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Abstract

Longitudinal studies of bone adaptation in mice using in vivo micro-computed tomography

(μCT) have been commonly used for pre-clinical evaluation of physical and pharmacological

interventions. The main advantage of this approach is to use each mouse as its own control,

reducing considerably the sample size required by statistical power analysis. To date, multi-

scale estimation of bone adaptations become essential since the bone activity that takes

place at different scales may be associated with different bone mechanisms. Measures of

bone adaptations at different time scales have been attempted in a previous study. This

paper extends quantification of bone activity at different spatial scales with a proposition of a

novel framework. The method involves applying level-set method (LSM) to track the geo-

metric changes from the longitudinal in vivo μCT scans of mice tibia. Bone low- and high-

spatial frequency patterns are then estimated using multi-resolution analysis. The accuracy

of the framework is quantified by applying it to two times separated scanned images with

synthetically manipulated global and/or local activity. The Root Mean Square Deviation

(RMSD) was approximately 1.5 voxels or 0.7 voxels for the global low-spatial frequency or

local high-spatial frequency changes, respectively. The framework is further applied to the

study of bone changes in longitudinal datasets of wild-type mice tibiae over time and space.

The results demonstrate the ability for the spatio-temporal quantification and visualisation of

bone activity at different spatial scales in longitudinal studies thus providing further insight

into bone adaptation mechanisms.

Introduction

Bone has a dynamic structure that is modified through bone modelling and remodelling. Bone

is shaped or reshaped through the spatio-temporal modelling process where the bone forma-

tion and resorption take place independently [1]. Meanwhile, bone undergoes the remodelling

process at discrete bone sites which maintains the skeletal strength through the coupled bone

resorption and formation [2–4]. Musculoskeletal disease are usually associated to imbalance in
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bone remodelling [4]. To better investigate these skeletal diseases, mouse models have been

widely used in preclinical studies for reasons of cost- and time-efficiency. Mouse models are

routinely used to investigate the effect of interventions against musculoskeletal diseases. To

evaluate the effects, it is essential to be able to monitor and quantify bone activities.

Traditionally, bone activity can be measured from two-dimensional (2D) histological slides

using dynamic histomorphometry methods [5, 6]. Biochemical markers of bone formation are

injected into a bone biopsy twice in time-separated sequences to fluorochrome label the min-

eralized bone surface at different times. The labelled bone formation surface may appear as

scalloped or as smoothed reversal lines, identified as remodelling-based and modelling-based

bone formation, respectively [6, 7]. The dual fluorochrome labels can therefore be used to

assess the properties of bone modelling and remodelling, such as cortical width, mineralizing

surface, bone formation rate, etc. [8, 9].

Recently, the development of the micro-computed tomography (μCT) technique enables

the 3D monitoring of the skeletal structure of living rodents [10–12]. The measurement is

based on the 3D rigid image registration of the time-lapsed in vivo μCT scans. The bone for-

mation and resorption are detected according to the appearance and disappearance of the vox-

els at consecutive scans [5, 13, 14]. The use of in vivo μCT measurements enables longitudinal

studies where each mouse is the control of itself; this can reduce the number of animals

required to achieve properly powered conclusion of 60%, if compared to cross-sectional stud-

ies [15, 16]. The approach also enables the analysis over whole bones, including both cancel-

lous and cortical bone, providing for the first time an experimental view of how bone

adaptation occurs over the anatomical space and over time [15]. This approach has been

widely applied for the characterization of bone properties, such as the influence of age on bone

adaptation and bone surface mineralization [13, 17], or the longitudinal effect of ovariectomy

and Parathyroid Hormone treatment on morphological properties of mouse tibia [16, 18].

μCT scan based methods reveals the complexity of bone dynamic structures and more spe-

cifically that bone geometry changes over space and time [7, 18]. The analysis of these spatio-

temporal patterns would be of great benefit to get an insight of the bone adaptation. A previous

study attempted to classify and quantify bone adaptation in the tibia midshaft from the μCT

3D images according to the time sequence of bone volume changes temporally [7]. This work

represents the first attempt at categorising bone adaptations at multiple scales over time. The

changes at bone surfaces were classified into eight categories—inactive, short/long term forma-

tion, short/long term resorption, remodelling, fast remodelling and mixed sequences of forma-

tion followed by resorption according to the different combination of resorption, formation

and quiescent over time at each voxel.

Methods to analyse bone adaptation across spatial scales are limited. The μCT morphomet-

ric analysis of trabecular and cortical bone in small rodents with μCT was found to be highly

reproducible [12, 19] and was used to assess longitudinal changes in bone structure by inte-

grating automatic segmentation and rigid registration [20–22]. Waarsing et al. [23] developed

a prototype to detect and track local bone structure changes over time through the registration

of the in vivo μCT images of the same bone of the same animal at different time points.

Scheulte et al. [5] further extended this approach to visualise and quantify bone formation and

resorption parameters over time and it was successfully applied to analyse the effects of cyclic

mechanical loading on mouse tail vertebrae [24]. Nevertheless, all these studies were per-

formed on rodents, that present bone growth during the largest proportion of life expectancy

[12]. The growth, that contributes to the considerable bone structure changes, presents a great

challenge for the study of bone adaptation, especially long bones [22]. To minimise the effect

of growth, bone morphometric analysis have been usually limited to small diaphysis regions

[8, 25, 26]. Lu et al. [27, 28] performed the quantification of bone adaptation in larger bone
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volumes over time by partitioning the volume of interest (VOI) into sub-regions. However,

the analysis was restricted to a single spatial scale but it is known that bone adaptation occurs

across scales. For example, bone modelling and remodelling take place at different bone

regions and can contribute to bone geometry changes at different spatial scales [29, 30]. The

observation made in preclinical studies showed that the interventions (biochemical and/or

biomechanical stimuli) can also affect bones at different scales [31].

