza-
tion of generic elements and under removing certain components of the zero
ideal of the ring. We begin with a lemma due to D. Rees, which is essentially
[33, Lemma 1.2].

Lemma 2.1 (D. Rees). Let A be a local ring or a standard graded algebra such
that A/m is infinite and let I, J be ideals of A. If Σ is a finite set of ideals of
A not containing I, then there exists an element x of I not contained in any of
the ideals in Σ such that for all large i and for all j ≥ 0 we have

xA ∩ IiJj = xIi−1Jj .

Proof. The lemma is a variation of [33, Lemma 1.2]. Note that the assumptions
about ideals being prime are not needed since the residue field is infinite. One
uses the well-known fact that a vector space over such a field cannot be the union
of a finite number of proper linear subspaces. Then Rees’ proof still works.
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Lemma 2.2. Let A be a local ring or a standard graded algebra of dimension d
such that A/m is infinite and let I, J be ideals of A which are not contained in
any associated d-dimensional prime ideal of A. Then there are elements x ∈ I
and y ∈ J such that for l = 0, . . . , d− 2 it holds

el(I|J,A/xA) = el(I|J,A) and el(I|J,A/yA) = el+1(I|J,A) .

The elements x and y can be chosen outside a finite number of proper ideals of
A which do not contain I or J , respectively.

Proof. Let Σ be the set composed of the finite number of ideals in the lemma, of
all associated d-dimensional prime ideals ofA and of all ideals properly contained
in I which correspond to the contraction of a relevant associated prime ideal
of S̃ (as defined by (2) in Remark 3) to S̃(1,0) = I/(mk+1I + I2). Then by
Lemma 2.1 there is an element x ∈ I not contained in any of the ideals in Σ
such that for all large i we have xA ∩ IiJj = xIi−1Jj and dim(A/xA) = d− 1.
As in Remark 3, denote by S̃ and S̃(A/xA) the bigraded rings whose Hilbert
polynomials define el(I|J,A) and el(I|J,A/xA) respectively. We obtain

[S̃(A/xA)](i,j) =
IiJj + xA

mk+1IiJj + Ii+1Jj + xA

∼=
IiJj

IiJj ∩ (mk+1IiJj + Ii+1Jj + xA)

=
IiJj

mk+1IiJj + Ii+1Jj + (xA ∩ IiJj)

=
IiJj

mk+1IiJj + Ii+1Jj + xIi−1Jj
= [S̃/xS̃](i,j).

This shows that e0(I|J,A/xA), . . . , ed−2(I|J,A/xA) are equal to the normalized
leading coefficients of the Hilbert polynomial of S̃/xS̃. For i and j sufficiently
large, taking into account that x avoids every relevant homogeneous associated
prime ideal of S̃, we can compute the top degree of the Hilbert polynomial of
S̃/xS̃ as follows:

length [S̃/xS̃](i,j) = length S̃(i,j) − length S̃(i−1,j)

=

d−1∑
l=0

el(I|J)
[(

i

d− 1− l

)
−
(

i− 1

d− 1− l

)]
·
(
j

l

)
+ terms of lower degree

=
d−2∑
l=0

el(I|J)
(

i

d− 2− l

)(
j

l

)
+ terms of lower degree .

This proves the first statement of the lemma.
The proof of the second statement is similar. This time Lemma 2.1 is applied

to the set Σ that is composed of all associated d-dimensional prime ideals of A
and of all ideals properly contained in J which correspond to the contraction of
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a relevant associated prime ideal of S̃ to S̃(0,1) = J/(mk+1J + IJ). Then there
is an element y ∈ J such that for all large j we have yA ∩ IiJj = yIiJj−1,
dim(A/yA) = d− 1, and we obtain

[S̃(A/yA)](i,j) =
IiJj + yA

mk+1IiJj + Ii+1Jj + yA

∼=
IiJj

IiJj ∩ (mk+1IiJj + Ii+1Jj + yA)

=
IiJj

mk+1IiJj + Ii+1Jj + (yA ∩ IiJj)

=
IiJj

mk+1IiJj + Ii+1Jj + yIiJj−1
= [S̃/yS̃](i,j).

This shows that e0(I|J,A/yA), . . . , ed−2(I|J,A/yA) are equal to the normalized
leading coefficients of the Hilbert polynomial of S̃/yS̃. Since y avoids every
relevant homogeneous associated prime ideal of S̃, for i and j sufficiently large,
we have

length [S̃/yS̃](i,j) = length S̃(i,j) − length S̃(i,j−1)

=
d−1∑
l=0

el(I|J)
(

i

d− 1− l

)
·
[(

j

l

)
−
(
j − 1

l

)]
+ terms of lower degree

=
d−1∑
l=1

el(I|J)
(

i

d− 1− l

)(
j

l − 1

)
+ terms of lower degree,

which proves the lemma.

The next lemma shows that in order to compute mixed multiplicities, certain
components of the zero ideal of the ring can be removed.

Lemma 2.3. Let I, J be ideals of A and assume that dimA = dim(A/0 :
⟨J⟩) ≥ 1. Then, for all l = 0, . . . , d− 1, we have

el(I|J) = el(I|J,A/0 : ⟨J⟩) .

Similarly, if dimA = dim(A/0 : ⟨I⟩) ≥ 1, then for all l = 0, . . . , d− 1, we have

el(I|J) = el(I|J,A/0 : ⟨I⟩) .

