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Figure 7. Left: rapidity of top (plain curves) and anti-top (dashed curves) in pp → tt̄ for the

SM-interference of the LR (green) and RR (purple) four-quark operators. Right: jet transverse

momentum distribution in pp→ tt̄j for the SM-interference.

cross sections and mtt̄ distributions labelled ‘M’ in table 5 (red lines) and of the charge

asymmetries AC (black lines). The shaded blue region shows the combined fit with both

datasets, which probes both vector and axial-vector currents with top quarks and breaks

the respective blind direction in σ or AC .

The same behavior applies to operators with right-handed initial quarks, like O8
tu and

O8
Qu. As shown in figure 6, right, their effects on σ and AC at order Λ−2 are the same as

in eq. (4.14), just replacing C1,8
Qq → C8

tu, C8
tq → C8

Qu.

4.4 Top chirality from jet radiation

As an alternative to the asymmetry in the previous section we can also use patterns in

QCD jet radiation to distinguish four-quark operators with different chirality structures.

For instance the operators O8
tu (RR) and O8

Qu (LR) differ only in the chirality of the top

quark. Their leading contribution to top pair production is the same for the inclusive rate

and for any charge-symmetric observable, which probe Cu,8V V ∝ C8
tu + C8

Qu and |Cu,8V+A|2 ∝
|C8
tu|2+|C8

Qu|2, cf. eq. (2.10). However, the two operators are distinguishable in top rapidity

distributions, as shown in the left panel of figure 7.

Here O8
tu gives more forward or backward tops, compared to O8

Qu which leads to more

central tops. These different rapidity distributions are directly related to the angular

distribution of the top quark in the CM frame of the collision (cf. eq. (2.12)),

dσ(uū→ tt̄)

d cos θt
∝
(
1 + 2βtt̄ cos θt + 4m2 + β2

tt̄ cos2 θt
)
C8
tu (4.16)

+
(
1− 2βtt̄ cos θt + 4m2 + β2

tt̄ cos2 θt
)
C8
Qu ,

where θt is the angle between the incoming up quark and the top. In that sense the contri-

bution of the RR operator is ‘forward’ whilst the LR operator contributes as ‘backward’.

Combined with the color structure this directionality implies that an additional jet

can break the degeneracy of the two operators. In the hard process qq̄ → tt̄ the triplet

color charge flows from the incoming quark to the top quark and from the anti-quark to
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Figure 8. Left: top pair invariant mass distribution in pp→ tt̄ at NLO for the SM-interference of

the RR and LR operators. Right: top pair invariant mass distribution in pp̄→ tt̄ at NLO in QCD.

By ‘forward’ we denote events with yt > 0 and by ‘backward’ events with yt < 0.

the anti-top. This leads to a stronger acceleration of color, and consequently more QCD

radiation, when the top is produced backwards compared to forwards in the qq̄ frame.

The same effect can be seen in the context of the top rapidity asymmetry [118]. The

additional radiation when the top is backwards pushes the recoiling top-anti-top pair to

higher transverse momentum. Indeed, in the right panel of figure 7 we find that O8
Qu gives

a harder jet pT distribution than O8
tu. The same effect can be seen in the invariant mass

distribution, where O8
Qu gives a harder mtt̄ distribution.

The jet kinematics of the operator contributions illustrate the impact of NLO correc-

tions in inclusive top-anti-top production. At NLO both the real and virtual corrections

break the operator degeneracy in the tt̄ distributions. The invariant mass distribution in

tt̄ production at NLO is shown in the left panel of figure 8. Now the RR operator O8
tu

gives the harder distribution, implying that the virtual corrections have a large effect in the

opposite direction of the real emission. The difference between the LR and RR operators

at NLO reaches 20% in the distributions.

To clarify the interplay between virtual and real corrections, we perform a comparison

between forward and backward tops in QCD. For a cleaner comparison, we use pp̄ collisions

that are dominated by the qq̄ partonic initial state. We define forward top quarks as emitted

in the direction of the proton and use positive and negative rapidities to define forward

and backward tops. In the right panel of figure 8 we show the NLO distributions in

pp̄→ tt̄ separately for forward and backward tops. The results confirm that real radiation

behaves differently from the total rate at NLO, given by the sum of Born, virtual and

real corrections. This means that NLO QCD corrections break the degeneracy of operators

that occurs at LO. Our example demonstrates the potential of using NLO QCD corrections

more generally to distinguish between operators.