To explore bone activities according to the spatial scales, a multi-resolution framework is

proposed in this study. This framework is applied to the cortical bone surface of the same large

volume of interest (80% of mouse tibia) and provides high resolution quantification and visu-

alisation of bone adaptation. To the authors’ knowledge it is the first time attempt to estimate

bone changes at multiple spatial scales. It is a substantial advancement from the previous study

presented by Lu et al. [28]. This study could be further applied to support the interpretation of

bone adaptations and the effects of different interventions and treatments. In the proposed

framework, the level-set method (LSM), which has the capability to capture complicated topol-

ogy evolution, is first employed for segmentation of bone structure from the μCT images, and

then to quantify the spatio-temporal geometry changes on the bone surface [32]. A multi-reso-

lution analysis is then performed using dual-tree complex wavelet transform (CWT) towards

characterising the bone changes at low- or high-spatial frequency. The dual-tree CWT is

employed for its properties of near shift invariance and directional selectivity in multi-dimen-

sions [33, 34]. This novel framework is applied to the entire cortical surface of mouse tibia for

the quantification and visualisation of bone activities at different spatial frequencies.

The paper is organised as follows: firstly, the materials and methods section describes the

μCT imaging and its preprocessing, hypothesis assumed and the multi-resolution algorithm

for separation of high- and low-spatial frequency events. Then the results section describes the

outcomes of the analysis framework to evaluate the algorithm accuracy, and then it reports the

outcomes of the application of the method to study the right tibia of wild-type mice. Finally, a

discussion of the results and conclusions are provided.

Materials and methods

Animal model

For this study, images from the right tibia of female wild-type C57BL/6J(BL6) mice between

week 14 and week 22 of age were used. The detailed information can be found in Lu et al. [27].

The procedures were approved by the local Research Ethics Committee of the University of

Sheffield (Sheffield, UK).

Ethics statement

14-week-old female C57BL/6J (BL6) mice were purchased from Harlan Laboratories (Bicester,

UK). Prior to the experiment, the mice were allowed to acclimate to the new environment for

one week and were housed in the same environmentally controlled conditions with a 12-h

light/dark cycle at 22˚C and had free access to food and water. All the procedures were com-

plied with the UK Animals (Scientific Procedures) Act 1986 and were performed under the

project license approved by the UK Home Office (PCF1D350B).

In vivo μCT scanning and image processing

In this study, three different animal models were used and listed as follows:

• Dataset I: a set of repeated consecutive in vivo μCT scans of the same tibia were used for the

evaluation of the algorithmic accuracy (Number of mice: N = 5) [27].
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• Dataset II: a set of synthetically modified scans based on the first group of dataset were used

to evaluate the accuracy of the method under conditions of known global and/or local bone

activity (N = 5). More details are given in the section of evaluation of the algorithmic

accuracy.

• Dataset III: a set of in vivo μCT scans performed weekly on the same female wild-type mouse

from week 14 to week 22 of ages, to test the applicability of the method (N = 5) [18].

Every tibia was scanned with an in vivo μCT system (Scanco VivaCT80, Switzerland) with

the following scanning parameters: voxel size 10.4μm, voltage 55keV, intensity 145μA, field of

view 32mm, samples/projections 1500/750, and integration time 200ms. A third-order polyno-

mial beam hardening correction determined using a 1200mgHA/cm3 wedge phantom was

applied during the reconstruction [27, 28].

In the image processing, firstly, the repeated scans were aligned in the same anatomical ref-

erence system. The first-time scan was transferred to its anatomical position [27] and was

referred as baseline. The rigid registration that used Euclidean distance similarity measure-

ment and Quasi-Newton optimizer was applied to transfer the following scans of the same

tibia to the baseline scan.

Secondly, bone length was measured using the minimum bounding box that started from

the pixel of the most proximal tibial bone to the most distal bone. The fibula was removed just

above the tibiofibular syndesmosis and the region of 80% tibial length starting from the proxi-

mal growth plate was reserved as the VOI in this study.

Afterwards, the grayscale images were smoothed with the 3D Gaussian filters with standard

deviation of 0.65 and kernel size of [3, 3, 3]. Bone tissues were segmented using the global

thresholding and the threshold was automatically chosen using Otsu’s method that selects the

threshold by minimising the interclass variance of the tissue (white) and background (black)

[35]. The images before and after segmentation were compared in order to evaluate the quality

of the automatic thresholding.

Hypothesis

Bone tissue is a highly porous material, with porosities that vary quite considerably in size.

Here we operate with images at voxel size of 10.4μm, and we assume that any free surface at

that resolution can in principle be a site of new bone formation or of existing bone resorption.

While there are small porosities, these are smaller than most cells, so we can safely assume that

no biological activity occurs over those free surfaces. In consistency with most literature on the

subject, we also assume that bone formation and resorption occur normal to the bone surface

[36].

The framework for exploring spatial frequency of tibial geometry changes

Overview. The analysis of tibial geometry changes according to spatial frequencies is per-

formed through the following steps (Fig 1A):

• Extraction of tibial geometry changes from μCT scanning;

• Description of the 3D geometry changes in a 2D map, S;

• Multi-resolution analysis of the 2D map;

Extraction of tibial geometry changes over time and space. The LSM was employed to

reconstruct the tibia surface after image processing. Specifically, the bone surface is described
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implicitly by the zero level of a function, Ft(O, t), defined over a spatial region, O, and time, t,

GðtÞ ¼ fΩ j FðO; tÞ ¼ 0g ð1Þ

where Γ(t) is the set of 3D coordinates of bone surface at time t. The level-set function is

defined as a signed distance function of the bone surface. The evolution of the bone surface,

therefore, can be described by a level-set equation [32],

@F

@t
þ FjrFj ¼ 0 ð2Þ

where F is the speed field describing the evolution speed of the bone surface along the normal