Proof. We have for all i, j ≥ 0 and k large but fixed

IiJj + 0 : ⟨J⟩
mk+1IiJj + Ii+1Jj + 0 : ⟨J⟩

∼=
IiJj

IiJj ∩ (mk+1IiJj + Ii+1Jj + 0 : ⟨J⟩)
(4)

=
IiJj

mk+1IiJj + Ii+1Jj + (IiJj ∩ (0 : ⟨J⟩))
. (5)
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By the Artin-Rees Lemma, there is an integer c such that for all large j we have

IiJj ∩ (0 : ⟨J⟩) = Jj−c(IiJc ∩ (0 : ⟨J⟩)) ⊆ Jj−c(0 : ⟨J⟩) = 0

so that the term of (5) is isomorphic to

IiJj

mk+1IiJj + Ii+1Jj
.

If we take the lengths over these isomorphisms, we obtain that the Hilbert
functions defining el(I|J) and el(I|J,A/0 : ⟨J⟩), respectively, coincide for large
i, j. Hence, their Hilbert polynomials coincide.

The proof of the second statement is similar.

Now we are ready to express the mixed multiplicities ed−k(I|m) and ek(m|I)
by Samuel multiplicities from the intersection algorithm. We shall prove that
ed−k(I|m) is the degree of the kth intersection and ek(m|I) that of the kth
residual intersection.

Theorem 2.4. With the previous notations, assume that d = dimA ≥ 1. Then

(i) for k = 1, . . . , s,

(a) if dim(B/bk−1) = d− k + 1, then

ed−k(I|m, A) = ed−k(IB|mB,B) = e(B/(bk−1 + xkB))

and
ek−1(m|I, A) = ek−1(mB|IB,B) = e(B/bk−1).

(b) if dim(B/bk−1) < d− k + 1, then

ed−k(I|m, A) = 0 and ek−1(m|I, A) = 0.

(c)
cd−k(I, A) = ed−k(I|m, A)− ek(m|I,A);

(ii) for k = s+ 1, . . . , d

ed−k(I|m, A) = ek−1(m|I,A) = cd−k(I,A) = 0;

(iii) for k = 1, . . . , d− dim(A/I)− 1

ed−k(I|m, A) = ek(m|I, A) and cd−k(I, A) = 0.

Proof. Since the faithfully flat ring extension A → B does not affect the Hilbert
functions, it is sufficient to prove the assertions regarding the ring B. Once (i)
and (ii) have been proved, (iii) is an immediate consequence of the intersection
algorithm.

We shall prove (i) and (ii) by induction on d = dimA.
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Let us consider the case d = 1. Then the analytic spread s of I is either
0 or 1. If s = 0, then I is nilpotent and dimRI(A) = dimA = 1, hence
e0(I|m, A) = e0(m|I, A) = 0. It is clear that also c0(I) = 0. If s = 1, then
I is not nilpotent and dimRI(A) = dimA + 1 = 2. By Lemma 2.3 and [26,
Lemma 2.2] or [36, Lemma 3.1],

e0(IB|mB,B) = e0(IB|mB,B/0 : ⟨IB⟩) = e(IB,B/0 : ⟨IB⟩) (6)

and, since x1 is a generic element of IB and B/0 : ⟨IB) is Cohen-Macaulay,

e(IB,B/0 : ⟨IB⟩) = e(x1B,B/0 : ⟨IB⟩) = length(B/(0 : ⟨IB⟩+ x1B)) (7)

= e(B/(0 : ⟨IB⟩+ x1B)).

By (6) and (7),

e0(IB|mB,B) = e(B/(0 : ⟨IB⟩+ x1B) = e(B/(b0 + x1B).

For the equations (b) and (c) of (i), note that c0(I) = e(B/(b0 + x1B)) by
the intersection algorithm, b1 = (b0 + x1B) : ⟨IB⟩ = B and e1(m|I) = 0 by
Remark 3. It follows that c0(I) = e0(I|m)− e1(m|I).

Now let us consider the case d ≥ 2. Then B̄ := B/(0 : ⟨IB⟩ + x1B) is of
dimension at most d− 1 ≥ 1. If dim B̄ < d− 1, then ek(IB|mB,B) = 0 for k =
0, . . . , d−1 (see Remark 2). If dim B̄ = d−1, then, using the genericity of x1, by
Lemmas 2.2 and 2.3 we have ek(IB|mB,B) = ek(IB̄|mB̄, B̄) for k = 0, . . . , d−2.
If dim B̄ > dim(B̄/0 : ⟨IB̄⟩), then ck(IB̄) = ek(IB̄|mB̄) = ek(mB̄|IB̄) = 0 for
k = 0, . . . , d − 2 (see Remark 2), and if dim B̄ = dim(B̄/0 : ⟨IB̄⟩), then by
Lemmas 2.3, 2.2 and the induction hypothesis it holds

ed−k(IB|mB) = ed−1−(k−1)(IB̄|mB̄) = e(B̄/(b̄k−2 +xkB̄)) = e(B/bk−1 +xkB)

for k − 1 = 1, . . . , s− 1. This proves the assertion (a) of (i) for k = 2, . . . , s.

It remains to prove the assertion (a) of (i) for k = 1, that is,

ed−1(IB|mB) = e(B/(b0 + x1B)) = e(B/(0 : ⟨IB⟩+ x1B))

if dimB = dim(B/b0) = dim(B/(B/0 : ⟨IB⟩) or

ed−1(IB|mB) = 0 if dimB > dim(B/b0).