4.5 Quadratic terms and flat directions

The dependence of the observables on effective operators changes significantly if we include

contributions to order Λ−4. This is particularly true for four-quark operators that do not

interfere with the SM amplitude to leading order because of their color or helicity structure.
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For these operators, quadratic contributions can be the leading effect in an observable. For

operators that interfere with the SM, quadratic terms can change the bounds from LHC

measurements significantly, for instance in case of strong cancellations between linear and

quadratic contributions or in case of limited sensitivity. A dominance of the quadratic term

for a specific operator is thus per se not a problem with the convergence of the effective

theory, as it can be due to a distinctive physics pattern which suppresses the naively leading

contribution. In general, an effective field theory approach is justified if a heavy particle

can be decoupled for a given observable.

As an illustration of the role of quadratic terms in our analysis we look again at

the operators O1,8
Qq and O3,8

Qq , for which the tt̄ cross section and other charge-symmetric

observables depend on the Wilson coefficients as

σtt̄ = σSM + σdV V

[
r
(
C1,8
Qq + C3,8

Qq

)
+
(
C1,8
Qq − C

3,8
Qq

)]
+ σdV+A

[
r
(
C1,8
Qq + C3,8

Qq

)2
+
(
C1,8
Qq − C

3,8
Qq

)2]
, (4.17)

where σdV V and σdV+A are the contributions from the partonic dd̄→ tt̄ process. As discussed

in section 4.2, the linear terms to order Λ−2 have a flat direction which can be resolved

using the kinematic variation of the parton densities. From figure 5 we learn that the

latter have only limited discriminating power, leaving values C/Λ2 ≈ ±10/TeV2 within

the allowed range. In this region, contributions from the squared dimension-6 amplitudes,

i.e., the terms in the second line of eq. (4.17), are numerically dominant.

Due to the presence of quadratic terms of order Λ−4 any rate prediction dσ is positive

even for large Wilson coefficients. This implies that in a fit of the two-dimensional param-

eter space (C1,8
Qq , C

3,8
Qq ), we can set an upper bound in any direction. From the second line

of eq. (4.17) we can immediately read off that there still exists a flat direction, where the

cross section remains constant for varying Wilson coefficients. In contrast to the linearized

case this flat direction forms an ellipse, which we can collapse into any direction to derive

a finite limit on the individual coefficients.

This argument also applies to more than two parameters, and has a simple geometric

interpretation. For each observable, the points in the n-dimensional fit space where this

has a given constant value form a (n − 1)-dimensional hyper-surface. The shape of this

hyper-surface is fixed by the EFT parameterization: in the case of (differential) rate mea-

surements, that are positive-definite, it is always a compact manifold, ie. a hyper-ellipsoid.

Any such measurement therefore induces a radial constraint on the parameter space, and

the viable region identified is necessarily compact. In this sense, including the quadratic

terms does not reduce the dimension of the parameter space, but rather changes the topol-

ogy of the likelihood function. In particular, blind directions in the parameter space are

not broken, but “compactified”.

In the left panel of figure 9 we show the same fit of (C1,8
Qq , C

3,8
Qq ) as in the right panel

of figure 5, but including dimension-6 squared terms in the predictions. The elliptic shape

of the bounds reflects the geometric dependence of the observables on the two Wilson

coefficients. This is in contrast with the linear fit from figure 5, where the combined bound

had a diamond shape. It is interesting to compare the respective sensitivity of the linear and
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Figure 9. Impact of the squared dimension-6 contribution on the fit result originally shown for

the isospin distinction in figure 5 (right) and for the chirality distinction in figure 6 (left). The lines

are based on the same tt̄ data set as before, but the predictions now include SMEFT contributions

to order Λ−4 for tt̄ (red), tt̄Z (orange) and tt̄W (blue). The black lines show the fit for symmetric

observables in the boosted regime (left) and for the asymmetries AC (right) to order Λ−4. Shaded

areas show the combined fit to order Λ−4. Solid and dashed lines mark the Gaussian equivalent of