Fig 1. The framework for separating bone activity at different spatial scales. (A) The flowchart of the proposed

framework. (B) Extraction of bone geometry changes over space and time. Left: the periosteum at week 14 (surface in

gray) and week 16 (surface in blue). Right: extracted geometric changes at periosteum (top) and endosteum (bottom)

from week 14 to week 16. (C) Projection of the geometry changes into a 2D space. Sub-figure C1 showed the

construction of the 2D space to indicate the geometric changes, where the horizontal dimension corresponds the the

angles (˚) to tibia posterior (illustrated in sub-figure C2) and the vertical dimension corresponds to bone height

(voxel). Sub-figure C2 is the segmented periosteum and endosteum of the cross-views A − A and B − B (see sub-figure

B), where color indicates the geometry changes over time and the green. The corresponding projection was given in

sub-figure C3. The constructed 2D maps of periosteum and endosteum corresponding to the sub-figure B were given

in sub-figure C4. (D) Multi-resolution analysis of the geometry changes using dual-tree complex wavelet analysis. The

corresponding high/low pass filters were designed using q-shift solution of length 14 and shown in sub-figure D1. The

dual-tree structure of the filter banks were shown in sub-figure D2. In sub-figures B and C, the colourmap is used to

indicate the direction and the amplitude of geometry changes. The warm colour indicates that the bone surface evolves

along outward-pointing normal direction (i.e., Periosteum: bone formation; Endosteum: bone resorption) whereas the

cold colour indicates the surface evolving in the opposite normal direction.

https://doi.org/10.1371/journal.pone.0219404.g001
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direction. Since the signed distance function has the properties of |rF| = 1 [32], Eq (2) is dis-

cretised as,

Ft ¼ �
Ftþ1 � Ft

Dt

� �

ð3Þ

where Δt is the time interval between successive observations of bone surfaces. This indicates

that the bone surface evolution along the normal direction (i.e., bone geometry changes) can

be calculated by the difference in level-set functions at consecutive observation time points.

In this study, the tibia geometry includes both the periosteum and the endosteum. After

image processing, the bone surfaces were extracted from the binary images, and it consisted of

several closed surfaces. The surface of the largest area was isolated and labelled as periosteum

while the remaining surfaces were labelled as the endosteum. To check for the segmentation

accuracy, the labelled surfaces were compared to the binary images. This was done by recon-

structing the periosteum and the endosteum independently using the LSM, given in Eq (1).

The reconstructed surfaces from the level-set function were then compared to the segmenta-

tion results obtained using thresholding and the marching cubes method. [37] The Hausdorff

distances between these two were found to be below 0.5 voxel, thus confirming their consis-

tency (S1 Fig in the supplementary).

Projection of the 3D geometry changes into 2D map. Our multi-resolution analysis was

based on a 2D rectangle feature array. To perform this, the tibial geometry changes were

unwrapped into a 2D space, defined by the bone height and the angle to the tibia posterior

side. The posterior side was determined to be along the positive side of the X-axis in the trans-

verse section (X − Y) of the tibia in the registered reference system (Fig 1C). The projected 2D

map of geometry changes, S(θ, z), was used as the input for the multi-resolution analysis.

Due to the complexity of tibial geometry, some of the cross-views presented the concave

shapes may introduce the situation of surjective projection. For example, in the cross-view B-B

shown in Fig 1C2, three voxels at periosteum were projected into the same location at the 2D

space. In those situations, the voxel with the largest geometry change was selected. Extra errors

were therefore introduced and were quantified by an error rate calculated by

er ¼
Nmis

Ntot
ð4Þ

where Ntot is the total number of voxels and Nmis is the number of the voxels mapped incor-

rectly. The error rate at periosteum was 1.8% ± 0.7% and endosteum is 2.8% ± 0.9% (calculated

from the scans of five wild-type mouse tibiae over eight weeks). It should be pointed out that

such surjective projection issues are rare.

In addition, the influence of the differences in the radius, defined from centre of mass to

the segmented bone surface, was not considered. This could lead to a scenario where the same

angle in the 2D map corresponds to different arc length at tibia surface. However, the differ-

ences of radius at adjacent angles were smaller than half a voxel, and are the corresponding

differences at arclength. The fact that wavelet analysis captures the features at local neighbour-

hood, helps to reduce to a minimum the effect of these differences on the analysis.

Multi-resolution analysis of tibial geometry changes. The wavelet transform was intro-

duced to separate a signal in accordance with the frequencies. In this study, the CWT in the

dual-tree structure was applied, as shown in Fig 1D. The input signal, S(θ, z), was passed

through two separate discrete filter banks that gave the real and imaginary parts of the wavelet

transform, i.e., the upper and lower filter banks [33, 38]. At each filter bank, the signal was

divided into two frequency bands using a low pass filter and a high pass filter with a down-
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sampling factor of 2. h0(θ) and g0(θ) are two low-frequency filters while h1(θ) and g1(θ) are the

corresponding high-frequency filters. The filters were obtained using the q-shift algorithm of

length 14, illustrated in Fig 1D [34, 38]. After the first level decomposition at direction θ and z,
S(θ, z) was decomposed into 4 low-spatial frequency components (coarse scale) and 12 high-

spatial frequency components (fine scales) that are associated with the pattern of S(θ, z) at six

directions: 15˚, 45˚, 75˚, −75˚, −45˚, −15˚. To investigate S(θ, z) at the coarser scales, the low

frequency components were passed through to a second level decomposition, with the same

filter banks and the process was repeated recursively through further coarse scales. The decom-

position was terminated at the 4th level, where the resolution of the coarse pattern was

0.28 × 166μm. The resolution in the z-dimension was close to the dimension of a resorption

cavity [39].

