
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Time Horizon and Cooperation in Continuous Time / Bigoni, Maria; Casari, Marco; Skrzypacz, Andrzej;
Spagnolo, Giancarlo. - In: ECONOMETRICA. - ISSN 0012-9682. - STAMPA. - 83:2(2015), pp. 587-616.
[10.3982/ECTA11380]

Published Version:

Time Horizon and Cooperation in Continuous Time

Published:
DOI: http://doi.org/10.3982/ECTA11380

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/514727 since: 2020-02-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.3982/ECTA11380
https://hdl.handle.net/11585/514727


   

 

 

 

This is the peer reviewed version of the following article:  

Bigoni, M., Casari, M., Skrzypacz, A., Spagnolo, G., 2015. Time Horizon and 

Cooperation in Continuous Time. Econometrica. DOI:10.3982/ECTA11380 

which has been published in final form at https://doi.org/10.3982/ECTA11380.  

This article may be used for non-commercial purposes in accordance with Wiley 

Terms and Conditions for Use of Self-Archived Versions.   

 

 

https://doi.org/10.3982/ECTA11380


Time Horizon and Cooperation in
Continuous Time∗

Maria Bigoni† Marco Casari‡ Andrzej Skrzypacz§

Giancarlo Spagnolo¶

Abstract

We study social dilemmas in (quasi) continuous-time experiments,
comparing games with different durations and termination rules. We
discover a stark qualitative contrast in behavior in continuous time as
compared to previously-studied behavior in discrete time games: co-
operation is easier to achieve and sustain with deterministic horizons
than with stochastic ones; and end-game effects emerge, but sub-
jects postpone them with experience. Analysis of individual strate-
gies provides a basis for a simple reinforcement learning model that
proves consistent with this evidence. An additional treatment lends
further support to this explanation.
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1 Introduction

In this paper we present results from laboratory experiments on dynamic
social dilemmas played in (almost) continuous time. We discover behavior
that is qualitatively different from what has been documented in social
dilemmas played using discrete-time protocols.

Our experiment combines elements of the design of Dal Bó (2005) and
of Friedman et al. (2012). In particular, we study cooperation patterns in
(almost) continuously repeated prisoners’ dilemmas by comparing deter-
ministic vs. stochastic termination rules for different lengths of the hori-
zon. Our first main finding is that in short games players cooperate more
when the horizon is deterministic than when it is stochastic with the same
expected duration. This pattern is opposite to that observed by Dal Bó
(2005) in discretely repeated games. The second main finding is that while
in games with deterministic horizon there is a clear end-game effect of the
form that cooperation drops significantly in the last few seconds of each
supergame, with experience subjects cooperate longer. This is also in con-
trast to what has been documented in experiments with discrete rounds,
where with experience subjects learn to defect sooner (see Embrey et al.,
2013 for a comprehensive review of this literature and latest evidence).

We are interested in studying games in continuous time because in
many field situations actors can react to opponents’ actions quickly. Ex-
amples include firms posting prices on the Internet or via a centralized
and transparent marketplace (as airlines), financial markets with high fre-
quency/computerized trading, electricity markets with high frequency bid-
ding, workers in a team choosing effort, nearby restaurants choosing menus,
and spouses sharing everyday chores. In such situations, the tradeoff be-
tween immediate gains from a deviation and the continuation punishment
could be of second order. Since that trade-off is at the center of discrete-
time repeated games models and the vast experimental literature that fol-
lowed them, we should be cautious in applying the lessons learned from
these models and experiments to situations where reactions can be fast
and asynchronous.

While the inherent difference between continuous-time and discrete-
time games has been recognized in theoretical work, we offer the first
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empirical evidence that indeed qualitatively different patterns of behavior
emerge in these environments. Our study provides empirical foundation
for using different models for discrete and continuous-time games. Extrap-
olating from theories and experiments in discrete time to draw conclusions
on situations with high-frequency interactions appears misguided in light
of our findings that comparative-statics in continuous time result in the
opposite patterns to what is observed in discrete time. And since dynamic
social dilemmas with fast reactions are relatively understudied (despite be-
ing common in the field), our results imply that we need more theoretical
and empirical research specifically on them.

We suggest the following interpretation for our results. Under a de-
terministic horizon, standard models of repeated games in discrete time
predict low cooperation rates in the last periods and unraveling of coop-
eration due to backward induction. While in experiments subjects rarely
follow the predictions of full backward induction, typically with experience
subjects learn to defect sooner. In contrast, continuous-time games do not
have “the last period” and hence unraveling arguments do not apply. Be-
cause counterparts can react quickly, immediate gains from deviation are
small compared to the shadow of the future punishment. That provides
a possible key of interpretation for our second main finding: while we do
see some end-game effects in our deterministic-horizon treatments, we also
see the opposite of unraveling with experience, which is consistent with the
logic of continuous-time theories.

In discrete time games the unraveling argument implies that coopera-
tion rates should be higher in games with stochastic than with deterministic
horizon, especially in games with short duration where the horizon plays
an important role. This prediction has been confirmed by Dal Bó (2005).
At first our discovery of the opposite behavior is quite surprising since the
lack of unraveling under deterministic horizon would lead at most to the
prediction that cooperation levels in deterministic and stochastic horizons
should be similar (a prediction that is confirmed in our longer treatments).

To shed light on the causes of this unexpected behavior we analyze indi-
vidual strategies and their evolution across supergames. In all treatments,
subjects change their strategies from defection to conditional cooperation
as they gain experience. However, we find that the speed of this transition
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differs across treatments and is particularly slow in short stochastic treat-
ments, which justifies the overall difference in cooperation rates. We then
show that such pattern of behavior is consistent with a simple reinforce-
ment learning model: due to the unpredictability and variability of game
duration, subjects receive particularly noisy signals about the relative prof-
its of these types of strategies in short games with stochastic ending and
hence it takes longer for the low-payoff strategies to be abandoned.

Our experiments have not been designed to discriminate among different
learning models. Yet, we ran one additional treatment that tries to isolate
the effects of unpredictability of supergames’ duration from the variability
of it alone. In that treatment (see Section 7), subjects played games with
deterministic duration that varied across supergames and matched exactly
the realized durations in our short stochastic treatment. While both factors
matter, we observe that the unpredictability of supergames’ durations slows
down the convergence to cooperation more than their variability.

The next section reviews the related literature; Section 3 describes the
experimental design; Section 4 presents our empirical results; Section 5
empirically identifies individual strategies employed; Section 6 shows the
impact of experience and provides a model for the evolution of behavior.
Section 7 presents additional empirical evidence; Section 8 discusses the
theoretical background in more detail while Section 9 concludes.

2 Related Literature

The repeated (or ‘iterated’) Prisoner’s Dilemma with perfect monitoring
has probably been the most important setup in which the question of what
leads people to cooperate has been explored experimentally since the early
work of Rapoport and Chammah (1965). A central and highly debated
issue has been the role played by the time horizon, sometimes called the
‘termination rule’. The experimental literature has shown that the theoret-
ical prediction that backward induction should apply to finitely repeated
games with the features of a Prisoner’s Dilemma often does not hold in
the laboratory.1 In field situations, the moment at which a relationship

1See e.g. Selten and Stoecker (1986), Andreoni and Miller (1993), Cooper et al.
(1996), Hauk and Nagel (2001) and Bereby-Meyer and Roth (2006).
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will come to an end is often uncertain. To capture this feature, several
researchers, starting with Roth and Murnighan (1978) and Murnighan and
Roth (1983), have tried to reproduce an indefinite, uncertain horizon in the
lab under a stochastic continuation/termination rule for the repeated game.
Selten et al. (1997) argued against the attempt to replicate a potentially
infinite horizon in the lab, since no real experiment can have infinite dura-
tion, so subjects will be aware that the experiment will end in a reasonable
amount of time and their beliefs may vary about when exactly. Based on
previous experimental evidence (e.g. Selten and Stoecker 1986), they pro-
posed using finitely repeated games, given that the outcomes of repeated
laboratory games with deterministic and stochastic horizons are similar,
apart from the end-game effect that only takes place in the last rounds.
Dal Bó (2005) offered experimental evidence against this last conclusion.
He ran repeated Prisoner’s Dilemma games with two different parameter-
izations of the stage-game payoffs and with deterministic and stochastic
horizons with identical but short expected durations. Among other things,
he found that cooperation rates in both the first and last rounds of the
supergames are significantly lower in treatments with a deterministic hori-
zon. Normann and Wallace (2012) also compared these termination rules
(as well as a third, ‘unknown termination’), but in a different setup where
the Prisoner’s Dilemma is repeated 22 times before the different termi-
nation rules are introduced, finding instead no significant differences in
cooperation rates.2

Friedman and Oprea (2012) is the first experiment on a Prisoner’s
Dilemma in continuous time. In their experiment subjects can switch ac-
tions frequently (with latency times on the order of 0.02 seconds) and the
game has a deterministic horizon of 60 seconds. Like in our experiments,
they observe high cooperation rates (a median between 81% and 93% af-
ter subjects gained experience) and, within a supergame, cooperation is
typically sustained until the very last seconds of the game, when a short

2Notice however that Normann and Wallace do not allow subjects to gain experience,
as they only play one supergame. See also Palfrey and Rosenthal (1994), who compared
contributions to a public good in one shot vs. indefinitely repeated games. Engle-
Warnick and Slonim (2004) report little difference when comparing a trust game repeated
exactly five times vs. repeated with a continuation probability of 0.8. Aoyagi and
Fréchette (2009) instead report results for a treatment with continuation probability of
0.9 and one with one-shot games, and report large differences in cooperation.
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but drastic end-game effect takes place. They also compare cooperation
rates for different frequencies of moves varying from a one-shot game, to
eight-moves-per-supergame, to one-move-per-second. They find that games
with higher frequency of moves have higher cooperation rates and that this
effect is quantitatively large: the eight-moves-per-supergame treatments
achieve less than half of the cooperation levels observed in the continuous-
time treatment, providing support for theories predicting that a smaller
per-period gain from defection (relative to continuation payoffs) stabilizes
cooperation.3

Our paper differs from Friedman and Oprea (2012) because we show
qualitative differences between continuous-time and discrete-time treat-
ments. Their results are consistent with continuous-time games being
a smooth limit of discrete-time games with higher and higher frequency
of interaction (see their Result 5). By contrast, our experiment shows
that, in some crucial dimensions, the opposite patterns of behavior arise
in discrete-time and continuous-time environments, especially with short
durations. In terms of design, we differ from Friedman and Oprea (2012)
in that we use Dal Bó (2005) as the discrete-time benchmark and run five
different continuous-time designs (Prisoner’s Dilemma games under a de-
terministic and a stochastic time horizon for two different durations and the
new treatment with deterministic horizon with duration that varies across
supergames). Less important differences include stage-game payoffs; the
protocol to match subjects across supergames; the starting action in each
supergame (which was random in Friedman and Oprea (2012) and chosen
by the subject in the present study).