∆χ2 = 1, 4.

quadratic fits. For tt̄ production alone, quadratic contributions induce a drastically stronger

bound on the individual operators. We can also see that when quadratic terms are included

tt̄Z and tt̄W rates (orange and blue ellipses) play a minor role in resolving blind directions

compared to the linear case. In fact the combined fit result (blue area) is dominated by

the quadratic contributions in boosted tt̄ observables (black ellipse). This illustrates nicely

the interplay of linear and quadratic contributions in a global fit. The bound on individual

Wilson coefficients can be set either by quadratic terms in the dominant observable (for

limited sensitivity) or by the interplay of linear terms in several observables that probe

different directions of the parameter space (for high sensitivity). Which effect dominates

depends on the overall sensitivity of the observables to operator contributions and on the

precision of their measurement.

A different geometrical behavior can be observed for instance in the case of the charge

asymmetry in t̄t production. Unlike rates, this observable is not positive-definite so that

negative quadratic contributions to AC can generally occur. As a consequence, the hyper-

surfaces of constant AC in the parameter space are in general not compact. For instance,

for the chiral operators O1,8
Qq and O8

tq, the cross section and the asymmetry read

σtt̄ = σSM + σV V
(
C1,8
Qq + C8

tq

)
+ σV+A

(
|C1,8
Qq |

2 + |C8
tq|2
)

+ σV−AC
1,8
QqC

8
tq ,

AC =
σASM + σAA

(
C1,8
Qq − C8

tq

)
+ σV V AA

(
|C1,8
Qq |2 − |C8

tq|2
)

σtt̄
. (4.18)
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A fit of charge-symmetric observables leads to a spherical bound in (C1,8
Qq , C

8
tq), shown as

red curves in the right panel of figure 9. For the charge asymmetry the isocurves are

hyperbolas with asymptotes along the directions (1, 1) and (1,−1). The fit results reflect

this shape in the black curves and leave the direction (1, 1) unconstrained. The fact that

the direction (1,−1) is bounded is due to the combination of asymmetry measurements

with different best-fit points.

5 Single top analysis

In addition to the top pair observables described in the previous section our global top

analysis also includes single top production. Some Feynman diagrams for the different

processes are shown in figure 2. The structure of the single top sector is very similar

to classic global SMEFT analyses in that the operators listed in table 1 have distinctive

observable effects and can be probed with the sizeable number of different measurements

listed in table 6. Flat directions are not an issue in this sector, but it is interesting to test

if there exist correlations in the bounds on the individual operators.

We evaluate all two-operator correlations based on two-dimensional profile likelihoods

and find three distinct patterns shown in the upper row of figure 10. First, a box shape

like for CtG and C3,8
Qq appears if two Wilson coefficients are bounded by two separate sets

of observables. Next, an elliptic disk like the one between CbW and Cφtb appears if two

operators contribute quadratically to the same observable. Finally, a shifted circle like in

the C3,1
Qq −C

3,8
Qq plane appears if two operators contribute to the same observables, but one

of them linearly (C3,1
Qq ) and the other one only quadratically (C3,8

Qq ). For this pattern the

SM value cannot be at the center of the circle.

One of the few noteworthy correlations in the single top fit is the inverted heart shape

in the CtG −C3
φQ plane shown in the lower left panel of figure 10. It can be understood as

the interplay of the three operators CtG, C3
φQ, and C3,1

Qq with at least two measurements.

The only single top measurement sensitive to OtG is tW production. Using its rate to

constrain CtG and C3
φQ we find an elliptic correlation centered at negative values of C3

φQ.

When we add the strong constraints on C3
φQ from t-channel production the bottom part

of the ellipsis gets removed. Finally, once we add C3,1
Qq to the fit we find that O3

φQ and

O3,1
Qq are slightly correlated and hence more negative values of O3

φQ become consistent with

data. In the lower panels of figure 10 we project the 3-dimensional profile likelihood from

a 3-parameter fit along each of the three directions. In the left panel we see a very faint

barrier for C3
φQ/Λ

2 ≈ 1.5 TeV−2. It corresponds to the two disconnected regions, one for

C3,1
Qq /Λ

2 ≈ 0 and one for C3,1
Qq /Λ

2 ≈ 0.4 TeV−2, which we see clearly in the central and right

panels. In the global single top fit, once all observables are included, only the region for

C3
φQ/Λ

2 ≈ 0 remains, while the other region becomes disfavored.