Subsequently, the low-frequency pattern was synthesised by reversing the decomposition

process using the coefficients at the coarsest scale (obtained after the low-pass filter at highest

level decomposition). In order to reduce the high frequency noise inherent in the imaging pro-

cess and possibly introduced in the pre-processing stage, a soft global thresholding was per-

formed on the coefficients at high frequencies:

d̂ ¼ sgnðdÞmax ðjdj � t; 0Þ jdj > t

d̂ ¼ 0 jdj � 0

8
<

:
ð5Þ

where d and d̂ are the decomposed and the thresholded coefficient respectively. The threshold,

τ, is an estimated noise level, calculated by Median Absolute Deviation (MAD) [40, 41],

t ¼
medianðjd�jÞ

0:6745
ð6Þ

where d� is a vector of coefficients of the high frequency components. Afterwards, the high-fre-

quency pattern was constructed using the thresholded coefficients (Fig 1D). The reconstructed

high-spatial and low-spatial frequency patterns were represented in the space θ − z. The corre-

sponding visualisation can be obtained by projecting these 2D patterns back to the tibia geom-

etry in accordance with the coordinates of θ and z.

Evaluation of the algorithmic accuracy

To evaluate the algorithmic accuracy, the proposed analysis framework was applied to datasets

I and II. The datasets consisted of four different scenarios including manipulated global and

local activity on a reference tibia bone surface. Each of the scenarios is described below:

Scenario 1: Zero low-spatial frequency and zero high-spatial frequency activity. The in
vivo scans of the same tibia were collected one after the other (less than 190 minutes apart) to

obtain repeated images of the same structures and including the typical noise in the acquired

images. The corresponding level set function of these two scans were denoted as Ft and F�t .

The changes to the bone cells on the extracellular matrix were considered to be minimal in

between the two measurements, Ft and F�t , owing to their very short time duration. Therefore,

the low-spatial (global) and high-spatial (local) frequency activities on the tibia surface should

ideally be zero and the value estimated from the proposed framework would provide a quanti-

tative assessment of possible systematic and random errors. The analysis was repeated on 5

specimens (a single example is reported in Fig 2A).

Scenario 2: Imposed low-spatial frequency activity. This synthetic bone surface was cre-

ated by imposing a uniform growth on the entire periosteum, while no local changes were

imposed. The same set of repeated in vivo scans with the Scenario 1 were used. The simulation
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of bone growth was carried out conveniently via the level-set function that was constructed in

the first step of the framework. To be specific, the level-set functions of the periosteum at the

consecutive scans were Ft and F�t .Ft generating Ft+1 directly does not review the influence of

the random various that maybe presence in the real data. Hence, Ft+1 was generated from the

different initial scan F�t . A growth field Fg = c × 1 was imposed by

Ftþ1 ¼ F�t þ Fg ð7Þ

where 1 is the matrix of ones of the same size as Ft. This method is limited by the inability of

the LSM to manipulate any growth that is smaller than 1 voxel. The experimental data given in

Lu et al. [18] showed that the average cortical thickness could increase by approximately 30μm
between weeks 14 and 22. Therefore, the constant growth rate here was set to c = 3voxels�
30μm. According to Eq (1), the initial periosteum is obtained by setting Γt = {O j Ft = 0} while

the periosteum after growth was synthesised as Γt+1 = {O jFt+1 = 0} (Fig 2B). The multi-resolu-

tion framework was then applied to Γt+1 and Γt.
Scenario 3: Imposed high-spatial frequency activity. In this scenario, images were

synthesised with local bone changes simulated at random sites within a specific region of bone

height. A similar process of modifying F(t) was carried out as in Scenario 2 and designed as

follows,

Ftþ1 ¼ F�t þ Fr ð8Þ

Fig 2. Prepared data for the algorithmic accuracy analysis. (A) Scenario 1: zero low- and high-spatial frequency

activity; (B) Scenario 2: only imposed low-spatial frequency activity; (C) Scenario 3: only imposed high-spatial

frequency activity; (D) Scenario 4: imposed low- and high-spatial frequency activity; In each figure, from left to right,

they correspond to the geometry of periosteum at the first and the second scan at different scenario, the corresponding

geometric changes and the unwrapped geometry change maps, respectively. The colourmap is used to indicate the

magnitude and direction of the geometry difference, i.e., the warm colour (positive value) corresponds to the outward-

pointing normal direction of the bone surface while the cold colour (negative value) corresponds to the inward-

pointing normal direction.

https://doi.org/10.1371/journal.pone.0219404.g002
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where

Fr ¼ ½02 K 01�
⊺

ð9Þ

The local changes were chosen to take place at bone height region z 2 [l1, l2] with magnitude

less than a. Matrices F; Fr 2 R
m�n�l

and the zero matrices are 01 2 R
m�n�ðl1 � 1Þ

, 02 2 R
m�n�ðl� l2Þ.

The local activity, K ¼ ðkijzÞ 2 R
m�n�ðl2 � l1þ1Þ

, was constructed as

kijz ¼ Uð� a; aÞBðbÞ ð10Þ

where

BðbÞ ¼
0 if Uð0; 1Þ � b

1 else

(

ð11Þ

and Uð� a; aÞ is a function that generates uniform distributed random numbers in the interval

[−a, a] to introduce local geometry changes at random sites, while b 2 [0, 1] is the fraction of

the activated sites.

In order to check if the framework is able to separate the region with high-spatial frequency

activity, the local changes were only imposed in the region of z 2 [1000, 1400] (voxel). It is

assumed that the geometry changes introduced by local activity were smaller than the average

bone growth (i.e., a = 3 voxels) with activity rate b = 0.3, which is in accordance with the sum

of mineralising and resorbing surface (MS/BS + ES/BS [μm2/μm2]) measured in the female

C57Bl/6J mice between week 26 and 15 days later of age, as reported in Birkhold et al. [17].