The latter is clear by Remark 2. So let us assume that dimB = dim(B/b0).
Then by Lemma 2.3,

ed−1(IB|mB) = ed−1(IB|mB,B/0 : ⟨IB⟩). (8)

By Lemma 2.2, there are elements y1, . . . , yd−1 ∈ m such that

ed−1(IB|mB,B/0 : ⟨IB⟩) = ed−2(IB|mB,B/0 : ⟨IB⟩+ y1B) = · · ·
= e0(IB|mB,B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B)) (9)
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and such that, for k = 1, . . . , d − 1, all (d − k)-dimensional associated prime
ideals of 0 : ⟨IB⟩+ (y1, . . . , yk)B do not contain IB.

In order to see (9), we distinguish three cases for k:
If k < d− dim(A/I) then

dim(B/(0 : ⟨IB⟩+ (y1, . . . , yk)B) = d− k > dim(B/IB) = dim(A/I),

hence a (d− k)-dimensional prime ideal cannot contain IB.
If k = d− dim(A/I) and yk has been chosen outside all highest-dimensional

associated prime ideals of IB, then a prime ideal which contains both yk and IB
has dimension strictly smaller than dim(A/I), thus, taking into account that

dim(B/(0 : ⟨IB⟩+ (y1, . . . , yk)B)) = dim(A/I),

there is no highest-dimensional prime ideal of 0 : ⟨IB⟩ + (y1, . . . , yk)B that
contains IB.

Finally, if d − dim(A/I) < k ≤ d − 1 and yk has been chosen outside all
highest-dimensional associated prime ideals of the (d − k)-dimensional ideal
IB + (yd−dim(A/I), . . . , yk−1)B, then a prime ideal which contains both yk and
IB+(yd−dim(A/I), . . . , yk−1)B has dimension strictly smaller than d−k. Hence,
as above, there is no highest-dimensional prime ideal of 0 : ⟨IB⟩+(y1, . . . , yk)B
that contains IB which proves (9).

By Lemma 2.3,

e0(IB|mB,B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B))

= e0(IB|mB,B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B) : ⟨mB⟩), (10)

and the image of IB in the one-dimensional Cohen-Macaulay ring

B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B : ⟨mB⟩)

is primary to the maximal ideal, hence

e0(IB|mB,B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B) : ⟨mB⟩)
= e(IB,B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B) : ⟨mB⟩)

(by [26, Lemma 2.2] or [36, Lemma 3.1])

= e(x1B,B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B : ⟨mB⟩))
(since x1 is a generic element of IB)

= length(B/(0 : ⟨IB⟩+ (y1, . . . , yd−1)B : ⟨mB⟩) + x1B)

(by the Cohen-Macaulay property)

= e((x1, y1, . . . , yd−1), B/(0 : ⟨IB)) (by [7, Theorem])

= e1(m|I,B/(0 : ⟨IB)) = e(B/(0 : ⟨IB⟩+ x1B)) (by [36, Proposition 4.1]).

Together with (8), (9) and (2) this proves that

ed−1(IB|mB) = e(B/(0 : ⟨IB⟩+ x1B)) = e(B/(b0 + x1B)).
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The statements of (i) concerning ek−1(m|I, A) (are essentially [36, Theo-
rem 3.4 and our Remark 2] or can be proved as the statements of (i) concerning
ed−k(I|m, A) by induction using Lemma 2.3, Lemma 2.2 and Remark 2.

For (ii) it is sufficient to remark that B/(bs−1 + xsB) : ⟨IB⟩ is the zero
ring.

Remark 4. Theorem 2.4 expresses the local degrees of all varieties appearing
in the construction of the Segre cycles of [15] as mixed multiplicities. Thus no
general hypersurfaces are needed. In fact, if we use notation of [15] and set
A = OY,0, then, by applying Theorem 2.4 to the cycles in [15, Lemma 2.2],
we have a complete description of the local degrees of the cycles by mixed
multiplicities:

mult0(Λ
g
k(I, Y )) = cd−k(I, A), (the kth Segre number of (I, Y )),

mult0(V (gk|Pg
k−1(I,Y ))) = ed−k(I|m, A),

mult0(P
g
k (I, Y )) = ek(m|I, A), (the kth polar multiplicity of (I, Y )).

Then, by taking degrees in the equality of cycles from [15, Lemma 2.2]

Λg
k(I, Y ) = [V (gk|Pg

k−1(I,Y ))]− [P g
k (I, Y )], k = 0, . . . , d− 1,

Λg
d(I, Y ) = [V (gd|Pg

d−1(I,Y ))],

we obtain the formula given in Theorem 2.4, (i) (c)

cd−k(I, A) = ed−k(I|m, A)− ek(m|I,A).

Theorem 2.4 implies that the new mixed multiplicities ek(I|m) are preserved
by passing to an arbitrary reduction of the ideal I.

Corollary 2.5. Let J be an arbitrary reduction of I. Then

ek(I|m) = ek(J |m), ek(m|I) = ek(m|J), ck(I) = ck(J)

for all k = 0, . . . , d− 1.

Proof. The second equalities are a special case of [36, Corollary 3.8], the third
ones are [9, Proposition 2.7], see also [37, Corollary 11.5], and ek(I|m) = ek(J |m)
follows immediately from Theorem 2.4.