Given the smooth behavior of the multi-dimensional likelihood we can perform a global

fit of the single top sector, including the W helicity fractions in top decay and associated

tV production. The one-dimensional profile likelihoods are shown in figure 11. The only

non-standard aspect in these results is that we cannot define meaningful 68% CL limits for
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Figure 10. Upper: examples for correlated 2-dimensional profile likelihoods of operators in a

global fit to the single top data. Lower: correlated profile likelihoods for a three-parameter fit of

the same data.

some of the operators. This happens when a flat core of the profile likelihood covers more

than 68% of the integral and there exists no unique definition of a range. We observe this

for all operators except for Oφtb, OtW , and ObW , implying that for all other operators the

theory uncertainty is large compared to the experimental statistics and systematics.

One aspect which sticks out in the global fit is the low sensitivity to O3
φQ, compared

to O3,1
Qq and OtW . All three operators interfere with the SM amplitude in t-channel single

top production, but for O3
φQ the effect is numerically smaller by about a factor three. As

discussed in section 2.2, O3
φQ only rescales the SM contribution, while O3,1

Qq changes the

kinematics in t-channel production, see table 2. The operator OtW is best constrained by

theW helicity fractions in top decay, see eq. (2.18), which are very sensitive to this operator.

The bounds on C3,8
Qq , Cφtb and CbW are symmetric around zero, since the corresponding

operators contribute to single top observables only at order Λ−4, cf. table 1. The coefficients

C−φQ, CtZ and Cφt are bound by tZ production. Due to the limited experimental precision,

the bounds on these operators are very loose. Also here the SM-interference plays a role,

leading to asymmetric bounds for C−φQ and Cφt. The sensitivity to Oφt is especially poor

because its contribution to tZ production is suppressed, see section 2.2. This will change

once we include the better-measured tt̄Z channel in the global fit.
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Figure 11. 95% and 68% CL bounds for the global fit to the single top data set from table 6.

Whenever the 68% CL is not shown it falls into the flat profile likelihood regime reflecting dominant

theoretical uncertainties.

6 Global top analysis

In the final step we add all top pair measurements from table 5 to our single top fit based

on the measurements in table 6 and presented in section 5. On the parameter side we

add the large number of four-quark operators, which roughly doubles the number of model

parameters. For the measurements we not only include top pair production, but also

associated tt̄W and tt̄Z rate measurements. They constrain some of the electroweak top

operators in single top production and four-quark operators in top pair production, thus

linking both sectors in the global fit.

First, we briefly comment on 2-dimensional correlations in the complete fit. The box-

shaped correlations for separate operators and separate measurements, filled ellipses for

more than one operator affecting a measurement, and shifted circles from linear contri-

butions to compact flat directions which we observed in the single top fit (figure 10) also

appear in the global fit.

Non-trivial correlations as between CtG, C3
φQ, and C3,1

Qq vanish once we include the full

data set, see figure 12. The reason is that CtG and C3,1
Qq are strongly constrained individually

by top pair production. For the weak-triplet operators O3,1
Qq and O3,8

Qq the bounds are the

same in the single top fit and the global fit, see also figure 14. Single top production is

indeed more sensitive to these four-quark operators than top pair production.
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Figure 12. Examples of correlated 2-dimensional profile likelihoods from the global fit, showing

the same operators as in the lower panels of figure 10.

Figure 13. 95% and 68% CL bounds on top operators from a global fit to the full data set

from tables 5 and 6. We show the results including all uncertainties (red) and with theoretical

uncertainties reduced by a factor of two, δth/2 (blue).