The analysis framework was applied to the surface Γt = {O j Ft = 0} and the surface imposed

local activity Γt+1 = {O j Ft+1 = 0} (Fig 2C).

Scenario 4: Imposed low- and high-spatial frequency activity. The final scenario, aimed

at mimicking a realistic situation, imposed both global and local bone changes simultaneously.

This was performed by integrating the synthesis processes of Scenario 2 and Scenario 3,

Ftþ1 ¼ F�t þ Fg þ Fr: ð12Þ

The framework was applied to the surface Γt and the surface with low- and high-spatial fre-

quency activity Γt+1 = {O j Ft+1 = 0} (Fig 2D).

Error quantification. In the algorithmic accuracy analysis, the systematic errors were

quantified using RMSD, defined by

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðxi � x̂iÞ
2

s

ð13Þ

where xi is the synthetically imposed low-/high-spatial frequency activity and x̂i is the esti-

mated low-/high-spatial frequency activity using the framework. In addition, the statistical

distributions of the magnitudes of the estimation errors in the different spatial scales are pre-

sented for evaluation.

In vivo scans of wild type mouse tibia

To analyse the outcome of the proposed method on a real dataset, the analysis framework was

applied to the in vivo μCT scan of the right tibia of wild-type mice (dataset III). The spatio-

temporal variation in low- and high-spatial frequency activity were quantified by averaging the

measurements across the directions of z and θ separately. High-spatial frequency activity will

automatically remove effects of bone formation and bone resorption, leaving this information
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to be zero mean, with high frequency information contained in positive and negative changes

from the low frequency mean values. Since the information on the high-spatial frequency

bone adaptation activity are contained in the positive and negative values of bone change, the

integration of absolute values were used to quantify this activity. In addition, an activation

rate, r, was used to measure the percentage of the bone surface where the local activity took

place,

r ¼
Ar

As
ð14Þ

where As is the area of the bone surface and Ar is the area of the bone sites with local activities.

Data collected in this study are accessible at https://doi.org/10.15131/shef.data.8319956.

Results

Evaluation of the algorithmic accuracy

The results of applying the framework to the repeated in vivo μCT scans with synthetically

added global and/or local activities are provided for each of the four scenarios. They are pre-

sented also spatially to highlight the spatial location of the errors.

Scenario 1: Zero low-spatial frequency and zero high-spatial frequency activity. In this

scenario, the obtained coarse and fine scale patterns after the multi-resolution analysis should

reveal the errors in the estimation of the low- and high-spatial frequency patterns (Fig 3A).

These errors can be introduced by the application of the framework as well as the pre-process-

ing artifacts. For example, the alternating red and blue regions at coarse scale may indicate the

translation errors generated in the 3D image registration (Fig 3A). Larger errors are observed

in the identification of low-spatial frequency pattern in comparison with the identification of

the high-spatial frequency pattern, evidenced by the error distribution of low-spatial frequency

identification � 2 [−20μm, 20μm] and hight-spatial frequency identification � 2 [−5μm, 5μm]

(Fig 3E). Similarly, the statistical analysis shows that the errors in low frequency activity identi-

fication was about five times as much as the errors in high frequency activity identification,

evidenced on both the periosteum and the endosteum (Table 1, RMSD at periosteum: 11.6μm
(low frequency activity) vs. 2.3μm (high frequency activity); Endosteum: 10.9μm vs. 2.1μm).

Scenario 2: Imposed low-spatial frequency activity. The framework was applied to the

repeated scans with synthetically added uniform global bone growth (Fig 2B). In this scenario,

the decomposed pattern at coarse scale should correspond to the approximate global bone

growth while the fine scale would reveal the errors incurred in the high-spatial frequency activ-

ity identification. The results are shown in Fig 3B. The decomposed coarse pattern has largely

captured the imposed constant growth on periosteum subject to minor fluctuations similarly

to the previous scenario (Fig 3B and 3A). The errors in the low-spatial frequency activity iden-

tification were quantified by subtracting the imposed growth from the coarse scale pattern and

were observed mainly to be in the range of [−20μm, 20μm] (Fig 3E). Meanwhile, additional

variations were introduced in the identification of high-frequency activity compared to the

Scenario 1, as evidenced by the larger errors distribution (Fig 3E). These errors can be attrib-

uted to the joint effect of low-frequency activity estimation errors influencing high-frequency

activity estimation. However, the errors were still much smaller than those related to the iden-

tification of the low-frequency activity with RMSD at the periosteum being equal to 12.1μm
(low frequency pattern) and 6.4μm (high frequency pattern) and RMSD at the endosteum

being equal to 11.2μm (low frequency pattern) and 6.3μm (high frequency pattern) (Table 1).

Scenario 3: Imposed high-spatial frequency activity. The obtained coarse and fine pat-

terns were expected to separately reveal the errors of bone low-spatial frequency activity
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identification and high-spatial frequency patterns. The errors associated with the coarse pat-

terns were consistent with the error pattern observed in Scenario 1 (Fig 3C and 3A). The pat-

tern at the fine scale showed higher occurrence of local geometry changes at the bone surface

of the proximal metaphysis (z 2 [1000, 1400], Fig 3C), where the local geometry changes were

imposed (Fig 2C). The quantified errors in Table 1 indicate that the high-spatial frequency

activity identification was less accurate compared with the first scenario with RMSD at perios-

teum equals 2.3μm (Scenario 1) 6.7μm (Scenario 3); Endosteum: 2.1μm (Scenario 1) vs. 7.2μm