Corollary 2.6. Let d = dimA and s = s(I) be the analytic spread of I. Then
ek(I|m) = 0 for k = 0, . . . , d− s− 1 and ed−s(I|m) = cd−s(I).

Furthermore, if A is quasi-unmixed (or formally equidimensional), that is,
equidimensional and universally catenary, then

ek(I|m) > 0 for k = d− s, . . . , d− 1 and

edim(A/I)(I|m) ≥ · · · ≥ ed−2(I|m) ≥ ed−1(I|m) > 0.
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Proof. The corollary is immediate from Theorem 2.4, (i)(a),(c) and (ii). For
the last assertion, observe that by [22, (18.17)], A is quasi-unmixed if and only
if it is equidimensional and universally catenary, and if this is the case, then
for each proper ideal I ⊂ A the associated graded ring G = GI(A) is also
quasi-unmixed, see [22, (18.24)], which implies that for all graded prime ideals
P ⊂ G it holds dimG/P + dimGP = dimG, hence cd−s(I) = ed−s(I|m) > 0,
see [3, Proposition 2.3(ii)], and the positivity of the other mixed multiplicities
follows by Theorem 2.4, (i)(a) and their monotony by Theorem 2.4,(iii) and [13,
Theorem 1.2.11].

In a discussion with C. Bivià-Ausina the first two authors realized that the
new mixed multiplicity ek(I|m, A), where I is not necessarily m-primary, equals
the j-multiplicity, that is c0, of the extension of I in the quotient ring of A by
k general elements of m. This result can be seen as an algebraic generalization
of Teissier’s µ∗-sequence [35, Définition 1.5, p. 300, Prop. 2.10, p. 315] of an
isolated hypersurface singularity.

Corollary 2.7. Let d := dim(A) > 1 and (y1, . . . , yn), n ≥ d, be a transformed
set of generators for mB, that is, y1, . . . , yn are general elements which generate
mB, see the definition before (3). Then

ek(I|m, A) = ek(IB|mB,B) = c0(IB,B/(y1, . . . , yk)B) for k = 0, . . . , d− 1.

Furthermore, if A is Cohen-Macaulay and (x1, . . . , xn) is a transformed set of
generators for IB, then

ek(I|m, A) = e((x1, . . . , xd−k, y1, . . . , yk)B) for k = dim(A/I), . . . , d− 1,

= σ(IB, . . . , IB︸ ︷︷ ︸,mB, . . . ,mB︸ ︷︷ ︸)
d− k times k times

(Rees’ mixed multiplicity of Bivià-Ausina [6, Definition 2.4]),

where (y1, . . . , yk) is defined to be (0) if k = 0.

Proof. We prove the first assertion of the corollary by induction on d. The
case d = 1 is clear by Theorem 2.4(i)(a) (or (iii) if s(I) < d) which states
e0(I|m, A) = c0(I, A) = c0(IB,B) without any restriction on d.

Now assume that d > 1, k > 0, and that the first assertion of the corollary
is true for d− 1. By Lemma 2.2 we have ek(IB|m, B) = ek−1(IB|mB,B/ykB).
Putting this together with the induction hypothesis ek−1(IB|m, B/ykB) =
c0(IB,B/(y1, . . . , yk−1, yk)B) gives the result.

The second assertion for k = 0, that is, dim(A/I) = 0, states that

e0(I|m, A) = e((x1, . . . , xd)B).

By a classical result of Northcott and Rees [31] the latter multiplicity is equal to
e(IB). In fact, dim(A/I) = 0 implies that I is m-primary and that (x1, . . . , xd)B
is a minimal reduction of IB. By Rees [32, Lemma 2.4] it is known that
e0(I|m, A) = e(I) = e(IB).
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In order to prove the second assertion in the case k > 0, we note that
d− dim(A/I) ≤ s, hence by Theorem 2.4(i)(a)

ed−k(I|m, A) = e(B/(bk−1 + xkB)) for k = 1, . . . , d− dim(A/I),

and the Cohen-Macaulay property of A (and hence of B) implies that bk−1 =
(x1, . . . , xk−1)B for k = 1, . . . , d− dim(A/I) and that

ed−k(I|m, A) = e(B/(x1, . . . , xk)B) = e((x1, . . . , xk, y1, . . . , yd−k)B)

for k = 1, . . . , d− dim(A/I).

In the special case when the ideal I is graded and generated by forms of the
same degree we obtain the following two corollaries of Theorem 2.4.

Corollary 2.8. Let A be a standard graded algebra such that (A0, n) is an
Artinian local ring and m = (n, A1) is the unique homogeneous maximal ideal of
A and I ⊂ A a proper ideal generated by forms of the same degree r and which
is not contained in any highest dimensional prime ideal of A. Then

ek(m|I,A) = rk e(A)

for 0 ≤ k < dim(A)− dim(A/I).

Proof. We use the notation of Theorem 2.4. Since I is not contained in any
highest dimensional prime ideal of A, by Theorem 2.4 (i) we have

e0(m|I, A) = e(B/b0) = e(B) = e(A)

and for each k = 1, . . . , dimA− dim(A/I)− 1, by the definition of bk (see (3)),
we have dim(B/bk) = d− k and

ek(m|I,A) = e(B/bk) = r · e(B/bk−1).