Our work is also related to experimental studies of finitely repeated
games played in discrete time at low frequency that, among other things,
investigate whether experience induces subjects to cooperate more and to
properly apply backward induction. A consistent finding in this literature,
including Selten and Stoecker (1986), Andreoni and Miller (1993), Hauk
and Nagel (2001) and Bereby-Meyer and Roth (2006), among others, is
that subjects learn to cooperate more at early stages of the finitely re-
peated game and less at the final stages. Subjects also seemed to learn to

3Charness et al. (2011) ran a 4-person public good experiment in continuous time
and report a somewhat lower impact of continuous-time interaction on cooperation.
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anticipate the end game effect, consistent with a partial learning backward
induction story. The recent meta analysis of previous work and additional
experiments by Embrey et al. (2013) confirm that this is a consistent re-
sult in discretely repeated games experiments with deterministic horizon:
subjects tend to learn to anticipate the beginning of the end game phase.
In our continuous-time environment we find precisely the opposite result.

Finally, the experimental literature on games in continuous time has
blossomed during the last few years, so there are several less related studies
focusing on strategic situations that are quite different from a Prisoner’s
Dilemma, such as games of network formation (Berninghaus et al., 2006,
2007), minimum effort games (Deck and Nikiforakis, 2012), and hawk-doves
games (Oprea et al., 2011).

3 Experimental Design

The experiment has five treatments. The two treatment variables are the
expected duration of each supergame and the termination rule.4

In all treatments, subjects played a series of (quasi) continuous-time
Prisoner’s Dilemma games with stage-game payoffs as in Table 1.5

coop. defect
coop. 1, 1 -2, 2
defect 2, -2 0, 0

Notes: The numbers in each cell represent the payoff per second.

Table 1: Stage game payoffs

Each session comprised a non-overlapping group of 24 subjects, who
interacted in pairs for 23 supergames. Pairs were formed so that each
subject met all the others once and only once in a session (round-robin

4Table B.1 in the on-line appendix B summarizes the characteristics of each treat-
ment.

5As the instructions explained, the experiment was in quasi continuous time: “Within
a period, both you and the other will be able to change action as many times as you
wish. The time flows in very rapid ticks (of 16 hundredths of a second); in practice
there are between six and seven ticks every second, so that if you wish you can change
action six or seven times per second.” For brevity, from now on we will refer to it as a
continuous-time experiment. Notice that in the instructions, supergames were referred
to as “periods”.
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matching).6

In all treatments, the stage game was as follows. Each subject had to
select an initial action for the supergame, either Cooperate (green) or De-
fect (orange). When all subjects were done, the supergame began. Within
a supergame, subjects could switch action up to six or seven times per
second. More precisely, there was a tick every 16/100th of a second, which
gave the participants the feeling of continuous time. The PCs had touch
screens, hence a switch of action could not be heard by others, as subjects
simply touched the screen with a finger.7

Earnings for all possible combinations of actions were visible on the
screen at all times. The payoff matrix showed earnings in tokens per second.
The subject’s current action was always highlighted in yellow in the pay-
off matrix. Moreover, every subject could observe her cumulative earnings
on a continuously updated graph. Subjects’ earnings in every supergame
included an initial endowment (see Table B.1), and could stay constant,
increase, or decrease over time, depending on the choices of the pair. The
graph showed these patterns of earnings as a flat, increasing, or decreas-
ing line, respectively. A steeper line indicated a faster accumulation or
depletion. The line color was green or orange depending on the subject’s
own action. Hence, from the graph, subjects could unambiguously infer
the action taken in any moment by their opponent. The progression of the
earnings line marked the timing of the supergame for the subjects. They
could observe at every instant the speed of the game, which ran at the same
pace for all subjects in the session. For the Deterministic treatments, sub-
jects could always check the time remaining before the end of a supergame
by looking at the graph on the screen.

In the Long-Deterministic treatment, a supergame always lasted 60 sec-
onds. In the Long-Stochastic treatment, a supergame lasted in expectation
60 seconds. Similarly for the short treatments, where the expected dura-
tion was 20 seconds. In the stochastic treatments, the exact duration was
selected at random supergame by supergame. As explained in the instruc-
tions for the Long(Short)-Stochastic treatment, the supergame duration

6In the Short-Deterministic session run on February 2, 2011, due to a technical
problem, subjects met again their opponents of supergame 1 in supergame 23. All
reported results hold even if supergame 23 in that session is dropped.

7Figure B.1 in the on-line appendix B presents a screen-shot of the computer interface.
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depended on a random draw. “Imagine a box with 10,000 (1000) balls,
of which 9,973 (992) are black and 27 (8) are white. It is as if a ball is
drawn after every tick. If the ball is white, the period ends. If the ball is
black, the period continues and the ball is put back into the box. At the
next tick, another ball is drawn at random. You have to imagine very fast
draws, i.e. one every tick of 16 hundredths of a seconds. As a consequence
of this procedure, we have estimated that periods will last, on average, 60
(20) seconds. There may be periods that are short and periods that are
long.” In case a supergame (which is called a “period” in the instructions)
lasted beyond 60 seconds, the scale of the horizontal axis of the graph au-
tomatically shifted forward. The experimenters had no direct control, nor
any ex-ante information on the realized supergames’ durations.

In the Variable-Deterministic treatment, supergame ending was de-
terministic but supergames’ duration was variable. The sequence of su-
pergames’ durations was calibrated to match exactly the realized durations
in the Short-Stochastic treatment, in order to allow for a tight compari-
son. At the beginning of each supergame, the current supergame duration
was disclosed to the subjects both numerically – in terms of seconds –
and graphically – through a vertical line drawn in the payoff graph on the
subjects’ computer screen. Stochastic treatments are different from Deter-
ministic treatments both because the ending of the supergame is random
and because supergames’ durations are variable. The specific goal of this
additional treatment is to understand which one of these factors has more
impact on behavior.

Stage-game payoffs are such that cooperation should be easily achieved
(at least in the stochastic ending treatments). In continuous time, cooper-
ation is always sustainable because the instantaneous discount factor is 1:
then a grim trigger strategy should, in theory, support cooperative play as
an equilibrium, no matter the arrival rate of the end of the game. But even
if agents perceived the game to be played discretely, e.g. because of mini-
mal human reaction time, cooperation should be easily sustained with our
parameterization. For example, if subjects react with 1 second delay and
treat it as a time interval length of 1 second, then, given our stage game
payoffs (see Table 1), cooperation can be sustained with infinite horizon for
discount factors higher than 1/2, which implies an expected duration of 2
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seconds. If the time interval length is 0.25 of a second, then it would be
enough to have an expected duration of 0.5 of a second, and so on. Hence,
the 20 seconds is quite far from the theoretical bound.

Instructions were distributed and then read aloud.8 Subjects had the
opportunity to ask questions, which were answered in private, and then
went through three practice supergames with a robot opponent that was
programmed to switch action in the middle of the supergame. After each
practice supergame, subjects had to guess the actions taken by the robot,
and then completed a computerized quiz to verify their full understanding
of the rules of the game. The experiment started as soon as all subjects
answered correctly to all control questions.9 The session ended with a
questionnaire.

The experiment involved 240 subjects, mostly students at the Univer-
sity of Bologna, who took part in only one of the ten sessions and were
assigned through an online recruitment software (Greiner, 2004). The ex-
periment was run in the Bologna Laboratory for Experiments in Social
Sciences using z-Tree (Fischbacher, 2007). Subjects were seated at visually
isolated computer terminals and could not communicate. A session lasted,
on average, 2 hours for the Long treatments and 1 hour and 20 minutes for
the Short and Variable ones. At the end of the sessions, points were con-
verted into Euors at a rate of 1eevery 150 points in the Long treatments,
and at a rate of 1eevery 50 points in the Short and Variable ones. Sub-
jects earned, on average, 16.72 Euros and 15.47 Euros, respectively, which
include a show-up fee of 3 Euros.

4 Results

With our Long-Deterministic treatment, we replicate the results reported in
Friedman and Oprea (2012). The median cooperation rate from supergame
13 on in Friedman and Oprea (2012) ranges between 81% and 93%, depend-
ing on the treatment, and in our Long-Deterministic treatment it is 91%.

8An English translation of the experimental instructions is available in the on-line
appendix C.

9In the three practice supergames, 71% of the subjects always made correct guesses
about the sequence of actions taken by the robots. In answering the four control ques-
tions about the instructions, 53.8% of the subjects made at most one mistake.
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This provides a robustness check of their findings for different procedures,
subject pools, and payoff levels. The novelty of this study, however, stems
from the comparison across our treatments.

Cooperation rates are higher in supergames of longer (expected) du-
ration, with the difference being large for stochastic ending and small for
deterministic ending (Tables 2 and 3). The impact of duration on coop-
eration rates is highly significant in the stochastic treatments, while being
only marginally significant in the deterministic treatments. The unit of
observation is the cooperation rate, which is defined as the fraction of time
Ri,s a subject i spends cooperating within supergame s. Given that these
observations are not independent, to assess the significance of the observed
differences we take the average cooperation rate by subject across all su-
pergames, and run a linear regression with bootstrapped standard errors.
Results are reported in Table 3.10 The outcome of this regression indicates

Termination rule:
Duration: Deterministic Stochastic
Long mean 65.5 ∼ 66.9

median 84.0 84.8
∨∗∗ ∨∗∗∗

Short mean 63.3 >∗∗∗ 52.3
median 79.2 47.0

Notes: The mean cooperation rate of a session is the average across all 23 supergames
and all 24 subjects. The unit of observation is a subject per supergame. For every treat-
ment there are two sessions and 1104 observations. In this and in the following tables,
symbols ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
Significance levels are derived from the regression presented in Table 3.