Fig 3. Evaluation of the algorithmic accuracy. (A) Multi-resolution analysis of the Scenario 1: zero low- and hight-

spatial frequency activity. (B) Analysis of the Scenario 2: only imposed low-spatial frequency activity. (C) Analysis of

the Scenario 3: only imposed high-spatial frequency activity. (D) Analysis of the Scenario 4: imposed low- and high-

spatial frequency activity. In each figure, from left to right, they show the decomposed coarse scale of geometric

changes at different scenarios, the corresponding visualisation, the fine scale patterns and the corresponding

visualisation. (E) The box plot of error distributions at different scenarios. The red line in the middle indicates the

median value, the top and bottom of the box are the 75% and 25% of the error distribution and the whiskers extend to

the minimum and maximum values. In sub-figures (A-D), the colourmap is used to indicate the magnitude and

direction of the geometric changes. The warm colour (positive value) corresponds to the outward-pointing normal

direction of the bone surface while the cold colour (negative value) corresponds to the inward-pointing normal

direction.

https://doi.org/10.1371/journal.pone.0219404.g003
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(Scenario 3)). However, the increased errors were still not comparable to the errors existing in

the low-spatial frequency pattern identification (RMSD at periosteum: 11.5μm (low frequency

activity) vs. 6.7μm (high frequency activity); Endosteum: 10.9μm vs. 7.2μm, Table 1).

Scenario 4: Imposed low- and high-spatial frequency activity. The analysis results of

this scenario is shown in Fig 3D. A visual inspection appears to show that the framework can

separate the global changes and the irregular local changes at the region where the high fre-

quency activity was imposed. The coarse pattern identified the imposed 30μm growth over the

space while the fine scale pattern captured the region pertaining to the height interval [1000,

1400] where the extra high-spatial frequency activity was imposed (Fig 3D). The errors were

then quantified by subtracting the imposed global and local activity from these approximated

patterns. Compared to the Scenario 1, higher errors were introduced in the identification of

both bone low- and high-spatial frequency patterns. Additionally, the RMSD values in Table 1

show that the errors of high-spatial frequency activity identification were smaller in compari-

son to those related to the low frequency activity with RMSD at the periosteum was 12.3μm
(low-frequency pattern) and 7.9μm (high-frequency pattern), and RMSD at the endosteum

was 11.2μm (low-frequency pattern) and 7.8μm (high-frequency pattern)(Table 1).

In vivo scans of wild-type mouse tibiae

The proposed framework provides an approach to quantify the bone low- and high-spatial fre-

quency activities over time, not just over space. This spatiotemporal analysis of bone geometry

change patterns of one wild-type mouse tibia over 8 weeks is illustrated in Figs 4 and 5. The

identified low-spatial frequency patterns show that the bone formation was observed over

most of the region at periosteum and with increasing time, the formation was observed to

increase in magnitude and over space (Fig 4A). Compared to periosteum, bone resorption was

observed over larger regions on endosteal surface (Fig 4B).

Comparing the low-spatial frequency patterns from week 14 to week 22, the high-spatial

frequency patterns were more spatially disconnected and the magnitudes were smaller. The

geometry changes contributed by low-spatial frequency activity were estimated to be in the

range of [−150μm, 150μm] whereas the changes contributed by high frequency activity were

in the range of [−40μm, 40μm] (Figs 4A vs. 5A and 4B vs. 5B). The high-spatial frequency

activities that can either be bone formation or resorption were mainly activated at the tibia

proximal end as well as the anterior border. When comparing the estimation at the same week

spatially, the endosteal surface was identified as having more activated sites compared to the

periosteal surface, and especially concentrated in the most proximal part (Fig 5A and 5B).

Over time, more sites were estimated as being activated until week 18 when the activation

rate becomes relatively stable, which was observed on both periosteal and endosteal surfaces

(Fig 5A and 5B).

Table 1. Systematic errors in different scenarios (RMSD, N = 5 mouse).

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Errors of low-spatial frequency pattern identification

(Mean ± SD)

Periosteum

(μm)

11.6 ± 3.2 12.1 ± 3.2 11.5 ± 3.0 12.3 ± 3.1

Endosteum

(μm)

10.9 ± 2.5 11.2 ± 2.5 10.9 ± 2.5 11.2 ± 2.5

Errors of high-spatial frequency pattern identification

(Mean ± SD)

Periosteum

(μm)

2.3 ± 0.6 6.5 ± 0.2 6.7 ± 0.4 7.9 ± 0.2

Endosteum

(μm)

2.1 ± 0.4 6.3 ± 0.2 7.2 ± 0.2 7.8 ± 0.2

https://doi.org/10.1371/journal.pone.0219404.t001
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The averaged growth over bone height and direction (angles) across time are shown in Fig

6A and the corresponding Standard Deviation (SD) are given in Fig 6E (N = 5 mice). It reveals

that the bone formation area initialised at the mid-shaft of the cortical bone, and started to

expand spatially. At the end of the week 22, the bone formation region represented over 70%

of the bone height, and on both surfaces (Fig 6A). The averaged bone growth over angles, θ,

did not present a clear growth tendency over time (Fig 6B).

The mean geometry changes due to the high-spatial frequency patterns over bone height/

angles and time are showed in Fig 6C and the corresponding SD are given in Fig 6D (N = 5

mice). The variation across the bone height showed that the activity was highest at the proxi-

mal ends of the tibia while the endosteum showed more activated sites than the periosteum

(Fig 6C). The variation across the angle did not show a clear tendency over time (Fig 6D).