In figure 13 we show the profile likelihoods for each of the top-related effective oper-

ators. On the x-axis we start with the diagonal LL and RR four-quark operators listed

in eq. (2.3), continue with the LR and RL four-quark operators from eq. (2.4), and finally

include the bosonic operators from eq. (2.5). For each operator the red bars indicate the

final result at 68% and 95% CL. These confidence levels are compact intervals defined

by the area under the profile likelihood curve, where in addition we require the likelihood

values on each side to be equal. For a Gaussian distribution we expect the 95% error bar

to be symmetric around the best-fit value and twice as wide as the symmetric 68% error
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bar. For some of the Wilson coefficients, non-Gaussian effects occur, which are mainly due

to theoretical uncertainties treated as flat likelihoods.

In general, the four-quark operators are extremely well constrained with limits in the

range of Λ/
√
C ≈ 1 − 2 TeV. For all weak-singlet four-quark operators, the sensitivity

is dominated by high-energy bins in tt̄ distributions. For LL operators, we made this

observation earlier in the left panel of figure 9. As discussed in section 4.5, for most

operators the well-defined limits on each of the four-quark operators rest entirely on the

quadratic contributions to the observables. For color-singlet operators, which contribute

to top pair production only at order Λ−4, the bounds are fully determined by quadratic

contributions and symmetric around zero. The only asymmetric limit on a color-singlet

operator appears for O3,1
Qq through a linear contribution to single top production.

Color-octet operators have asymmetric error bars due to their interference with QCD

in top pair production. This interference is also the reason for the correlation patterns of

shifted circles in figure 9. The bounds on color-octet operators thus rely on the interplay

between contributions of order Λ−2 and Λ−4, where the inclusion of both terms is par-

ticularly important. In figure 13, the error bars for color-singlet operators appear much

smaller than for color-octet operators. This is due to the fact that top-anti-top observables

always probe the combination (C8)2 + 9
2(C1)2 at order Λ−4, see eq. (2.12). Top-anti-top

observables therefore constrain the quantities C8 and (C8)2 + 9
2(C1)2 at LO, disentangling

color-singlet from color-octet structures in kinematic distributions. The color combination

is also changed at NLO in QCD, which in principle offers the possibility to determine the

color structure of operators from jet radiation.

Looking at the quark chirality, we observe that the bounds on operators differing

only in the top chirality are similar in strength. Charge-symmetric tt̄ observables do not

distinguish between these operators at high energies, see eqs. (2.10) and (2.12). The charge

asymmetry is sensitive to the top chirality, see eq. (4.18), but still leads to equal bounds

on the magnitude of LL and RL operators due to its small SM contribution.

Regarding different light quark flavors, operators with up quarks are better constrained

than operators with down quarks. This reflects the parton content of the proton, which

leads to an enhanced sensitivity of tt̄ observables to up-quark operators over down-quark

operators, see eq. (4.8).

Let us now turn our attention to the bosonic operators. The strongest bounds are

obtained for the dipole operators OtG and OtW . For OtW the bound does not change

compared to the single top fit (see also figure 14), because it is dominated by the precise

measurements of W helicities in top decays. From our global fit, we obtain at 95% CL

− 1

(1.6 TeV)2
.
CtW
Λ2

.
1

(1.5 TeV)2
. (6.1)

For OtG the best global limit at 95% CL is obtained from top-anti-top production,

− 1

(5.8 TeV)2
.
CtG
Λ2

.
1

(1.1 TeV)2
. (6.2)

This bound is much stronger than the bound from associated tW production in figure 11.

We also note that while the upper limit is consistent with the estimate of eq. (4.4) (which
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however quotes a 68% CL), the lower bound results much stronger, due to the inclusion of

constraints from nomalized distributions. This behavior is evident from figure 4, left. Most

of the remaining bosonic operators are better constrained in the global fit than in the single

top fit (see figure 14). This shows the impact of the tt̄Z cross section measurements in the

global fit. For the operator Oφtb, which does not contribute to tt̄Z or tt̄W production, the

sensitivity remains very low.

In our fit, theory uncertainties affect the relation between the (rate) measurements and

the Wilson coefficients. Since we treat these uncertainties as flat errors in our statistical

analysis, they lead to plateaus in the center of the likelihood distributions and to some

of the non-Gaussian effects. To study the relative impact of theoretical and experimental

uncertainties on the fit results, we have performed a global fit with theory uncertainties

divided by a factor of two. The 95% CL results are shown as blue bars in figure 13. We

find that theory uncertainties have a significant impact on the bounds for all the operators,

and they are dominant in a few observables.