Corollary 2.9. Let A be a standard graded algebra such that (A0, n) is an
Artinian local ring and m = (n, A1) is the unique homogeneous maximal ideal
of A and I ⊂ A be a proper ideal of analytic spread s = s(I) generated by forms
of the same degree r. Let d = dim(A) ≥ 1. Then we have

ed−k(I|m, A) = r · ek−1(m|I, A) for k = 1, . . . , s and

ed−k(I|m, A) = ek−1(m|I, A) = 0 for k = s+ 1, . . . , d− 1.

Proof. By Theorem 2.4

ed−k(I|m, A) = e(B/(bk−1 + xkB)) = r · e(B/bk−1) = r · ek−1(m|I,A).
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3. Mixed multiplicities, generalized Samuel multiplicities and degree
of fiber cones

In this section we prove that the classical mixed multiplicities ek(m|I, A) are
equal to the generalized Samuel multiplicities of an ideal in the Rees algebra
RI(A), see Theorem 3.1. As an application we describe the degree of the fiber
cone of an ideal in terms of a classical mixed multiplicity, see Theorem 3.3 and
Remark 5. This generalizes a recent result of Jeffries, Montaño and Varbaro
[25, Theorem 3.1].

Theorem 3.1. Let A be a d-dimensional Noetherian local ring (A,m) or a
standard graded algebra A such that (A0, n) is an Artinian local ring and m =
(n, A1) is the unique homogeneous maximal ideal of A.

Let I ⊂ A be a proper ideal and let R = RI(A) the Rees algebra of A with
respect to I and let M = (m, It)R the unique homogeneous maximal ideal of R.

Then for each i, j ≥ 0 there is an isomorphism

Gi
M

(
Gj

mR(R)
)
∼= Gj

mR(Ri).

Moreover if dimR = d+ 1, then

ck+1(mR,R) = ek(m|I, A), k = 0, . . . , d− 1.

Proof. We consider

Gi
M

(
Gj

mR(R)
)
∼=

MimjR+mj+1R

Mi+1mjR+mj+1R

and we observe that

Mi = (mR,R1)
i = miR0 ⊕mi−1R1 ⊕ · · · ⊕mRi−1 ⊕ (⊕k≥i Rk) ,

MimjR = mi+jR0 ⊕mi+j−1R1 ⊕ · · · ⊕mj+1Ri−1 ⊕
(
⊕k≥i m

jRk

)
,

Mi+1mjR = mi+j+1R0 ⊕mi+jR1 ⊕ · · · ⊕mj+1Ri ⊕
(
⊕k≥i+1 m

jRk

)
,

MimjR+mj+1R = mjRi ⊕
(
⊕k≥i+1 m

jRk

)
⊕
(
⊕i−1

k=0 m
j+1Rk

)
,

Mi+1mjR+mj+1R = mj+1Ri ⊕
(
⊕k≥i+1 m

jRk

)
⊕
(
⊕i−1

k=0 m
j+1Rk

)
,

hence
Gi

M

(
Gj

mR(R)
)
∼= mjRi/m

j+1Ri = Gj
mR(Ri).

The last assertion follows immediately from the above isomorphism and the
definition of these numbers.

Corollary 3.2. Let A be a d-dimensional Noetherian local ring (A,m) or a
standard graded algebra A such that (A0, n) is an Artinian local ring and m =
(n, A1) is the unique homogeneous maximal ideal of A.

Let I ⊂ A be a proper ideal of analytic spread s = s(I) and let R = RI(A) the
Rees algebra of A with respect to I and let M = (m, It)R the unique homogeneous
maximal ideal of R.
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(i) If dimR = dimA+ 1, then

es−1(m|I,A) =
∑
P

e(M, R/P) · e(mRP, RP),

where P runs through all highest dimensional associated prime ideals of
R/mR such that dimR/P+ dimRP = dimR and

es(m|I,A) = · · · = ed−1(m|I, A) = 0.

(ii) If dimA/I < d, then
e0(m|I,A) = e(A).

Proof. The Corollary follows from the above Theorem and from [3, Proposition
2.3]. The assertion (ii) has been proved by Katz and Verma [26, Lemma 2.2]
under the assumption ht(I) > 0, but their proof holds also under the weaker
assumption dimA/I < d.

Theorem 3.3. Let A be a standard graded domain over a field k with unique
homogeneous maximal ideal m. Let I ⊂ A be a proper ideal of analytic spread
s = s(I) generated by forms of the same degree r and let R = RI(A) the Rees
algebra of A with respect to I.

Then
es−1(m|I,A) = e(R/mR) · e(RmR).

Proof. Being A a domain, the Rees algebra R is a domain too, since it is a
subring of the integral domain A[t]. The quotient ring R/mR is isomorphic to
k[f1, · · · , fs] ⊂ k[Ar], hence it is a domain, that is, mR is a prime ideal in the
integral domain R. It follows that

dimR/mR+ dimRmR = dimR

(see, for example, [29, 14 H]), hence by Corollary 3.2,

es−1(m|I, A) = e(M, R/mR) · e(mRmR, RmR) = e(R/mR) · e(RmR).