Table 2: Cooperation rates by treatment

these differences are significant when controlling for individual characteris-

10We obtain similar results with a panel regression with random effects at the subject
level, where the unit of observation is the cooperation rate of a subject in a supergame,
and standard errors are robust for heteroschedasticity (see Table B.2 in the on-line ap-
pendix B). As a further robustness check we also ran linear regressions with standard
errors robust for clustering at the subject and pair level. The same treatment effects
emerge if we compare the rates of mutual cooperation (Tables B.3 and B.4), or the aver-
age profits per second (Tables B.5 and B.6). Notice however that the difference between
the Long- and Short-deterministic treatment ceases to be statistically significant if we
drop controls for individual characteristics, if we focus only on the last five supergames,
or if we consider only the first 2/3 of each supergame.
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tics.11

Dependent variable: cooperation rate
Coefficient (s.e.)

Short-Deterministic -5.537** (2.760)
Long-Stochastic 1.682 (2.577)
Short-Stochastic -17.799*** (3.830)
Constant 63.798*** (14.128)
Controls for individual characteristics Yes
N 192
R-squared 0.220

Notes: Linear regression with bootstrapped standard errors. To take care of the po-
tential correlation between observations coming from the same session, we take sessions
as resampling clusters. The unit of observation is the fraction of time a subject spends
cooperating within a supergame, averaged by subject across all supergames. Default
treatment: Long-Deterministic. See footnote 11 for a list of controls of individual char-
acteristics.

Table 3: Linear regression on cooperation rates

Let us now turn to our main result.

Result 1 With deterministic duration, cooperation rates are equal or high-
er than with stochastic duration.

Support for Result 1 comes from Tables 2 and 3. In the long duration
treatments, cooperation rates are statistically indistinguishable between
stochastic and deterministic horizons (p-value > 0.1, see Table 3). By con-
trast, in the short duration treatments, cooperation rates are significantly
higher with a deterministic horizon than with a stochastic horizon (p-value
< 0.001, see Table 3). The absolute difference in cooperation between the
two treatments is 11.0 points in terms of means, and 32.2 points in terms
of median. This result is in stark contrast with experiments on repeated

11In this and in the following regressions, we control for a number of factors: (i) de-
mographics: age, gender, field and degree of study, occupation, and Italian nationality
(93.3% subjects); (ii) task comprehension: number of wrong answers to control ques-
tions, and the total answering time; (iii) academic background: three dummies taking
value one for subjects who have previously followed courses of economics, statistics, and
game theory, respectively; (iv) non-incentivized questionnaire measures: risk attitudes,
level of generalized trust, and two IQ-type questions. A full version of this regression,
including the estimated coefficients for all the controls, is reported in Table B.2 in the
on-line appendix B.
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games in discrete time, where cooperation is typically higher with stochas-
tic than with deterministic duration.12

The next result shifts the focus on the dynamics within each supergame,
as the same cooperation rate Rip can result from different sequences of
actions, especially in continuous-time games. The evidence suggests that
subjects do not learn to apply backward induction.

Result 2 With deterministic duration, end-game effects exist, do not un-
ravel cooperation, and appear later with experience.

Support for Result 2 comes from Figure 1 and Table 4. Figure 1 presents
the time profile of the mean share of cooperators, taken across supergames
and sessions. A subject can change action every 0.16 seconds. Our unit of
observation is the share of cooperators Stp over time t within a supergame
p.

In both the Short- and Long-Deterministic treatments, there is a clear
end-game effect: the share of cooperators suddenly drops a few seconds
before the end of the supergame (Figure 1).13 There are, of course, many
ways to quantitatively measure the timing of this switch from cooperation
to permanent defection. We measured it by focusing on all pairs that at
some point during a supergame reached simultaneous cooperation, CC, and
then switched to defection before the end of the supergame, i.e. CD, DC,
or DD.14

12For example, in a repeated game with short expected duration, Dal Bó (2005)
finds that, “for every round, [. . . ] the percentage of cooperation in infinitely repeated
games [. . . ] is greater than in finitely repeated games of the same expected length
[. . . ], with p-values of less than 0.01.” (the expected number of action choices is 125
in our short treatments, 375 in our long treatments, while it ranges between 2 and 4
in his treatments). More specifically, when the expected duration is 2 (4) periods, the
average cooperation rate is 28.3% (35.2%) with stochastic ending and 12.5% (24.8%)
with deterministic ending.

13Friedman and Oprea (2012) also report an end-game effect. They find that “coop-
eration level falls below 75 percent only when 5 seconds remain and below 50 percent
only when 1 second remains.”

14This calculation includes the lion’s share of the observations. Out of a total of
552 subject-supergame observations per treatment, we have 468 and 460 in the Long
and Short treatment, respectively, such that both subjects cooperated simultaneously
at least once in that supergame. Of these, some (54/468 and 51/460, respectively) kept
on cooperating until the end of the supergame, while in the other cases (414/468 and
409/460, respectively) at least one of the subjects in the pair switched to permanent
defection.
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Figure 1: Time profile of the share of cooperative actions

Notes: The unit of observation is the share of cooperative actions in every second
of a supergame. A subject could switch action every 0.16 of a second. All subjects
and all supergames are included for the first 20 or 60 seconds. In the Long-Stochastic
treatments, 45.7% of supergames lasted more than 60 seconds. In the Short-Stochastic
treatments, 30.4% of supergames lasted more than 20 seconds.

Supergames
Treatment 1-6 7-12 13-18 19-23 Overall
Long-Deterministic 17.7 11.5 11.4 7.1 11.9
Short-Deterministic 7.4 5.3 4.1 3.8 4.9

Notes: average distance (in seconds) between the end of the supergame, and the time
of a permanent switch of a pair from mutual cooperation (CC) to defection – i.e. to
CD, DC, or DD.

Table 4: Timing of the end-game effect
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It is evident from Table 4 that in the Short-Deterministic treatment, the
end-game effect kicks in significantly later than in the Long-Deterministic
treatment: about 5 seconds from the end in contrast to about 12 seconds
(Table 4, p-value < 0.001).15 It is also evident that the end-game effect
kicks in later and later, as subjects gain experience (3.6 to 10.6 seconds
later, Table 4). The impact of experience is significant both in the Long-
Deterministic (p-value < 0.001) and in the Short-Deterministic treatment
(p-value < 0.001).

One reason behind the postponing of the end-game effect may be that
subjects become faster in reacting to defections as they gain experience. In-
deed, across supergames we observe a decrease in reaction time – measured
as the time interval between a deviation from mutual cooperation and the
beginning of the punishment phase, i.e. the time between the moment we
see a switch from (C,C) to (C,D) till the moment we see a switch from
(C,D) to (D,D).

The correlation between reaction times and timing of the end-game
effect, however, is not-significant (Table B.7 in the on-line appendix B).
When controlling for the average reaction time in the regression, the de-
crease in the duration of the end-game effect across supergames is still
significant (see Table A.1 in Appendix).

5 Identification of individual strategies

Studying strategy adoption may shed light on the differences in aggregate
levels of cooperation across treatments, in particular the low cooperation
rates in the Short-Stochastic.

The adopted approach to strategy estimation is based on the assump-
tion that subjects (i) adopt one of the 20 strategies presented in Table
5, (ii) may change strategy across supergames, and (iii) may make errors
on actions, i.e., with some probability may choose an action that is not
recommended by the strategy.16 We considered all strategies analyzed in

15The p-values reported in this paragraph are obtained from panel regressions with
random effects at the session level. The unit of observation is a session in a supergame.
Regression’s results are reported in Table A.1 in Appendix.

16Table A.3 in Appendix presents a description of the 20 strategies.
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Fudenberg et al. (2012), which include in particular three sets. Fully co-
operative strategies, which prescribe cooperation at all points in time if
matched with each other (A); Fully defective strategies, which prescribe
permanent defection if matched with each other (B); and other strategies
that would prescribe a combination of cooperation and defection (C). No-
tice that Table 5 does not include a Cut-Off strategy, i.e. a strategy that
prescribes to play Grim-trigger until close to the end of the supergame,
then switch to permanent defection. The Cut-Off strategy is particularly
relevant in deterministic treatments, as it could account for the aforemen-
tioned end-game effect (Table 4). The reason why we exclude it is that
including it would have required to arbitrarily set the cut-off time. As a
consequence, subjects following these strategies will be most likely classi-
fied as Grim-trigger, because the two strategies differ by at most one action
(the first defection). For strategy estimation, we adopted a methodology
introduced in Dal Bó and Fréchette (2011), for repeated games in discrete
time.17 In order to apply this methodology to our continuous-time setup,
we considered subjects’ actions in a sequence of specific instants of play
(every second) and disregarded the rest of the data.18

For each of the strategies, we define the sequence of actions prescribed
by the strategy to the subject, given the sequence of the subject’s and
the opponent’s previous actions. The maximum likelihood procedure is
based on the comparison between the actual sequence of actions taken by
the subject, and the 20 sequences corresponding to the 20 strategies. It
returns an estimate of the frequency with which each strategy is played, in
the population.19

To study how strategy adoption evolved with experience, we carried out

17The same estimation approach was also used, among others, by Fudenberg et al.
(2012); Camera et al. (2012); Dal Bó and Fréchette (2012); Fréchette and Yuksel (2013);
Rand et al. (2013); Vespa (2013).

18Using the whole sequence of data, i.e. one observation every 0.16 seconds, would
have implied a computational burden which goes beyond the limits the ICT resources
available to us. We chose not to use the modal action in a second, because the mode does
not necessary preserve the temporal sequence of actions, which is crucial for strategy
estimation. As a robustness check we repeated the estimation taking one action every 2,
and every 3 seconds. Our main results are robust to these changes. We thank Guillaume
Fréchette for kindly providing the original code for strategy estimation.

19We refer the reader to the on-line appendix of Dal Bó and Fréchette (2011) for a
more detailed explanation of the estimation approach.
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the maximum likelihood estimation over four blocks of supergames: 1-6,
7-12, 13-18, 19-23 (Figure 2).

Result 3 With experience, the frequency of Always Defect declines while
the frequency of conditionally cooperative strategies increases. For all lev-
els of experience and in all treatments, the combined frequency of these
strategies is above 80%.