Reducing the theory uncertainties in the fit is in principle possible, for instance by

assessing the uncertainties for the SM and EFT contributions separately or by comparing

observables to data at the particle level, thus reducing the uncertainties from unfolding to

the parton level. These improvements, however, are computationally costly and depend on

the considered observable. We leave them for future work.

7 Conclusions

We have presented a comprehensive analysis of the LHC Run II data in the top sector. We

use NLO simulations in MadGraph5 aMC@NLO and the SFitter framework to con-

strain the Wilson coefficients of 22 dimension-6 operators. The bulk of the measurements

involve final states with a top pair, including kinematic distributions, the charge asymme-

try, and associated top pair production with a weak boson. In addition, we include different

single top channels and W helicity measurements in top decays. The measurements we use

are based on up to 139 fb−1 of integrated luminosity.

The main challenge of this global analysis is the large number of four-quark operators

in top pair production, whose contribution to the QCD process are largely degenerate.

We have discussed several ways of breaking this degeneracy, including parton luminosity

effects, the charge asymmetry, jet radiation patterns, and associated production with weak

bosons. We have also discussed the impact of dimension-6 squared terms on the fit results,

and their role in constraining the viable parameter space.

Altogether, we derive limits in the range of Λ/
√
C = 0.35 − 2 TeV for the different

Wilson coefficients from a profile likelihood. The strongest limit is on the anomalous top

coupling to the gluon, driven by the QCD production rate. Similarly strong limits apply

to several four-quark operators, stemming mostly from normalized kinematic distributions.

The top dipole interaction with the W boson is also strongly constrained by the precisely

known W helicity fractions in top decays. Other operators with weak bosons are much less

constrained, because they only occur in electroweak top processes with a limited sensitivity

in total rates. Differential distributions in electroweak top production, as well as precision

observables in electroweak and flavor physics can help to increase the sensitivity.
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A Operator relations

In this appendix we list the relations between the relevant operators in our analysis and

the operators in the Warsaw basis, following the notation of refs. [23, 44]. Using the SU(2)

and SU(3) identities

τ Iijτ
I
kl = −δijδkl + 2δilδjk, TAabT

A
cd = −1

6
δabδcd +

1

2
δadδbc,

and the Fierz identities for anti-commutating fermion fields,

(q̄γµq)(Q̄γµQ) = (q̄γµQ)(Q̄γµq), (ūγµu)(t̄γµt) = (ūγµt)(t̄γµu),

we derive the following relations:

• four-quark operators with LL and RR chiral structure (i = 1, 2),

O1,8
Qq ≡ (Q̄γµT

AQ)(q̄iγ
µTAqi) =− 1

6
O1(33ii)
qq +

1

4
O1(3ii3)
qq +

1

4
O3(3ii3)
qq

O3,8
Qq ≡ (Q̄γµT

Aτ IQ)(q̄iγ
µTAτ Iqi) =− 1

6
O3(33ii)
qq +

3

4
O1(3ii3)
qq − 1

4
O3(3ii3)
qq

O1,1
Qq ≡ (Q̄γµQ)(q̄iγ

µqi) = O1(33ii)
qq

O3,1
Qq ≡ (Q̄γµτ

IQ)(q̄iγ
µτ Iqi) = O3(33ii)

qq

O8
tu ≡ (t̄γµT

At)(ūiγ
µTAui) =− 1

6
O(33ii)
uu +

1

2
O(3ii3)
uu

O1
tu ≡ (t̄γµt)(ūiγ

µui) = O(33ii)
uu

O8
td ≡ (t̄γµTAt)(d̄iγµT

Adi) = O8(33ii)
ud

O1
td ≡ (t̄γµt)(d̄iγµdi) = O1(33ii)

ud ,

• four-quark operators with LR and RL chiral structure

O8
Qu ≡ (Q̄γµTAQ)(ūiγµT

Aui) = O8(33ii)
qu O1

Qu ≡ (Q̄γµQ)(ūiγµui) = O1(33ii)
qu

O8
Qd ≡ (Q̄γµTAQ)(d̄iγµT

Adi) = O8(33ii)
qd O1

Qd ≡ (Q̄γµQ)(d̄iγµdi) = O1(33ii)
qd

O8
tq ≡ (q̄iγ

µTAqi)(t̄γµT
At) = O8(ii33)

qu O1
tq ≡ (q̄iγ

µqi)(t̄γµt) = O1(ii33)
qu ,
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• operators with two heavy quarks and bosonic fields