Remark 5. (Fiber cone) Let A be a Noetherian local ring (A,m) or a stan-
dard graded algebra A such that (A0, n) is a local ring and m = (n, A1) is the
homogeneous maximal ideal of A. Given an ideal I ⊂ A (homogeneous if A is
graded), the fiber cone or special fiber ring of I is the graded algebra

F (I) =
⊕
i≥0

Ii/mIi = RI(A)/mRI(A) = GI(A)/mGI(A)

of Krull-dimension s.
Theorem 3.3 says that the degree (or multiplicity) of the fiber cone F (I) is

e(F (I)) = es−1(m|I,A)/e(RmR).
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Corollary 3.4. Under the assumption of Theorem 3.3 one has

e(F (I)) ≤ es−1(m|I, A)

and equality holds if and only if RmR is a regular local ring.

Proof. It is an immediate consequence of Theorem 3.3, since e(RmR) ≥ 1 and
equality holds if and only if RmR is a regular local ring, since RmR is an integral
domain (see [30, Theorem 40.6]).

As a consequence of Theorem 3.3 and Corollary 2.9 we obtain a generaliza-
tion of [25, Theorem 3.1] to ideals of not necessarily maximal analytic spread.

Corollary 3.5. Under the assumption of Theorem 3.3, let us assume that the
ideal I has maximal analytic spread d. Then

c0(I, A) = r · ed−1(m|I,A) = r · e(F (I)) · e(RmR).

Proof. Under the assumption s(I) = d, we have

c0(I,A) = e0(I|m, A) (Theorem 2.4 (i) (a))

= r · ed−1(m|I,A) (Corollary 2.9)

= r · e(F (I)) e(RmR) (Theorem 3.3).

4. Segre classes

Let K be an algebraically closed field, Pn the projective n-space over K, Y
a (d−1)-dimensional closed subvariety of Pn and X  Y a q-dimensional closed
subscheme. For the definition of the Segre class s(X,Y ) of X in Y we refer to
[14, Chapter 4]. If i : X ↪→ Pn is the inclusion, then the push-forward of s(X,Y )
to Pn is a class in A∗(Pn) and can be written as

i∗s(X,Y ) = s0[P0] + s1[P1] + · · ·+ sq[Pq] =
= sd−1[P0] + sd−2[P1] + · · ·+ sd−1−q[Pq] + · · ·+ s0[Pd−1].

Note that sk = sd−1−k (k = 0, . . . , d− 1), that is, the upper index refers to the
codimension in Y . Obviously sd−2−q = · · · = s0 = 0.

Furthermore, let I(X) = (f1, . . . , ft) ⊂ K[x0, . . . , xn] be the defining ideal of
X, ri = deg fi for i = 1, . . . , t, A = K[x0, . . . , xn]/I(Y ), and m = (x0, . . . , xn)A.
Then (Krull-) dimA = d. The scheme X can be defined by an ideal I generated
by forms of the same degree r, r ≥ max(r1, . . . , rt), for example by replacing
each form fi with ri < r by the n + 1 forms f̃i,j = xj

r−rifi, j = 0, . . . , n. We

denote the forms of degree r which generate I simply by f̃0, . . . , f̃m. Let ϕ be
the rational map Y 99K Pm defined by

p 7→ [f̃0(p) : · · · : f̃m(p)].
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According to Harris [18, Example 19.4] one can associate to ϕ projective degrees
deg0(ϕ), . . . ,degd−1(ϕ), while Aluffi [4, 3.2] introduces the so-called shadow of
(the closure of) the graph Γϕ of ϕ, that is, the push-forward of [Γϕ] by the
projection map onto the first factor of Y × Pm to a class

[G] = g0 + g1h+ · · ·+ gd−1h
d−1 ∈ A∗(Y ).

Then it holds the following proposition.

Proposition 4.1. With the preceding notation and denoting by s the analytic
spread of I and by bk ⊆ B the ideals of the residual sets V (bk) in the intersection
algorithm (3), one has

degd−1−k(ϕ) = gk = ek(m|I, A) = e(bk) = deg V (bk) for k = 0, . . . , s− 1

and
degd−1−k(ϕ) = gk = ek(m|I, A) = 0 for k = s, . . . , d− 1.

Proof. By Helmer [20, Section 3.2, (10)] and by Theorem 2.4 the proposition
follows.

The degrees of the Segre classes of subschemes of arbitrary projective vari-
eties can be computed by computing generalized Samuel multiplicities or mixed
multiplicities of ideals, that is, by computing bivariate Hilbert polynomials.
Vice versa generalized Samuel multiplicities and the mixed multiplicities can be
calculated by the Segre classes, that is, all these “characteristic numbers” carry
the same information.

In the following theorem we collect the conversion formulas (11)–(14) for the
several characteristic numbers. As for these formulas, it seems that commutative
algebraists and algebraic geometers have ignored each other.

Formulas (11) and (12) are more or less known since the late 1980’s, when
van Gastel [16] discovered the relationship between between the intersection
theory of Fulton and MacPherson ([14]), which relies on the notion of Segre
classes, and that of Stückrad and Vogel ([34], [41], [13]), which is based on
an intersection algorithm. In 1997, Achilles and Manaresi [3] expressed the de-
grees of the Stückrad-Vogel cycle by the leading coefficients of a bivariate Hilbert
polynomial, the so-called generalized Samuel multiplicities. This allowed a com-
putation of the degrees of the Segre class (see [3, Corollary 4.3] and Flenner,
O’Carroll, Vogel [13, Corollary 2.4.7]) and was implemented in the first version
of the Reduce script Segre [1].