Support for Result 3 comes from Figure 2 and Table 5: the share of sub-
jects adopting Fully defective strategies (B) is initially high (between 25%
and 41%) and sharply decreases with experience. The decrease, however,
is slower for the Stochastic treatments, and in particular for the Short-
Stochastic one. When considering only experienced play (supergames 19-
23, Table 5) the estimated frequency of Fully defective strategies is sub-
stantially higher in the Short-Stochastic than in the other treatments (15%
vs. 1%-7%).

Table 5 also reveals that, in the last 5 supergames, Grim trigger is
by far the most frequent strategy in the Deterministic treatments (50%
in the Long-Deterministic, and 61% in the Short-Deterministic, Table 5).
As previously mentioned, this probably indicates that in these treatments
most subjects play Cut-Off strategies, which is in line with the analysis in
Friedman and Oprea (2012).

Taken together, these results suggest that the difference in cooperation
rates across treatments is to be found in a different dynamics of behav-
ior, in particular in the relatively slow reduction in the share of defective
strategies in the Short-Stochastic treatment. In the next section we put
forward a reinforcement learning model that can explain why the take-off
of cooperation is slower in the Short-Stochastic treatment than in the other
three treatments.20

20Contrary to what Figure 2 might suggest, initial and average cooperation rates in the
first supergame are higher in the Short-Stochastic treatment (60.4% and 40.7%, respec-
tively) than in the other three treatments (50% and 25.4% in the Long-Deterministic,
54.2% and 35.4% in the Long-Stochastic, 52.1% and 24% in the Short-Deterministic).
Hence, we believe that the higher prevalence of defective strategies estimated for the
first block of six supergames in the Short-Stochastic treatment is determined by how
play evolves with experience, rather than by the initial inclinations of the subjects.
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Figure 2: Evolution of strategies across supergames.

6 Dynamics across supergames

The analysis of strategies presented in the previous section shows the pres-
ence of a common trend in strategy adoption across all treatments, but
this trend is characterized by different speeds. In particular, we observe
that in all treatments conditionally cooperative strategies tend to become
more widespread with experience, even if this trend is slower in the Short-
Stochastic treatment (Figure 2). In this section we first present additional
data about the diffusion of cooperative strategies with experience, and
then model its dynamics across supergames, showing that a simple rein-
forcement learning model fits our data very well. Finally, we provide an
intuition for why learning to cooperate should be slower when supergames’
duration is stochastic, and shorter in expectations: this intuition is based
on the relatively lower profitability of cooperative strategies in very short
supergames.

Results in Section 5 reveal that the vast majority of subjects played
either Always defect or one of the conditionally cooperative strategies (Re-
sult 3). The empirical approach adopted there estimates the prevalence of
each strategy in the population; it does not associate a specific individual
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to a strategy. As a consequence, it does not allow to assess the empirical
profitability of each strategy. Such an assessment is crucial to estimate a
reinforcement learning model which can explain the evolution of strategy
adoption. To this purpose, here we employ the following simple approach.
We classify all individuals into two non-overlapping categories: “coopera-
tors” and “defectors.” The former category includes all subjects who start
cooperating, and never defect before their opponents or defect only during
the last fifth of the (expected) duration of the supergame.21 The latter cat-
egory includes all other subjects. This classification is broadly consistent
with the estimates in Table 5: in supergames 19-23 cooperators account
for 73%-90% of the population, depending on the treatment.22

(a) Observed frequencies (b) Predicted probabilities

Figure 3: Frequency of “cooperators”

Result 4 The frequency of cooperators increases with experience in all
treatments, but the increase is slowest in the Short-Stochastic treatment.

Support for Result 4 comes from Figure 3a, which reports the frequency
of “cooperators.” An upward trend emerges in all treatments, but this trend
is weakest in the Short-Stochastic treatment.23 Our results show that, when

21The category of “cooperators” hence comprises also subjects adopting a Cut-Off
strategy. A finer partition of the “cooperators” category is empirically troublesome
because the same individual might be classified under multiple strategies. As Camera
et al. (2012) show, cooperative strategies are frequently observationally equivalent.

22In Bigoni et al. (2013), we present a similar reinforcement learning model based on
initial actions, rather than on this strategy classification. Results are qualitatively the
same.

23A similar trend characterizes initial and average cooperation rates (Figure B.2 in
the on-line appendix B.)
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playing repeated games, the amount of experience is a critical determinant
of outcomes. This is consistent with the findings of Dal Bó and Fréchette
(2011) for discretely repeated games.

We now show that the observed dynamics of strategy adoption across
supergames are consistent with a reinforcement learning model. Along the
lines of Mookherjee and Sopher (1994, eq.2.1), we estimate the probability
pti that subject i is a “cooperator” in supergame t in the following model:

pti = f(φAt−1
i,C + χAt−1

i,D + ψxi + ωzi) (1)

where f(.) denotes the logistic function; At−1
i,C is the average payoff per

second obtained by subject i up to supergame t− 1 when adopting a coop-
erative strategy; At−1

i,D is the average payoff per second obtained by subject
i up to supergame t−1 when adopting a defective strategy;24 xi is a vector
of three dummy variables corresponding to treatments Short-Deterministic,
Long-Stochastic, and Short-Stochastic; and zi is a vector of individual char-
acteristics.25

Results estimating the model in equation (1) via a logit regression are
presented in Table 6 (Model 1). Figure 3b presents the predicted probabil-
ity of adopting a cooperative strategy across treatments and supergames,
estimated through Model 1. This reinforcement learning model fits well
our data, the estimated coefficients φ and χ have the expected sign, and
are both highly significant.

Table 6 (Model 2) also presents results from an alternative model, where
the only independent variables are the individual characteristics and the
treatment dummies (φ = χ = 0). The comparison between the two models
in Table 6 reveals that the observed differences in the rates of adoption
of cooperative strategies across treatments are almost fully captured by
the reinforcement learning terms (At−1

i,C and At−1
i,D ), whose inclusion into the

model substantially improves the estimated Log-likelihood.26

24Variables A0
i,C and A0

i,D are set equal to 0.
25To allow for correlation between observations belonging to the same subject, this

vector also includes a dummy taking value one if in the first supergame the subject
adopted a cooperative strategy, zero otherwise. We thank an anonymous referee for the
suggestion.

26In Model 1 there is no statistically significant difference between the coefficients of
the Short-Stochastic and Short-Deterministic treatment dummies (p-value > 0.1). In
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Dependent variable: subject’s strategy (1= cooperator, 0= defector)
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
At−1
i,C 3.043*** (0.262)

At−1
i,D -0.753** (0.311)

Short-Deterministic -0.000 (0.315) -0.419 (0.350)
Long-Stochastic -0.072 (0.275) -0.645** (0.286)
Short-Stochastic -0.383 (0.463) -1.599*** (0.430)
Constant -1.670* (1.008) 0.332 (0.667)
Controls for individual
characteristics

Yes Yes

N 4416 4416
Log-likelihood -1859.435 -2081.673

Notes: panel logit regression with random effects at the subjects’ level and standard
errors robust for heteroschedasticity. Default treatment: Long-Deterministic. Standard
errors are reported in parentheses. The unit of obs. is a subject’s strategy (1 = “cooper-
ator”, 0 = “defector”) in a supergame. See footnote 11 for a list of controls of individual
characteristics. For a full version of this regression, see Table B.8 in the on-line appendix.

Table 6: Panel regression on subjects’ strategy adoption.

Let us now provide some motivation why it may be easier to experi-
ence the relative benefits of cooperation over defection with a deterministic
rather than a stochastic horizon.

Consider for simplicity a situation where all subjects play – with no er-
rors – either Always Defect or one of the conditionally cooperative strategies
(described in Table 5). No matter what is the specific strategy, when two
conditional cooperators meet, they cooperate at all points in time, while if a
conditional cooperator meets a defector, he will cooperate at the beginning,
and eventually switch to permanent defection.

There exist both empirical and theoretical reasons to consider a restric-
tion to these two types of strategies meaningful. On the empirical side, the
analysis of individual strategies in Section 5 shows that for all levels of ex-
perience and in all treatments, the combined frequency of these strategies
is above 80% (Result 3). On the theoretical side, justifications for restrict-
ing the focus to this class of strategies may come from the model of Jehiel
(2005), or from the one of Neyman (1985). Albeit different in the underly-
ing assumptions, the logic behind these two models can be applied to high

Model 2, this difference is highly significant (p-value < 0.001).
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frequency/continuous time games and can lead to very similar predictions.
Jehiel (2005) shows that conditional cooperation can be an equilibrium
strategy if strategies depend on a coarse set partition of all possible his-
tories. For example, consider the following partition: set A contains all
histories in which opponent never defected (including the empty history)
and set B all other histories. If both players use such two coarse analo-
gies, the following strategies form equilibria for long games: i) both players
play always defect and ii) both players follow a grim trigger, i.e., cooper-
ate if history is in set A and defect otherwise. Neyman (1985), instead,
shows that a cooperative equilibrium exists in finitely repeated prisoner’s
dilemmas, if subjects are bound to adopt strategies of limited complexity.
More specifically, if players are restricted to use two-state automata (for
instance Always Defect and Grim Trigger strategies), then they can sustain
a cooperative equilibrium (unless the game is very short).

In practice, when player one follows Always Defect and player two uses
a conditionally cooperative strategy, in continuous time player two does not
respond with defection immediately, but there is some time period when
one subject cooperates and the other defects. Let us denote this duration
with κ. The length of κ determines the profits of a subject playing Always
Defect against an opponent playing one of the conditionally cooperative
strategies. Let us denote by π̄(κ,H) the per-second expected profits from
defection in a supergame, which depend on κ, and on whether the time
horizon is deterministic or stochastic (H = d, s). More precisely:

π̄(κ, d) =
2κ

T
(deterministic treatments) (2)

π̄(κ, s) = 2
[
1− e−

κ
T − κ

T
Ei
(
− κ
T

)]
(stochastic treatments) (3)

where T represents the (expected) total duration of the supergame, and
Ei(− κ

T
) is the exponential integral function.27

27For the stochastic treatments, this profit is equal to 2 in all supergames that last less
than κ, which have probability

∫ κ
0
λe−xλdx, where λ = 1

T is the parameter of the geomet-
ric distribution from which supergames’ duration is drawn. For supergames whose real-
ized duration τ is longer than κ, instead, the per-second profit from playing Always De-
fect against a conditionally cooperative strategy is 2κ

τ . Hence, the expected per-second
profit from defection is 2

∫ κ
0
λe−xλdx+

∫∞
κ

2κ
x λe

−xλdx = 2(1− e−
κ
T ) + 2κ

T

(
−Ei

(
− κ
T

))
.