O1
φQ ≡ (φ† i

←→
Dµ φ)(Q̄γµQ) = O1(33)

φq
‡OtB ≡ (Q̄σµνt) φ̃ Bµν = ‡O(33)

uB

O3
φQ ≡ (φ† i

←→
DI
µ φ)(Q̄γµτ IQ) = O3(33)

φq
‡OtW ≡ (Q̄σµνt) τ I φ̃W I

µν = ‡O(33)
uW

Oφt ≡ (φ† i
←→
Dµ φ)(t̄γµt) = O(33)

φu
‡ObW ≡ (Q̄σµνb) τ IφW I

µν = ‡O(33)
dW

‡Oφtb ≡ (φ̃†iDµφ)(t̄γµb) = ‡O(33)
φud

‡OtG ≡ (Q̄σµνTAt) φ̃ GAµν = ‡O(33)
uG ,

with the Higgs field φ = (0, 1√
2
(v + h))> in unitary gauge, φ̃ = iσ2 φ

∗ and the covariant

derivative

Dµ = ∂µ − i
e

2sW
AIµτ

I − i e
cW

BµY, DI
µ = τ IDµ, τ I = σI . (A.1)

The relations between the corresponding Wilson coefficients Ci and Ci can be obtained by

requiring that both bases lead to the same terms in the effective Lagrangian [40],

Leff =
∑
a

(
Ca
Λ2
‡Oa + h.c.

)
+
∑
b

Cb
Λ2

Ob =
∑
c

(
Cc
Λ2
‡Oc + h.c.

)
+
∑
d

Cd
Λ2
Od. (A.2)

After electroweak symmetry breaking, the effective interactions of the physical weak gauge

bosons are described by linear combinations of the operators in the unbroken phase. In

unitary gauge, the relations read

(
O1
φQ

O3
φQ

)
=

(
1 1 0 0

−1 1 1 1

)
− e

2sW cW

(
tγµtL

)
Zµ(v + h)2

− e
2sW cW

(
bγµbL

)
Zµ(v + h)2

e√
2sW

(
tγµbL

)
W+
µ (v + h)2

e√
2sW

(
bγµtL

)
W−µ (v + h)2

 , (A.3)

(
‡OtB
‡OtW

)
=

(
cW −sW 0

sW cW 1

)
1√
2

(
tσµνtR

)
Aµν(v + h)

1√
2

(
tσµνtR

)
Zµν(v + h)(

bσµνtR
)
W−µν(v + h)

 ,

‡ObW =

[
− 1√

2
b σµνbR

(
cwZµν + swAµν

)
+ t̄ σµνbRW

+
µν

]
(v + h) .

B Numerical bounds on operators

Here we list the limits on the 22 Wilson coefficients, obtained from fits to different data

sets. Table 9 shows the results of our global fit, table 7 corresponds to our single top fit,

and table 8 shows a fit of observables in top pair production only.

We also show a comparison of the bounds obtained from fits to top-pair production,

single top production, and from the full global fit in figure 14.
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Operator 68% CL 95% CL

CtG −− [−5.68, 4.00]

C38
Qq −− [−0.78, 0.74]

C31
Qq −− [−0.49, 0.11]

CbW [−1.84, 1.68] [−2.80, 2.80]

CtW [−0.32, 0.23] [−0.47, 0.47]

CtZ −− [−9.40, 9.40]

Cφt −− [−51.50, 22.50]

Cφtb [−5.94, 5.94] [−9.18, 8.82]

C3
φQ −− [−4.70, 1.30]

C−φQ −− [−36.00, 12.00]

Table 7. Bounds on the Wilson coefficients Ci in units of (TeV/Λ)2 at 68% and 95% confidence

level from our single top fit, corresponding to figure 11.