Fig 4. Identified bone low-spatial frequency activity from week 14 to week 22 of a wild-type mouse tibia. (A) The

identified low frequency activity on periosteum (Top) and the corresponding visualisation (Bottom). (B) The identified

low frequency patterns on endosteum (Top) and the corresponding visualisation (Bottom). In sub-figures, the patterns

from left to right correspond to the geometric changes from week 14 to week 22.

https://doi.org/10.1371/journal.pone.0219404.g004
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Discussion

In this study, a novel framework was proposed for separating the contribution of low- and

high-spatial frequency activity to bone geometry changes in the cortical bone. The framework

was applied to analyse the cortical surface changes over the 80% of tibia length. It should be

noted that only the geometry changes at convex closed surfaces (periosteum and endosteum)

were considered. The application of LSM enabled the tracking of the complicated topology

changes at bone surfaces (periosteum and endosteum). The multi-resolution analysis esti-

mated the activity patterns at the bone surface according to their spatial frequency characteris-

tics. The combination of these two steps provided a tool to spatio-temporally quantify and

visualise the low- and high-spatial frequency activity from the μCT scans of mouse tibia. The

Fig 5. Identified high-spatial frequency activity at bone surface from week 14 to week 22 of a wild-type mouse

tibia. (A) The identified hight frequency activity patterns on periosteum (top) and the corresponding visualisation

(bottom). The activation rate is presented at the bottom right. (B) The identified high frequency activity patterns on

endosteum (top) and the corresponding visualisation (bottom) with the activation rate at the bottom right. In sub-

figures, the patterns from left to right correspond to the geometric changes from week 14 to 22.

https://doi.org/10.1371/journal.pone.0219404.g005

A new method to monitor bone geometry changes at different spatial scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0219404 July 22, 2019 14 / 21

https://doi.org/10.1371/journal.pone.0219404.g005
https://doi.org/10.1371/journal.pone.0219404


accuracy of the framework was analysed through scenarios using repeated scans with syntheti-

cally manipulated global and local geometry changes. Under these synthetic test conditions,

the RMSD was approximately 15μm for low frequency activity estimation and 7μm for the

high-spatial frequency estimation. The largest errors occurred in the scenarios that were

imposed with both global and local activity. The proposed framework was then applied for the

quantification of bone adaptations at periosteum and endosteum of a set of wild-type mouse

tibiae. The quantified level of uncertainties provides a benchmark for the degree of accuracy

that may be expected from analysis of real bone μCT scans.

The analysis of the accuracy of the proposed method showed that the errors increased with

the complexity of the synthetic bone adaptation scenarios. Analysis of the two repeated scans

on the same day (nominally zero low- and high-spatial frequency changes) were limited to a

single voxel. The errors across all four scenarios were approximately 1.5 voxels and 0.7 voxels

for low- and high-spatial frequency activity estimation, respectively. These errors can be attrib-

uted by three sources of uncertainties. Firstly, the rigid registration process ignores the non-

rigid transformation of bone adaptation and lead to spatial errors in the analysis. This will lead

to low-spatial frequency errors in the analysis. Secondly, the synthetically created bone geome-

try in scenarios 2-4 (imposed high- and/or low-spatial frequency changes) introduces quanti-

sation errors due to the fact that the LSM was used for segmentation and creation of a

Fig 6. Spatial-temporal analysis of bone geometry changes of a wild-type mouse tibia. (A-B) The spatially averaged

low-spatial frequency activity patterns from week 14 to 22. (C-D) The spatially averaged high-spatial frequency

activity patterns from week 14 to 22. The averaged pattern over bone height are shown in sub-figures A and C (top:

periosteum, bottom: endosteum). The averaged pattern over angles are shown in sub-figures B and D (top: periosteum,

bottom: endosteum). (E) The corresponding SD maps of the sub-figures (A-D)(N = 5 mice).

https://doi.org/10.1371/journal.pone.0219404.g006
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continuous surface, which is then quantised after the addition of bone adaption. Such errors

have more propensity to affect high-spatial frequency changes. The third source of error arises

from the measurement noise, which can appear inseparable from the high spatial frequency

effects. The idea of denoising through sparsification is applied to reduce the effects of this

source of error.

The spatio-temporal analysis of the μCT image sequences of the right mouse tibia con-

firmed the expectation and observations that the estimated bone activity increased over time.

The presence of more high-spatial frequency activity regions on proximally than distal growth

plate is probably due to the presence of large portion of trabecular bone in that area, which is

more metabolically active compared to cortical bone. We need to acknowledge that this

approach does not capture potential differences in local mineralization, which could happen

in the cortical bone of the mouse tibia, but only localized changes of geometry due to resorp-

tion cavities at high-spatial frequency.

Though the paper has proposed a novel approach to analysing bone geometry changes, the

study has a number of limitations. By using synthetic benchmarks in the approach used to

quantify the accuracy of the proposed algorithm, the realism was sacrificed in the need for con-

trollability and reliability. It may be useful to complement this study with a sensitivity analysis

that explores how the quality of the μCT images (e.g., their signal-to-noise-ratio) affects the

accuracy of the proposed algorithm. Secondly, in order to set a regular array for the following

multi-resolution analysis, the nonlinear projection applied to unwrap the 3D geometry

changes may require compensation. Introducing the variable of radius from mass centre to

bone surface can improve the accuracy of projection, which however requires an indirect way

to construct a regular array. Finally, the separation of bone geometry changes in different spa-

tial scales does not directly provide the information concerning bone growth and remodelling,

the real quantities of interest in such analysis.

The proposed algorithm estimated bone activities at different spatial frequency scales.

Potentially, this can be a solution to a long-standing problem in the evaluation of bone adapta-

tion to interventions using murine models [15, 16]. The in vivo μCT measurements do not sep-

arate between bone growth and bone adaptation; while the use of older mice does reduce the

problem [11], it does not remove it entirely. This is not only a methodological detail: in most

cases these murine studies are models of what occur in post-menopausal women, where clearly

no skeletal growth is observed. It is important therefore, for example when investigating ana-

bolic drugs, to separate their effect on the growth metabolism, which is not relevant for adult

humans, from that on bone remodelling, which is instead very relevant for ageing humans.