The “sucker’s” payoff from playing a conditionally cooperative strategy against Always
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Strategy of the column player/ Always Conditional
Strategy of the row player defect cooperation
Always defect 0, 0 π̄(κ,H), -π̄(κ,H)
Conditional cooperation -π̄(κ,H), π̄(κ,H) 1, 1

Table 7: Matrix of the expected profits per second.

The length of κ depends on the leniency of the specific conditional strat-
egy adopted by the cooperator (it can be chosen strategically or simply
driven by reaction time). We computed an empirical measure of κ, by con-
sidering those pairs in the experiment which initiated a supergame with one
subject cooperating and the other defecting, and then directly transitioned
to mutual defection (i.e. the cooperator switched to defection before the
end of the supergame). The average duration of this phase was 1.75 seconds
in the Long-Deterministic, 1.51 seconds in the Long-Stochastic, 1.40 sec-
onds in the Short-Deterministic, and 1.61 seconds in the Short-Stochastic
treatment. Plugging the empirical measures of κ into equations (2) and (3)
yields the payoff matrix presented in Table 7, where π̄(κ, d) = 0.06 in the
Long-Deterministic treatment, π̄(κ, d) = 0.14 in the Short-Deterministic,
π̄(κ, s) = 0.21 in the Long-Stochastic, and π̄(κ, s) = 0.48 in the Short-
Stochastic.

For these values of π̄(κ,H), the set of beliefs that make a conditionally
cooperative strategy optimal (i.e. its “basin of attraction”, see Myerson,
1991, chapter 7.11) is much smaller and the riskiness of cooperating (Blon-
ski and Spagnolo, forth.) much larger in the Short-Stochastic than in the
other three treatments.28 More generally, the ordering across treatments
following a basin-of-attraction criterion is consistent with the pattern of
the frequency of “cooperators” depicted in Figure 3.

7 Additional empirical evidence

The discussion in the previous section showed that, in an environment in
which cooperators and defectors coexist, cooperating is more profitable

defect is simply given by −π̄(κ,H).
28Dal Bó and Fréchette (2011) and Blonski et al. (2011) showed that these concepts

capture well coordination problems in discretely repeated games experiments.
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than defecting only in supergames that are sufficiently long. Our learning
model suggests that subjects tend to cooperate more when they have ex-
perienced past cooperation to be profitable, which happens less frequently
in the Short-Stochastic treatment, where the incidence of very short su-
pergames is relatively high. However, one may wonder whether it is the
variability of supergames’ duration per se, and the presence of many short
supergames that induces this result, or it is the unpredictability of a stochas-
tic horizon, which makes it impossible for subjects to condition their strat-
egy on the duration of the supergame.

To shed further light on the puzzle of the lower cooperation rates in
the Short-Stochastic treatment and deepen our understanding of the de-
terminants of the dynamics across supergames, we designed and ran an
additional treatment. In this treatment, called the Variable-Deterministic,
supergames’ ending is deterministic but supergames’ duration is variable.
The sequence of supergames’ durations is calibrated to match exactly the
realized durations in the Short-Stochastic treatment, in order to allow for
a direct comparison. If the main factor that slows down the evolution of
cooperation is the variability of supergames’ durations and the many short
realizations, then we should expect similarly low rates of cooperation and a
slow adjustment in the Variable-Deterministic treatment, as in the Short-
Stochastic one. If, instead, unpredictability of duration is the main obstacle
to the evolution towards cooperation, then we should observe higher rates
of cooperation in the Variable-Deterministic treatment.

Result 5 Cooperation levels in the Variable-Deterministic treatment are
in-between the Short-Deterministic and the Short-Stochastic treatments in
terms of initial, mean, and median rates, but they are closer to the Short-
Deterministic.

Initial and mean cooperation rates are higher in the Variable-Deterministic
than in the Short-Stochastic treatment (77.9 vs. 65.9 and 57.1 vs. 52.3,
respectively).29 A deterministic horizon facilitates cooperation relative to a

29The difference is significant for both comparisons (p-value < 0.05 in both cases,
according to a linear regression with one observation per subject, and bootstrapped
standard errors. Regression results are reported in Table A.2 in Appendix, and in Tables
B.9 and B.10 in the on-line appendix B. Figure B.3 in the on-line appendix presents the
time profile of the mean share of cooperators, taken across supergames. The five lines
correspond to supergames of different duration.
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Notes: The size of line markers are proportional to the number of observations.

Figure 4: Rate of initial cooperation, by supergames’ duration

stochastic horizon even with identical realized durations, further confirming
the robustness of our main result.

When the horizon is deterministic, supergames’ duration matters for
cooperation. In the experiment, initial cooperation rates monotonically in-
crease with supergames’ duration (Figure 4).30 As a benchmark, Figure
4 also presents the initial cooperation rate in the Short-Stochastic treat-
ment, where subjects cannot condition behavior on the actual supergames’
duration.31

The data from the Variable-Deterministic treatment suggest that both
the variability and the unpredictability of supergames’ durations had an im-
pact on cooperation, although the unpredictability of the stochastic horizon
was the stronger force (Result 5). This last finding is in line with Bereby-
Meyer and Roth’s (2006) result that introducing randomness in strategic

30There is a kink around 10-15 seconds, which makes the relation non-linear. The
presence of the kink suggests that when the horizon is deterministic, most subjects
cooperate only when the end is far enough, while in very short supergames they defect
from the start.

31By contrast, we observe that in the Short-Stochastic treatment, the realized dura-
tion of the previous supergame weakly affects subjects’ decision whether to cooperate in
the subsequent one, which is in line with Dal Bó and Fréchette (2011). In the Variable-
Deterministic treatment, instead, this is not the case (Table B.11 in the on-line appendix
B). One possible interpretation of this is that when the horizon is stochastic subjects
update their beliefs about the expected value of cooperation. The expected value de-
pends not only on what they think others do, but also on the expected length of the
supergame: the longer the supergame, the higher the gains from cooperation. When the
horizon is deterministic, there is no need for such an update.
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situations, while holding expected payoffs constant, hinders subjects ability
to adapt.

8 Discussion

We now briefly discuss the theoretical literature related to our experiment
and results.

Standard theory of repeated games in discrete time predicts that, by
subgame-perfection, there should be no cooperation in Prisoner’s Dilemma
games with deterministic horizon. While it is well known that this predic-
tion is not confirmed in experiments, partial empirical support for this the-
ory comes from two results documented in the literature: with experience
subjects typically start defecting sooner and in short games cooperation
rates are higher with stochastic rather than deterministic horizon (Dal Bó,
2005). The main result of this paper is that we observe the opposite pat-
terns in a continuous-time experiment. Among the theories that predict no
unraveling and cooperation (or at least the possibility of high cooperation)
in games with deterministic horizon, we can identify two sets.

The first set of theories puts some restrictions on the strategy space, or
on how players form expectations on others’ strategies. It includes Neyman
(1985) and Jehiel (2005) on discrete-time games and Simon and Stinch-
combe (1989) and Bergin and MacLeod (1993) on continuous-time ones.
Simon and Stinchcombe (1989) obtain mutual cooperation as the unique
equilibrium of the continuous-time limit, while Bergin and MacLeod (1993)
present a folk theorem for continuous-time games, independently of their
duration. In discrete time, Neyman (1985) obtains a cooperative equilib-
rium for finitely repeated games when there is a bound on the complexity of
the strategies players can adopt. Jehiel (2005) presents a model with coarse
analogy groupings (strategies depend on a coarse set partition of all pos-
sible histories) that admits both unconditional defection and conditional
cooperation to form an equilibrium of the game.

Theories in the second set perturb the repeated game by introducing
some incomplete information. They include Kreps et al. (1982) and Radner
(1986) for discretely-repeated games, and Friedman and Oprea (2012) and
Park (2013) for continuous-time ones. In these models, players are not
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certain about the behavior or preferences of their opponents. For example,
in Radner (1986) and Friedman and Oprea (2012), players assign some
probability to their opponent playing a cutoff strategy: play grim-trigger
till some time t and then defect. In Kreps et al. (1982), players assign
positive probability to their opponents playing a grim trigger strategy and
in Park (2013) there is additionally private information about reaction
times. These models predict equilibria (often unique) with cooperation at
the beginning of the game and defection close to the end.

Overall, both sets of theories admit high cooperation rates as one of
the equilibrium outcomes in continuous-time or frequently repeated games,
no matter what the termination rule. Moreover, both sets of theories offer
no reason for unraveling in deterministic horizon games. In these dimen-
sions our results support these models in contrast to unperturbed discrete
time models with unrestricted strategies that got a stronger support from
discrete-time experiments.

While our experiment shows qualitative differences that speak against
the approximation of continuous time games with models of standard re-
peated games in discrete time, it cannot discriminate among the two sets of
theories discussed above. We do observe clear end-game effects predicted
by only some of these theories but we recommend caution in declaring them
winners. In particular, they do not predict that with experience defections
would happen later and later in the game. The pattern we observe could
be consistent with subjects converging to mutual cooperation for the whole
duration of the game. In other words, depending on the theoretical model
taken as reference, the dynamic across supergames could be interpreted as
a convergence toward equilibrium play, or a gradual shift from less cooper-
ative equilibria toward more cooperative equilibria, or both. For the latter
interpretations one would also need a theory of equilibrium selection. We
cannot tell apart these possibilities. In general, new experimental designs
are needed to discriminate between these models.

Some of our results, however, are hard to reconcile with any of these
theories. First, none of these equilibrium theories predicts higher cooper-
ation levels in the deterministic than stochastic treatments. Second, they
all seem to predict that initial cooperation rates should be independent of
the termination rule or duration of the game. Our results contradict both
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these predictions. Our best explanation of the data is that the observed
patterns are an effect of differences in the evolution of behavior with ex-
perience rather than differences in the set of equilibria in these games. In
particular, in Section 6 we have shown that a model based on reinforce-
ment learning captures well the differences across treatments in the growth
of cooperation.