Operator 68% CL 95% CL

CtG [0.30, 0.74] [−0.03, 0.82]

C18
Qq [−0.79, 0.15] [−1.11, 0.49]

C38
Qq [−0.49, 0.73] [−0.84, 1.16]

C8
tq [−1.21,−0.09] [−1.37, 0.47]

C8
Qu [−1.51,−0.09] [−1.91, 0.44]

C8
Qd [−2.09, 0.15] [−2.44, 1.24]

C8
tu [−1.16, 0.15] [−1.48, 0.65]

C8
td [−1.40, 0.52] [−1.93, 1.16]

C11
Qq [−0.38, 0.09] [−0.47, 0.30]

C31
Qq [−0.18, 0.29] [−0.34, 0.42]

C1
tq [−0.27, 0.21] [−0.39, 0.37]

C1
Qu [−0.47, 0.09] [−0.62, 0.27]

C1
Qd [−0.41, 0.37] [−0.66, 0.58]

C1
tu [−0.35, 0.15] [−0.47, 0.34]

C1
td [−0.41, 0.35] [−0.58, 0.63]

Table 8. Bounds on the Wilson coefficients Ci in units of (TeV/Λ)2 at 68% and 95% confidence

level from a global fit to observables in top pair production.
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Operator 68% CL 95% CL 95% CL, δth/2

CtG [0.30, 0.74] [−0.02, 0.82] [0.24, 0.57]

C18
Qq [−0.68, 0.20] [−1.00, 0.52] [−0.76, 0.12]

C38
Qq [−0.26, 0.58] [−0.62, 0.74] [−0.42, 0.54]

C8
tq [−1.00, 0.04] [−1.32, 0.44] [−1.08, 0.04]

C8
Qu [−1.40,−0.12] [−1.72, 0.52] [−1.32,−0.04]

C8
Qd [−1.88, 0.12] [−2.20, 1.08] [−1.72, 0.04]

C8
tu [−1.16, 0.04] [−1.48, 0.52] [−1.16, 0.04]

C8
td [−1.40, 0.36] [−1.88, 1.00] [−1.48, 0.28]

C11
Qq [−0.22, 0.26] [−0.38, 0.42] [−0.22, 0.22]

C31
Qq [−0.25, 0.05] [−0.39, 0.11] [−0.23, 0.09]

C1
tq [−0.22, 0.22] [−0.38, 0.38] [−0.22, 0.22]

C1
Qu [−0.26, 0.26] [−0.42, 0.42] [−0.30, 0.22]

C1
Qd [−0.38, 0.38] [−0.62, 0.62] [−0.34, 0.38]

C1
tu [−0.26, 0.26] [−0.42, 0.42] [−0.26, 0.30]

C1
td [−0.34, 0.38] [−0.62, 0.58] [−0.30, 0.38]

CbW [−1.68, 1.68] [−2.80, 2.64] [−2.16, 2.32]

CtW [−0.23, 0.26] [−0.38, 0.47] [−0.26, 0.38]

CtZ [−2.30, 2.30] [−3.10, 3.30] [−2.90, 2.50]∗

Cφt [−16.75, 3.25] [−20.75, 8.75] [−19.38, 5.83]∗

Cφtb [−5.58, 5.58] [−8.46, 8.82] [−7.02, 6.66]

C3
φQ [−2.66, 0.34] [−3.98, 0.94] [−2.30, 0.34]

C−φQ [−3.98, 7.28] [−5.78, 13.12] [−4.80, 8.80]

Table 9. Bounds on the Wilson coefficients Ci in units of (TeV/Λ)2 at 68% and 95% confidence

level from our full global top fit, corresponding to figure 13. The asterisk marks non-Gaussian

effects for which we quote conservative envelopes of the likelihood. The label δth/2 stands for the

fit with halved theoretical uncertainties.
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Figure 14. 95% and 68% CL bounds on top operators global fits to top pair production measure-

ments (blue), single top (green) and to the full data set from tables 5 and 6 (red).
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