In 2003, Aluffi [4, Proposition 3.1] used the relation (13) for computing Segre
classes. Also Helmer [19, p. 18], [20, p. 11, (17)] (who quoted Vogel [41] in [19]),
presented (13) in the case Y = Pn. The reverse formula (14) can be found in
Eklund, Jost and Peterson [11, Theorem 3.2] (in the case Y = Pn) and Harris
[17, Proposition 4]. It seems that all these authors are not aware of van Gastel’s
paper [16].

We shall show that, once one has van Gastel’s result [16, Corollary 3.7],
all the formulas of the following theorem are an immediate consequence of the
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Stückrad-Vogel algorithm (Theorem 2.4). In the formulas, in order to include
c0(I, A), an s−1 will appear. If the prime ideal of X is generated by forms of
the same degree r, then s−1 can be interpreted as s0 of the projective cone of
X in the projective cone of Y ⊂ Pn+1.

Theorem 4.2. For k = 0, . . . , d, maintaining the previous notation, setting
ck = ck(I, A) and using the convention that for m,n ∈ Z,

(
m
n

)
= 0 if −1 ≤ m <

n,
(
m
−1

)
= 0 if m ≥ 0 and

(−1
−1

)
= 1, it holds:

sk = sd−1−k =
k∑

i=0

(
k − 1

i− 1

)
(−r)k−icd−i, (11)

ck =

q∑
i=k−1

(
d− k − 1

d− i− 2

)
ri+1−ksi, cd−k =

k∑
i=0

(
k − 1

i− 1

)
rk−isi, (12)

sk = sd−1−k =
k∑

i=1

(
k − 1

i− 1

)
(−r)k−i(ed−i(I|m)− ei(m|I)) = (13)

=
k∑

i=1

(
k − 1

i− 1

)
(−r)k−i(r · ei−1(m|I)− ei(m|I)),

ek(m|I) = e(A)rk −
k∑

i=1

(
k

i

)
rk−isi = (14)

=
d∑

i=1

(
d

i

)
rk−isi −

k∑
i=1

(
k

i

)
rk−isi =

d∑
i=1

[(
d

i

)
−
(
k

i

)]
rk−isi.

Proof. The formulas (11) and (12) have been proved by van Gastel [16, Corol-
lary 3.7], see also [13, Corollary 2.4.7].

Formula (13) is easily obtained from (11), since cd = 0 (by assumption Y is
a variety and X  Y ), by Theorem 2.4(i)(c) and (ii) for all i = 1, . . . , d it holds

cd−i = ed−i(I|m)− ei(m|I) (15)

and, by Corollary 2.9, for i = 1, . . . , d it holds

ed−i(I|m) = r · ei−1(m|I). (16)

Formula (14) is simply the reverse formula of (13) and can be proved by
induction on k. The case k = 0, that is e0(m|I) = e(A), has been proved by
Katz and Verma [26, Lemma 2.2]. Now suppose that k > 0 and

ek−1(m|I) = e(A)rk−1 −
k−1∑
i=1

(
k − 1

i

)
rk−1−isi. (17)
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Then by the second formula of (12) and (15), (16) it follows that

ek(m|I) = r · ek−1(m|I)−
k∑

i=0

(
k − 1

i− 1

)
rk−isi.

Substituting ek−1(m|I) by the induction hypothesis (17) gives

ek(m|I) = r

(
e(A)rk−1 −

k−1∑
i=1

(
k − 1

i

)
rk−1−isi

)
−

k∑
i=0

(
k − 1

i− 1

)
rk−isi

= e(A)rk −
k−1∑
i=1

((
k − 1

i

)
+

(
k − 1

i− 1

))
rk−isi − sk

= e(A)rk −
k∑

i=1

(
k

i

)
rk−isi,

which proves the first equality of (14). In particular it holds

0 = ed(m|I) = e(A)rd −
d∑

i=1

(
d

i

)
rd−isi,

that is

e(A) = r−d
d∑

i=1

(
d

i

)
rd−isi =

d∑
i=1

(
d

i

)
r−isi.

Substituting e(A) in the first equality of (14) by the preceding expression gives
the other equalities of (14).

As an application of Theorem 4.2 we want to compute the degrees of the
Segre classes and the Stückrad-Vogel cycles of rational normal scrolls from their
mixed multiplicities, which are known by Hoang and Lam [23] for balanced
rational normal scrolls. At first we extend their result to arbitrary rational
normal scrolls. We will use the following notation:

Rational normal scrolls. Given positive integers a1 ≤ · · · ≤ ad, set

n =
d∑

i=1

(ai + 1)− 1 and c = n− d =
d∑

i=1

ai − 1.

Then the associated d-dimensional rational normal scroll S(a1, . . . , ad) ⊂ Pn is
defined by the ideal I = I(a1, . . . , ad) ⊂ A = K[x0, . . . , xn] generated by the
2-minors of the 2× (c+ 1) matrix(

x0 . . . xa1−1 xa1+1 . . . xa1+a2 . . . xn−ad
. . . xn−1

x1 . . . xa1 xa1+2 . . . xa1+a2+1 . . . xn−ad+1 . . . xn

)
,

which has d catalecticant blocks of size 2× ai.
Now we are ready to prove the following theorem, which extends the result

of [23, Theorem 2.3] to arbitrary rational normal scrolls, balanced or not.
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Theorem 4.3. Let S(a1, . . . , ad) ⊂ Pn be a d-dimensional rational normal scroll

of codimension c (=
∑d

i=1 ai−1), let I ⊂ A = K[x0, . . . , xn] be its defining ideal
and m = (x0, . . . , xn)A. Then, for k = 0, . . . , n, the mixed multiplicities are

ek(m|I, A) = 2k − 2
k−c−1∑
i=0

(
k

i

)
− (2c+ 1− k)