9 Conclusions

We studied repeated Prisoner’s Dilemma games of different durations in
(quasi) continuous time, under deterministic and stochastic horizons. The
experiment showed how behavior in continuous-time games is qualitatively
different from what is typically observed in discrete-time games. With
games of short duration cooperation rates in continuous time were signifi-
cantly higher in deterministic than in stochastic horizon treatments (with
long duration they were similar). Moreover, while with a deterministic
horizon there was a drop in cooperation levels toward the end of the game,
in our experiments subjects learned to postpone more and more this end-
game effect, contrary to the evidence in discrete time.

Two main economic forces influence whether agents can successfully
cooperate in repeated games with perfect monitoring: incentives, i.e. the
tradeoff between immediate gains and the shadow of future punishments;
and coordination, i.e. the ability to reach a cooperative equilibrium. These
forces are relevant both in theory and in the experimental evidence. Our
results suggest that – in situations where agents can react quickly to moves
by others – the first force is second-order. Instead, the second, the ability
to make use of experience for coordinating on future play appears to be a
first-order determinant of cooperation levels.

We explicitly considered the evolution of behavior with experience as a
potential explanation of our results. We found that a simple reinforcement
learning model can account for most of the observed patterns. In particular,
the model predicts that experience is an important driver that increases
cooperation in all treatments, but that its impact is weaker in games with
a stochastic horizon, because in very short supergames defecting from the
start is more profitable than cooperating.
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An additional treatment with deterministic duration and supergames
of variable length matching the realized durations of the stochastic treat-
ment confirmed that a deterministic horizon facilitates cooperation. It also
showed that the presence of uncertainty in supergames’ duration slows
down the convergence to cooperation more than the variability in su-
pergames’ lengths.

The reported findings may have important implications for a variety of
field applications. People facing social dilemmas in which they can react
swiftly, as in many productive, labor, sporting, and military activities, can
easily overcome the challenge of achieving mutual cooperation, irrespective
of the deterministic or stochastic horizon of the interaction, even for short
duration activities. In those situations, a deterministic horizon is not an
impediment to cooperation and may even facilitate it.

On collusion practices, our results may explain why higher prices have
been observed in oligopolies when the date of the last interaction is made
public. Szymanski (1996), for example, noted that the two incumbent
shipping companies in the Channel increased prices substantially when the
threat of the Eurotunnel taking the best part of their market became real.
Assuming a monopolistic market, his model suggested that this happened
because of the reduced fear of regulatory intervention, given its fixed costs,
and the fact that the tunnel was expected to soon reduce prices dramat-
ically anyway. However, he admitted that he could not explain how this
theory could apply to the shipping duopoly that motivated his paper, i.e.
why competition among the duopolists did not drive prices down, given
that the Eurotunnel limited the horizon of their interaction. Our results
offer a plausible explanation. They also suggest that policies designed for
discretely repeated interactions may be ineffective or counterproductive in
high frequency environments.

To draw implications from the experimental results, however, one should
keep in mind that these activities must share some well-defined features:
they should involve a continuous-time effort by participants, as when car-
rying together a heavy object or jointly rowing in a boat, and participants
must perfectly observe the action or effort taken by the opponent. Further
work is needed to understand the domain of application of these results,
for instance with respect to shorter supergames’ lengths or other details.
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In particular, the introduction of imperfect monitoring of the opponent’s
action may limit, or remove altogether, the possibility of sustaining a coop-
erative outcome when actions are chosen frequently (as in the theoretical
results in Sannikov and Skrzypacz 2007).
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A Appendix - for publication

Dependent variable: average timing of the end-game effect
Coefficient (s.e.)

Short-Deterministic -7.182* (3.718)
Supergame -1.178*** (0.342)
Supergame2 0.027** (0.014)
Supergame × Short-Deterministic 0.609 (0.479)
Supergame2× Short-Deterministic -0.012 (0.019)
Reaction time 4.135*** (1.153)
Reaction time× Short-Deterministic -2.639 (1.775)
Constant 14.956*** (2.876)
N 92
R-squared overall 0.680
R-squared between 0.933
R-squared within 0.514

Notes: Panel regression with random effects at the session level. The unit of observation
is the session average of timing of the end-game effect (in seconds) in each supergame
of the Short-Deterministic and Long-Deterministic treatments.

Table A.1: Panel regression on the average timing of the end-game effect

Mean
coop. rate

Initial
coop. rate

Short-Deterministic 11.574*** (2.359) 17.051*** (6.164)
Variable-Deterministic 6.966** (3.094) 13.489** (6.751)
Constant 39.488*** (13.287) 65.719*** (16.057)
Controls for individual characteristics Yes Yes
N 144 144
R-squared 0.155 0.216

Notes: Linear regressions with bootstrapped standard errors. To take care of the po-
tential correlation between observations coming from the same session, we take sessions
as resampling clusters. The unit of observation is the mean (initial) cooperation rate
in a section in a supergame. Default treatment: Short-Stochastic. Standard errors
are reported in parentheses. A full version of this regression, including the estimated
coefficients for all the controls, is reported in Table B.9 in the on-line appendix B.

Table A.2: Linear regression on mean and initial cooperation rates
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Strategy Description
A. Fully cooperative strategies

Unconditional
Always cooperate always play C

Conditional
Forgiving

Tit-for-tat play C unless the opponent played D at t-1
T2 play C until either player plays D, then play D for 2 sec-

onds and revert to C
Win-stay-lose-shift play C unless there was a mismatch between the subject’

and the opponent’s action in t-1, otherwise play D
Tit-for-2-tats play C unless the opponent played D at t-1 and at t-2
Tit-for-3-tats play C unless the opponent played D at t-1, t-2 and t-3

2-Tits-for-1-tat play C unless the opponent played D either in t-1, or in
t-2

2-Tits-for-2-tats play C unless the opponent played D either in t-1 and in
t-2, or in t-2 and in t-3

Tit-for-tat 2 play C unless there was a mismatch between the subject’s
and the opponent’s action either in t-1 or in t-2, or if both
subjects played D in t-2 and C in t-1

Unforgiving
Grim trigger play C until either the subject or the opponent plays D,

then always play D
Lenient grim 2 play C until either the subject or the opponent plays D

twice in a row, then always play D
Lenient grim 3 play C until either the subject or the opponent plays D

three times in a row, then always play D
B. Fully defective strategies

Always defect always play D
Suspicious tit-for-tat play D as initial action, then tit-for-tat

C. Other strategies
False cooperator play C as initial action, then always play D

Suspicious tit-for-2-tats play D as initial action, then tit-for-2-tats
Suspicious tit-for-3-tats play D as initial action, then tit-for-3-tats

Suspicious lenient grim 2 play D as initial action, then lenient grim 2
Suspicious lenient grim 3 play D as initial action, then lenient grim 3

D-alternator play D as initial action, than alternate between C and D

Table A.3: Set of strategies used in the maximum likelihood estimation.
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Online appendix

B Additional tables and figures

Termination rule
Deterministic Stochastic

Short
(20 secs.)

N=48
Period endowment: 15 pts.
Conversion rate: 50 pts.=1 e
- January 24, 2011
- February 4, 2011

N=48
Period endowment: 15 pts.
Conversion rate: 50 pts.=1 e
Average realized duration: 22.6”
- February 2, 2011
- February 4, 2011

Long
(60 secs.)

N=48
Period endowment: 50 pts.
Conversion rate: 150 pts.=1 e
- October 21, 2010
- October 28, 2010

N=48
Period endowment: 50 pts.
Conversion rate: 150 pts.=1 e
Average realized duration: 68.3”
- October 22, 2010
- October 28, 2010

Variable N=48
Period endowment: 15 pts.
Conversion rate: 50 pts.=1 e
Same realized durations as in
Short-Stochastic
- April 4, 2012
- April 4, 2012

Table B.1: Treatments and sessions
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Dependent variable: cooperation rate
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
Short-Deterministic -5.537** (2.760) -5.537** (2.801)
Long-Stochastic 1.682 (2.577) 1.682 (3.565)
Short-Stochastic -17.799*** (3.830) -17.799*** (3.769)
Demographics
Age -0.140 (0.373) -0.140 (0.247)
Male 3.201 (3.188) 3.201 (2.307)
Italian 3.916 (3.711) 3.916 (4.594)
Education 1.140 (1.346) 1.140 (1.656)
Missing edu. 16.066*** (4.516) 16.066*** (6.226)
Non-student 1.239 (5.807) 1.239 (5.252)
Field of study
Medicine, Sciences, Engineering 6.416* (3.663) 6.416 (4.363)
Humanities 5.966 (5.604) 5.966 (5.114)
Other 2.452 (5.298) 2.452 (5.509)
Task comprehension
Wrong answers -0.074 (0.354) -0.074 (0.256)
Response time -0.010 (0.013) -0.010 (0.013)
Academic background
Economic classes -2.841 (3.639) -2.841 (3.060)
Statistics classes 0.454 (2.406) 0.454 (2.791)
Game theory classes 2.759 (4.962) 2.759 (3.362)
Questionnaire measures
Risk attitudes -0.834 (0.922) -0.834 (0.621)
Generalized trust -2.206 (1.718) -2.206 (2.711)
Missing trust 1.177 (3.514) 1.177 (3.282)
IQ quiz 1 -0.163 (3.498) -0.163 (4.133)
IQ quiz 2 6.626*** (1.871) 6.626*** (2.226)
Constant 63.798*** (14.128) 63.798*** (10.193)
N 192 4416
R-squared 0.220
R-squared overall 0.046
R-squared between 0.220
R-squared within 0.000

Notes: Model 1 presents the full estimate of the regression in Table 3, while Model
2 presents a panel regression with random effects at the subjects’ level and standard
errors robust for heteroschedasticity. The unit of obs. is the fraction of time a subject
spends cooperating within a supergame. Defaults: Long-Deterministic treatment, major
in Economics and Business. The difference between coefficients for the Short-Stochastic
and Short-Deterministic treatments is significant at any standard significance level (p-
value < 0.001).

Table B.2: Regressions on cooperation rates
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Termination rule
Duration Deterministic Stochastic
Long 0.613 ∼ 0.608

(0.791) (0.769)
∨∗∗∗ ∨∗∗∗

Short 0.557 >∗∗∗ 0.447
(0.700) (0.283)

Notes: The mean rate of mutual cooperation of a session is the average across all 23
supergames and all 12 groups in each supergame. Median rates of mutual cooperation
are reported in parentheses. Significance levels are derived from the regression presented
in Model 1 of Table B.4.