Specifically, both longitudinal growth (at the growth plates) and appositional growth (at the

periosteal and endosteal surfaces) occur simultaneously over large portions of the bone sur-

face. Thus, the global geometry changes are associated with low-spatial frequency characteris-

tics [29, 30]. Tibial growth in the mice occurs at the periosteum, endosteum and the growth

plates. Longitudinal growth at the growth plates occurs quite uniformly, and while it is possible

that the rate of linear growth is affected by mechanical loading, there are no histological evi-

dence of mechano-regulated bone resorption just below the growth plates. Thus, we can safely

assume that all changes in length are exclusively due to growth and not to remodelling. Bone

length was measured from the pixel of the most tibial bone to the most distal bone. To account

for the longitudinal growth (small in the considered age range, approximately 300 − 400 μm

[42]). We have considered 80% of the tibia length below the proximal growth plate. The corre-

sponding growth at periosteum and endosteum then can be estimated in the proposed frame-

work through the normal distance between the bone surfaces at different time using level-set

method and assuming that low-spatial frequency changes are associated to growth. In terms to

the bone remodelling, it is a dynamic process involving both bone resorption and formation,
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which occur locally at the bone surface [29, 30]. Therefore, changes in bone geometry due to

the bone remodelling can be hypothesised to have high-spatial frequency characteristics. To

date, the lack of experimental validation is the major limitation. Though it is possible to com-

pare the proposed algorithm with bone histomorphometry study about bone remodelling [6],

such a study could be done only in small portions of the tibia biopsy, and is not suitable as the

reference method for validation.

In summary, the proposed framework analysed bone geometry changes from the in
vivo μCT scans, and performed the spatio-temporal quantification and visualisation of these

changes at different spatial scales. This analysis framework can be a useful tool to the longitudi-

nal studies based on in vivo μCT data.

Supporting information

S1 Fig. Hausdorff distance between the reconstructed bone surfaces using LSM and the

surfaces using marching cubes. (a) A visualisation of the spatial distribution of the Hausdorff

distance. (b) The normalised histogram of the Hausdorff distance, which is obtained from 40

in vivo μCT scans of wild type mouse tibiae. The Supplementary S2, S4, S6 and S8 Figs show

the low-spatial frequency patterns of in vivo scans of four wild-type mouse tibiae, which are

different from the one provided in Fig 4. The corresponding high-spatial frequency patterns

are shown in S3, S5, S7 and S9 Figs.

(PDF)

S2 Fig. Identified bone low-spatial frequency activity from week 14 to week 22 of a wild-

type mouse tibia. (A) The identified low frequency activity on periosteum (Top) and the cor-

responding visualisation (Bottom). (B) The identified low frequency patterns on endosteum

(Top) and the corresponding visualisation (Bottom). In sub-figures, the patterns from left to

right correspond to the geometric changes from week 14 to week 22.

(PDF)

S3 Fig. Identified high-spatial frequency activity at bone surface from week 14 to week 22

of a wild-type mouse tibia. (A) The identified hight frequency activity patterns on periosteum

(top) and the corresponding visualisation (bottom). The activation rate is presented at the bot-

tom right. (B) The identified high frequency activity patterns on endosteum (top) and the cor-

responding visualisation (bottom) with the activation rate at the bottom right. In sub-figures,

the patterns from left to right correspond to the geometric changes from week 14 to 22.

(PDF)

S4 Fig. Identified bone low-spatial frequency activity from week 14 to week 22 of a wild-

type mouse tibia. (A) The identified low frequency activity on periosteum (Top) and the cor-

responding visualisation (Bottom). (B) The identified low frequency patterns on endosteum

(Top) and the corresponding visualisation (Bottom). In sub-figures, the patterns from left to

right correspond to the geometric changes from week 14 to week 22.

(PDF)

S5 Fig. Identified high-spatial frequency activity at bone surface from week 14 to week 22

of a wild-type mouse tibia. (A) The identified hight frequency activity patterns on periosteum

(top) and the corresponding visualisation (bottom). The activation rate is presented at the bot-

tom right. (B) The identified high frequency activity patterns on endosteum (top) and the cor-

responding visualisation (bottom) with the activation rate at the bottom right. In sub-figures,

the patterns from left to right correspond to the geometric changes from week 14 to 22.

(PDF)
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S6 Fig. Identified bone low-spatial frequency activity from week 14 to week 22 of a wild-

type mouse tibia. (A) The identified low frequency activity on periosteum (Top) and the cor-

responding visualisation (Bottom). (B) The identified low frequency patterns on endosteum

(Top) and the corresponding visualisation (Bottom). In sub-figures, the patterns from left to

right correspond to the geometric changes from week 14 to week 22.

(PDF)

S7 Fig. Identified high-spatial frequency activity at bone surface from week 14 to week 22

of a wild-type mouse tibia. (A) The identified hight frequency activity patterns on periosteum

(top) and the corresponding visualisation (bottom). The activation rate is presented at the bot-

tom right. (B) The identified high frequency activity patterns on endosteum (top) and the cor-

responding visualisation (bottom) with the activation rate at the bottom right. In sub-figures,

the patterns from left to right correspond to the geometric changes from week 14 to 22.

(PDF)

S8 Fig. Identified bone low-spatial frequency activity from week 14 to week 22 of a wild-

type mouse tibia. (A) The identified low frequency activity on periosteum (Top) and the cor-

responding visualisation (Bottom). (B) The identified low frequency patterns on endosteum

(Top) and the corresponding visualisation (Bottom). In sub-figures, the patterns from left to

right correspond to the geometric changes from week 14 to week 22.

(PDF)

S9 Fig. Identified high-spatial frequency activity at bone surface from week 14 to week 22

of a wild-type mouse tibia. (A) The identified hight frequency activity patterns on periosteum

(top) and the corresponding visualisation (bottom). The activation rate is presented at the bot-

tom right. (B) The identified high frequency activity patterns on endosteum (top) and the cor-

responding visualisation (bottom) with the activation rate at the bottom right. In sub-figures,

the patterns from left to right correspond to the geometric changes from week 14 to 22.

(PDF)
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