(
k

c

)
. (18)

Proof. The formula (18) has been proved by Hoang and Lam [23, Theorem 2.3]
for ideals in K[x0, . . . , xn] generated by the 2-minors of

S =

(
x0 x1 x2 . . . xc

xd x1+d x2+d . . . xc+d

)
,

where c + 1 ≥ d. Note that our ek(m|I, A) is en+1−k(m|I) in [23]. Dividing d
by (c+ 1) with remainder yields non-negative integers q and r such that r < d
and c + 1 = q · d + r. Then the columns of matrix S can be rearranged in d
catalecticant blocks as follows:(

x0 xd x2d . x1 x1+d x1+2d . . xd−1 x2d−1 x3d−1 .
xd x2d . . x1+d x1+2d . . . x2d−1 x3d−1 . .

)
,

that is, the first r blocks have q+1 columns and the last d− r have q columns,
see [10, Section 3]. Therefore, according to [18, p. 108], the ideal generated by
the 2-minors of the matrix S defines the rational normal scroll S(q + 1, . . . , q +
1, q, . . . , q) of dimension d and codimension c. This means that (18) is true for
scrolls S(a1, . . . , ad) such that |aj − ai| ≤ 1 for all i, j, the so-called balanced
rational normal scrolls.

In order to prove (18) for all rational normal scrolls, we find it convenient
to denote the sequence of mixed multiplicities by

e∗(m|I) := e∗(m|I,A) := (e0(m|I,A) . . . , en(m|I,A)).

Now suppose we have shown that

e∗(m|I(a1, . . . , ad)) = e∗(m|I(a1 + 1, a2, . . . , ad−1, ad − 1)). (19)

Then all scrolls of the same dimension and codimension have the same mixed
multiplicities e∗(m|I,A). In fact, if S(a1, . . . , ad) is not balanced, then we
can pass to S(b1, . . . , bd), where (b1, . . . , bd) is obtained from reordering (a1 +
1, a2, . . . , ad−1, ad − 1) to natural order, and we have e∗(m|I(a1, . . . , ad)) =
e∗(m|I(b1, . . . , bd)). Repeating this, if necessary, we finally arrive at a balanced
scroll with he same mixed multiplicities e∗(m|I, A).

In order to prove (19), we consider the rational normal scroll

S(1, a1, . . . , ad−1, ad − 1) ⊂ Pn+1

from which S(a1, . . . , ad) and S(a1 +1, a2, . . . , ad−1, ad − 1) can be obtained by
intersecting it with suitable hyperplanes. To be more precise, we remember that

J := I(1, a1, . . . , ad−1, ad − 1) ⊂ Ã := A[xn+1] = K[x0, . . . , xn+1]
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is generated by the 2-minors of the 2× (c+ 1) matrix(
x0 x2 . . . xa1+1 xa1+3 . . . xa1+a2+2 . . . xn−ad+2 . . . xn

x1 x3 . . . xa1+2 xa1+4 . . . xa1+a2+3 . . . xn−ad+3 . . . xn+1

)
,

which has d + 1 blocks. If we merge the first and the last block by setting
x1 = xn−ad+2, we obtain the matrix whose 2-minors generate I(a1, . . . , ad), and
if we merge the first and the second block by setting x1 = x2, we obtain the
matrix whose 2-minors generate I(a1 + 1, a2, . . . , ad−1, ad − 1), hence

e∗(m̃|J, Ã/(x1 − xn−ad+2)) = e∗(m|I(a1, . . . , ad), A) and (20)

e∗(m̃|J, Ã/(x1 − x2)) = e∗(m|I(a1 + 1, a2, . . . , ad−1, ad − 1), A).(21)

Since the mixed multiplicities ek(m̃|J, Ã) are the coefficients of the terms
of highest degree in the Hilbert polynomial of the bigraded ring Rees algebra
RJ (Ã) and the linear forms x1 − xn−ad+2 and x1 − x2 are non zero-divisors in
the integral domain RJ (Ã), we have for k = 0, . . . , n the equalities

ek(m̃|J, Ã) = ek(m̃|J, Ã/(x1 − xn−ad+2)) = ek(m̃|J, Ã/(x1 − x2)), (22)

see [42, Theorem 5] or [3, Proposition 1.6]. Combining (20), (21) and (22), we
get (19), which finishes the proof.

The two preceding theorems give immediately the following result.

Theorem 4.4. Let S(a1, . . . , ad) ⊂ Pn be a d-dimensional rational normal scroll

of codimension c (=
∑d

i=1 ai−1). Then, for k = 0, . . . , n, its degrees of the Segre
class and the Stückrad-Vogel cycle (that is, the generalized Samuel multiplicities)
are respectively

sk = sn−k =

k∑
i=0

(
k − 1

i− 1

)
(−2)k−i(2c+ 1− i)

[(
i− 1

c− 1

)
−
(
i− 1

c

)]
, (23)

c0(I, A) = 2en(m|I) = 2

c∑
i=d

(
n

i

)
− 2(c− d+ 1)

(
n

c

)
, (24)

cn+1−k(I, A) = (2c+ 1− k)

[(
k − 1

c− 1

)
−
(
k − 1

c

)]
. (25)
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