Table B.3: Average rate of mutual cooperation per second
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Dependent variable: rate of mutual cooperation
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
Short-Deterministic -0.086*** (0.026) -0.086*** (0.028)
Long-Stochastic 0.002 (0.024) 0.002 (0.036)
Short-Stochastic -0.207*** (0.045) -0.207*** (0.038)
Demographics
Age -0.002 (0.004) -0.002 (0.003)
Male 0.033 (0.033) 0.033 (0.023)
Italian 0.042 (0.036) 0.042 (0.045)
Education 0.015 (0.014) 0.015 (0.017)
Missing edu. 0.185*** (0.041) 0.185*** (0.060)
Non-student -0.001 (0.057) -0.001 (0.054)
Field of study
Medicine, Sciences, Engineering 0.049 (0.036) 0.049 (0.042)
Humanities 0.045 (0.057) 0.045 (0.049)
Other 0.021 (0.055) 0.021 (0.055)
Task comprehension
Wrong answers -0.001 (0.004) -0.001 (0.003)
Response time -0.000 (0.000) -0.000 (0.000)
Academic background
Economic classes -0.017 (0.034) -0.017 (0.030)
Statistics classes -0.003 (0.024) -0.003 (0.028)
Game theory classes 0.023 (0.051) 0.023 (0.033)
Questionnaire measures
Risk attitudes -0.009 (0.009) -0.009 (0.006)
Generalized trust -0.027 (0.020) -0.027 (0.028)
Missing trust 0.010 (0.034) 0.010 (0.030)
IQ quiz 1 0.001 (0.035) 0.001 (0.040)
IQ quiz 2 0.069*** (0.019) 0.069*** (0.022)
Constant 0.619*** (0.154) 0.619*** (0.101)
N 192 4416
R-squared 0.254
R-squared overall 0.047
R-squared between 0.254
R-squared within 0.000

Notes: Model 1 presents results from a linear regression with bootstrapped standard
errors. To take care of the potential correlation between observations coming from
the same session, we take sessions as resampling clusters. The unit of observation is the
average fraction of time a pair of subjects coordinate on cooperation within a supergame,
across all supergames. Model 2 presents results from a panel regression with random
effects at the subjects’ level and standard errors robust for heteroschedasticity. The unit
of observation is the fraction of a supergame’s duration in which both subjects in a pair
cooperate. Defaults: Long-Deterministic treatment, major in Economics and Business.

Table B.4: Linear regression on rates of mutual cooperation
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Termination rule
Duration Deterministic Stochastic
Long 0.614 ∼ 0.608

(0.792) (0.793)
∨∗∗ ∨∗∗∗

Short 0.570 >∗∗∗ 0.447
(0.696) (0.455)

Notes: The mean profit per second of a session is the average across all 23 supergames
and all 24 subjects. Median profits are reported in parentheses. Significance levels are
derived from the regression presented in Model 1 of Table B.6.

Table B.5: Average profits per second
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Dependent variable: average profit per second
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
Short-Deterministic -0.060** (0.026) -0.060** (0.025)
Long-Stochastic 0.013 (0.015) 0.013 (0.029)
Short-Stochastic -0.189*** (0.041) -0.189*** (0.030)
Demographics
Age -0.004* (0.003) -0.004* (0.003)
Male 0.021 (0.023) 0.021 (0.019)
Italian 0.026 (0.032) 0.026 (0.035)
Education 0.012 (0.009) 0.012 (0.014)
Missing edu. 0.135*** (0.037) 0.135*** (0.048)
Non-student 0.007 (0.049) 0.007 (0.047)
Field of study
Medicine, Sciences, Engineering 0.021 (0.027) 0.021 (0.030)
Humanities 0.009 (0.042) 0.009 (0.036)
Other 0.002 (0.048) 0.002 (0.043)
Task comprehension
Wrong answers -0.000 (0.003) -0.000 (0.002)
Response time -0.000 (0.000) -0.000* (0.000)
Academic background
Economic classes 0.005 (0.019) 0.005 (0.022)
Statistics classes -0.008 (0.021) -0.008 (0.022)
Game theory classes 0.017 (0.038) 0.017 (0.026)
Questionnaire measures
Risk attitudes -0.006 (0.006) -0.006 (0.005)
Generalized trust -0.035** (0.017) -0.035 (0.023)
Missing trust -0.011 (0.026) -0.011 (0.031)
IQ quiz 1 0.013 (0.027) 0.013 (0.029)
IQ quiz 2 0.054*** (0.017) 0.054*** (0.018)
Constant 0.698*** (0.124) 0.698*** (0.088)
N 192 4416
R-squared 0.344
R-squared overall 0.034
R-squared between 0.344
R-squared within 0.000

Notes: Model 1 presents results from a linear regression with bootstrapped standard
errors. To take care of the potential correlation between observations coming from
the same session, we take sessions as resampling clusters. The unit of observation is
the average profit per second, across all supergames. Model 2 presents results from a
panel regression with random effects at the subjects’ level and standard errors robust
for heteroschedasticity. The unit of observation is a subject’s profit per second, in a
supergame. Defaults: Long-Deterministic treatment, major in Economics and Business.

Table B.6: Linear regression on average profits per second

6



Supergames
Treatment 1-6 7-12 13-18 19-23 Overall
Long-Deterministic 1.73 1.38 1.52 1.44 1.52

N=236 N=262 N=244 N=212 N=954

Short-Deterministic 1.06 1.08 0.95 0.90 0.99
N=164 N=186 N=224 N=192 N=766

Table B.7: Average reaction time across supergames.
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Dependent variable: subjects’ strategy (1= cooperator, 0= defector)
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
Short-Deterministic -0.000 (0.315) -0.419 (0.350)
Long-Stochastic -0.072 (0.275) -0.645** (0.286)
Short-Stochastic -0.383 (0.463) -1.599*** (0.430)
At−1
i,C 3.043*** (0.262)

At−1
i,D -0.753** (0.311)

Cond. coop. supergame 1 1.517*** (0.201) 1.515*** (0.157)
Demographics
Age 0.006 (0.019) -0.028** (0.013)
Male 0.136 (0.248) 0.423*** (0.149)
Italian 0.304 (0.443) 0.425* (0.249)
Education 0.280** (0.115) 0.203** (0.096)
Missing edu. 1.179** (0.555) 1.620*** (0.297)
Non-student -0.062 (0.441) -0.110 (0.250)
Field of study
Medicine, Sciences, Engineer-
ing

-0.045 (0.374) 0.372* (0.214)

Humanities 0.587* (0.302) 0.470 (0.286)
Other 0.292 (0.455) 0.065 (0.251)
Task comprehension
Wrong answers -0.024 (0.035) -0.037*** (0.006)
Response time 0.000 (0.001) 0.001*** (0.000)
Academic background
Economic classes 0.404* (0.244) 0.240 (0.192)
Statistics classes -0.006 (0.417) -0.153 (0.201)
Game theory classes -0.234 (0.165) -0.199 (0.314)
Questionnaire measures
Risk attitudes -0.102* (0.053) -0.109*** (0.042)
Generalized trust -0.331 (0.239) -0.148 (0.221)
Missing trust 0.236 (0.252) 0.192 (0.198)
IQ quiz 1 0.236 (0.203) 0.498*** (0.162)
IQ quiz 2 0.699*** (0.190) 0.899*** (0.160)
Constant -1.670* (1.008) 0.332 (0.667)
N 4416 4416
Log-likelihood -1859.435 -2081.673

Notes: panel logit regression with random effects at the subjects’ level and standard
errors robust for heteroschedasticity. Defaults: Long-Deterministic treatment, major in
Economics and Business. Standard errors are reported in parentheses. The unit of obs.
is a subject’s strategy (1 = “cooperator”, 0 = “defector”), in a supergame. See footnote
11 for a list of controls of individual characteristics.

Table B.8: Panel regression on subjects’ strategies.
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Mean
coop. rate

Initial
coop. rate

Short-Deterministic 11.574*** (2.359) 17.051*** (6.164)
Variable-Deterministic 6.966** (3.094) 13.489** (6.751)
Demographics
Age 0.266 (0.453) -0.192 (0.591)
Male 0.121 (3.091) 4.646*** (1.755)
Italian 6.637 (7.342) 8.536 (11.849)
Education 0.977 (1.325) 3.307 (2.304)
Missing edu. 16.371*** (4.432) 41.395*** (9.590)
Non-student 2.285 (6.308) 1.688 (9.312)
Field of study
Medicine, Sciences, Engineering 2.537 (3.781) 5.486 (6.601)
Humanities -1.831 (4.345) -2.883 (8.032)
Other -4.544 (5.749) -4.458 (10.600)
Task comprehension
Wrong answers 0.037 (0.569) -0.205 (0.918)
Response time -0.002 (0.023) -0.006 (0.026)
Academic background
Economic classes -4.075 (2.707) 0.042 (4.312)
Statistics classes 3.470 (3.684) -0.699 (5.364)
Game theory classes 0.037 (3.363) -4.172 (4.542)
Questionnaire measures
Risk attitudes -0.715 (0.611) -1.957*** (0.689)
Generalized trust -0.599 (1.806) -2.534 (3.338)
Missing trust -1.432 (4.167) -3.145 (9.401)
IQ quiz 1 -0.217 (2.929) -3.332 (5.570)
IQ quiz 2 4.402* (2.248) 5.801 (4.053)
Constant 39.488*** (13.287) 65.719*** (16.057)
N 144 144
R-squared 0.155 0.216

Notes: Linear regressions with bootstrapped standard errors. To take care of the po-
tential correlation between observations coming from the same session, we take sessions
as resampling clusters. The unit of observation is the mean (initial) cooperation rate
in a section in a supergame. Defaults: Short-Stochastic treatment, major in Economics
and Business. Standard errors are reported in parentheses.

Table B.9: Linear regression on mean and initial cooperation rates
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Mean
coop. rate

Initial
coop. rate

Short-Deterministic 11.574*** (3.624) 1.239*** (0.259)
Variable-Deterministic 6.966* (4.067) 0.807*** (0.265)
Demographics
Age 0.266 (0.628) 0.036 (0.023)
Male 0.121 (2.492) 0.421*** (0.120)
Italian 6.637 (7.561) 0.086 (0.370)
Education 0.977 (2.411) 0.045 (0.144)
Missing edu. 16.371*** (6.199)
Non-student 2.285 (8.096) 0.671* (0.361)
Field of study
Medicine, Sciences, Engineering 2.537 (4.621) 0.391 (0.445)
Humanities -1.831 (5.221) 0.080 (0.446)
Other -4.544 (7.435) 0.065 (0.304)
Task comprehension
Wrong answers 0.037 (0.419) -0.006 (0.010)
Response time -0.002 (0.020) -0.001 (0.001)
Academic background
Economic classes -4.075 (3.693) -0.206 (0.171)
Statistics classes 3.470 (3.405) 0.284* (0.151)
Game theory classes 0.037 (3.362) 0.205 (0.331)
Questionnaire measures
Risk attitudes -0.715 (0.674) -0.181*** (0.035)
Generalized trust -0.599 (3.159) 0.005 (0.156)
Missing trust -1.432 (3.949) -0.972*** (0.218)
IQ quiz 1 -0.217 (3.729) -0.115 (0.351)
IQ quiz 2 4.402* (2.582) 0.467*** (0.150)
Constant 39.488** (16.209) 0.355 (0.637)
N 3312 3312
R-squared overall 0.029
R-squared between 0.155
R-squared within 0.000
Log-likelihood -1524.5

Notes: Panel regression with random effects at the subjects’ level and standard er-
rors robust for heteroschedasticity. The unit of observation is a subject’s cooperation
rate/initial action a supergame. Since initial cooperation is a binary variable, in the
last column of this table we present results from a panel logit regression with random
effects at the subjects’ level and standard errors robust for heteroschedasticity. De-
faults: Short-Stochastic treatment, major in Economics and Business. Standard errors
are reported in parentheses.

Table B.10: Panel regression on mean and initial cooperation rates
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Dependent variable: initial cooperation
Short-Stochastic Variable-Deterministic

Initial coop. S1 0.498 (0.310) 1.360*** (0.209)
Durationt−1 0.011* (0.006) 0.007 (0.006)
Duration2t−1 -0.000 (0.000) -0.000 (0.000)
Initial coop.jt−1 0.452*** (0.100) 0.204* (0.120)
Demographics
Age 0.083 (0.068) -0.038 (0.039)
Male 0.100 (0.314) 0.321 (0.210)
Italian 0.451 (1.103) -0.780 (0.824)
Education -0.203 (0.311) 0.252 (0.161)
Missing edu. 5.219 (176.581)
Non-student -0.761 (0.761) 0.054 (0.391)
Field of study
Medicine, Sciences, Engineering 0.123 (0.649) -0.172 (0.281)
Humanities -1.064* (0.640) 0.126 (0.361)
Other -0.368 (0.919) 0.156 (0.289)
Task comprehension
Wrong answers 0.026 (0.026) 0.050 (0.041)
Response time -0.000 (0.001) -0.000 (0.002)
Academic background
Economic classes -0.421 (0.373) -0.415 (0.312)
Statistics classes -0.441 (0.301) 0.351 (0.324)
Game theory classes -0.291 (0.373) 0.160 (0.262)
Questionnaire measures
Risk attitudes 0.084 (0.093) 0.092* (0.051)
Generalized trust 0.295 (0.322) 0.382* (0.207)
Missing trust 0.804 (0.495) 1.274* (0.671)
IQ quiz 1 -0.696 (0.509) 0.391 (0.386)
IQ quiz 2 0.233 (0.279) 0.740*** (0.204)
Constant -1.548 (1.572) -0.854 (1.466)
N 1056 1056
Log-likelihood -504.157 -455.317

Notes: correlated random effects probit models with the initial decision as the depen-
dent variable. Standard errors are reported in parentheses. The regressors we used
are: initial decision of the partner in the previous match (Initial coop.jt−1), the duration
of the previous supergame (Durationt−1), the duration squared (Duration2

t−1), and the
initial decision in the first supergame (Initial coop. S1 ). Default major: Economics
and Business.

Table B.11: Linear regression on mean and initial cooperation rates
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(a) Initial cooperation (b) Average cooperation

Notes: The unit of observation is the fraction of time a subject spends cooperating in
a supergame.

Figure B.2: Evolution of cooperation

Notes: The percentage next to each line represents the fraction of supergames having
the corresponding duration. The unit of observation is the share of cooperative actions
in every second of a supergame.

Figure B.3: Time profile of the share of cooperative actions, in the Variable-
Deterministic treatment
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C Instructions

[Instructions for the Long-Stochastic treatment, translated from Italian.
the parts that are different in the Long-Deterministic treatment are re-
ported in italics.]

Welcome! This is a study about how people make economic decisions. This
study is funded by the University of Bologna and other institutions. If you
pay attention, the instructions will help you to make your decisions and
earn a reasonable amount of money. The earnings will be calculated in
points and then converted into euros.

For every 150 points you will receive 1 euro.

In addition, you will receive 3 euros for participation. Your earnings will
be paid in cash at the end of today’s session.

We ask that you turn off your phone now and do not communicate in any
way with the people present in the room until the end of the study. If you
have any questions, please raise your hand and we will assist you in private.

This study comprises 23 periods. In each period, you will be paired with
another person selected at random from those present in the room.

In every period you will be able to repeatedly choose between a "GRE-
EN" action and an "ORANGE" action. The person matched with
you will also be able to repeatedly choose between "green" and "orange"
actions. As a consequence, there are four possible combinations: GREEN-
green, ORANGE-orange, GREEN-orange, and ORANGE-green. For each
combination of actions there is a corresponding cell in Figure C.1 below.

In each cell you can see the gains or losses during the period according to
your action and the action of the other. Your action will determine the
table row, while the action of the person matched with you will determine
the table column.

The earnings described in Figure C.1 above represent earnings per second.
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Figure C.1: Earnings table

For instance, suppose you choose "GREEN" and hold that choice over time:
if the other chooses "green" and holds his choice in time, you earn 1 point
per second and the other earns 1 point per second; if the other chooses
"orange" and holds it, you lose 2 points per second and the other earns 2
points per second. And so on.

In each period, earnings depend on how much time you spend in each cell
of Figure C.1. The more time you spend in a cell, the more your average
earnings will approximate what is indicated in the cell. For instance, if
you spend half of the period in the GREEN-green cell where you earn 1
and half of the period in the ORANGE-orange cell where you earn 0, your
earnings will be 0.5 points per second. Are there any questions about how
to read the table?

Who is the other person matched with me?
It could be anyone in this room. Your identity and hers will be kept confi-
dential. Payments will also be made in private. There will be 23 periods.
At the beginning of each period pairs will be changed. People will be
recombined so that you will never meet the same person twice.

What should I do? In every period you choose an initial action and then
you can decide every instant whether to keep or change that action. The
person matched with you can do the same. During a period, both you and
the other will be able to change action as many times as you like. Time
flows through very fast ticks (16-hundredths of a second each); in practice
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there are between six and seven ticks per second, so if you want you can
change the action six or seven times per second.

Figure C.2: Earnings table

Earnings
During the period you will receive information in real time on your earnings.
In the screen pictured in Figure C.2 above, your cumulated earnings will
appear in a graph as a line that will form at every tick of 16-hundredths
of a second. In each period you will have an initial endowment of 50
points as cumulated earnings. If, during the period, your earnings
are zero, then the line will be flat. In case of losses, then the line
will be declining. In the case of positive earnings, then the line
will be increasing. For instance, if you earn 1 point per second there
will be an increasing line that is parallel to the graph grid. If you earn 2
points per second, the line will be increasing, but steeper. Looking at the
earnings graph will give you information on the current action of the other
person matched with you. Are there any questions?

To understand how to read the screen, we will do a trial period, without
consequences on your earnings. For simplicity, the trial period will last 60
seconds and the other will be played by a robot. The robot will start with
an action and then, halfway through the period, will change action. Now
please look at the screen and follow the exact guidelines you are given. To
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start, choose the initial action. Press the screen with your finger on the
button that you will be told to choose ("GREEN" or "ORANGE"). The
robot will also choose its initial action ("green" or "orange"). Everyone
please choose "GREEN" now as the initial action. The selected action
will be highlighted in yellow on the table. The period will begin when
everybody has chosen their initial action and pressed "OK". From this
moment on, the time will begin to run. Then you will see that the graph
line is green like your action. Now, please press your finger on the button
"OK" to confirm. Does anyone need help? After 10 seconds, everyone
please press the button "ORANGE." You will see that your action has
changed because the line highlighted in yellow in the table will change and
that indicates your current action. Moreover, the graph line will now be
orange in color. After 30 seconds, everyone please press again the button
"GREEN." Now we ask you to guess what actions the robot chose. Are
there any questions?

We will do two more trial periods, without consequences on your
earnings. For simplicity, the trial period will last 60 seconds and the other
will be played by a robot. The robot will start with an action and then,
halfway through the period, will change action. Now look at your screen.
Choose the initial action that you prefer. When everyone has completed,
you’ll see the time running. You are free to change the action at any time.
At the end of the period, we will ask you to guess what actions the robot
chose.

Now we will do the last trial period. Go ahead and choose the action you
want. Are there any questions?

For simplicity, in the trial periods the other was a robot and the duration
was 60 seconds. However, in the coming periods, the other will be a person
in this room while the duration of each period will be variable and deter-
mined randomly. Each period will stop without notice and for everybody
at the same moment, and the period duration could vary from less than a
second to several minutes.

How is a period duration established?
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The period may stop at every tick of 16 hundredths of a second. This event
depends on the result of a random draw. Imagine a box with 10,000 balls,
of which 9,973 black and 27 white. It is as if, after every tick, a ball was
drawn. If the ball drawn is white, the period ends. If the ball is black, the
period continues and the ball is placed back into the box. At the next tick, a
new ball is drawn at random. You have to imagine very rapid draws, that is
one every tick of 16 hundredths of a second. We calculated that as a result
of this, the periods will have an average duration of 60 seconds. There may
be some short periods and some long periods. Are there any questions about
this?
[DETERMINISTIC: The length of each period will be 60 seconds.]

Very well, then we can start.
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