
01 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A one-material cylindrical model to determine short- and long-term fluid-to-ground response factors of
single U-tube borehole heat exchangers / Naldi C.; Zanchini E.. - In: GEOTHERMICS. - ISSN 0375-6505. -
ELETTRONICO. - 86:July 2020(2020), pp. 101811.1-101811.10. [10.1016/j.geothermics.2020.101811]

Published Version:

A one-material cylindrical model to determine short- and long-term fluid-to-ground response factors of single
U-tube borehole heat exchangers

Published:
DOI: http://doi.org/10.1016/j.geothermics.2020.101811

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/752339 since: 2020-03-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.geothermics.2020.101811
https://hdl.handle.net/11585/752339


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

C. Naldi, E. Zanchini, A one-material cylindrical model to determine short- and long-
term fluid-to-ground response factors of single U-tube borehole heat exchangers, 
Geothermics 86, 2020, n° 101811  

The final published version is available online at: 
https://doi.org/10.1016/j.geothermics.2020.101811 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

 

 

 

 

 

 

 

 

 

 

 

https://cris.unibo.it/
https://doi.org/10.1016/j.geothermics.2020.101811


 

A one-material cylindrical model to determine short- and long-term fluid-to-

ground response factors of single U-tube borehole heat exchangers 

 

 

Claudia Naldi*, Enzo Zanchini 

 

Department of Industrial Engineering (DIN), Alma Mater Studiorum University of Bologna, Viale 

Risorgimento 2, 40136 Bologna, Italy 

 

*Corresponding author: claudia.naldi2@unibo.it 

 

Abstract 

A new cylindrical model is proposed, suitable to determine both the short-term and the long-term 

fluid-to-ground thermal response factor of a single U-tube borehole heat exchanger (BHE). In the 

model, a BHE is represented by an equivalent cylinder, with the same radius and heat capacity as the 

BHE. The cylinder is made of a homogeneous material and contains a heat-generating cylindrical 

surface with an equivalent radius, req, optimized by repeated 2D finite-element simulations. The 

thermal resistance of the layer between req and the BHE radius equals the BHE thermal resistance. A 

correlation yielding the optimized values of req is provided. 
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Borehole heat exchangers; Single U-tube; Fluid-to-ground response factor; Short-term; Long-term; 

Numerical method. 

 

Nomenclature 

b Borehole buried depth (m) 

BHE Borehole Heat Exchanger  

Db Borehole diameter (mm) 

GCHP Ground-Coupled Heat Pump  

k Thermal conductivity (W m-1 K-1) 

L Borehole length (m) 

OMEC One-Material Equivalent Cylinder  

ql Thermal power per unit length (W m-1) 

r Radius, radial coordinate (mm) 



 

Rb Borehole thermal resistance per unit length (m K W-1) 

s Shank spacing (mm) 

T Temperature (°C) 

WRMSD Weighted Root Mean Square Deviation (°C) 

z Vertical coordinate  

 

Greek symbols 

(ρ c) Volumetric heat capacity (MJ m-3 K-1) 

τ Time (h) 

 

Superscripts   

* Reduced coordinate  

   

Subscripts   

b Borehole heat exchanger  

eff Effective  

eq Equivalent  

f Fluid  

g Ground  

gt Grout  

i Inner, i-th  

m Model  

o Outer  

p Pipe, polyethylene  

r Real BHE  

  



 

1. Introduction 

Ground-Coupled Heat Pumps (GCHPs) typically employ fields of vertical ground heat exchangers, 

often called Borehole Heat Exchangers (BHEs). In the design of a BHE field, each borehole is usually 

modeled as a line heat source or a cylindrical heat source, with infinite or finite length. These models 

yield the time evolution of the mean temperature of the borehole surface. The temperature of the 

circulating fluid is then obtained by adding the product between the linear heat flux and the linear 

steady-state thermal resistance of the BHE. Since the BHE internal geometry and heat capacity are 

ignored, these methods are not able to provide precise results in the short-term period, as 

demonstrated by Lamarche (2013). 

Indeed, an accurate analysis of the short-term fluid-to-ground thermal response of a BHE can be 

relevant in the evaluation of the total BHE length. In fact, in the case of strongly variable building 

loads, the heat capacity of the BHE internal elements can dampen the rise, or fall, of the BHE-fluid 

temperature, and ignoring this effect can cause an over prediction of the total BHE length required. 

Moreover, the BHE short-term response is relevant in hourly simulations of heat pumps coupled to 

BHEs, because an incorrect evaluation of the temperature of the fluid leaving the BHEs causes an 

error in the calculation of the heat pump COP and, consequently, in the evaluation of the heat pump 

energy consumption. Finally, a precise analysis of the BHE short-term response is necessary in the 

estimation of the ground thermal properties and of the BHE thermal resistance through short-time 

TRTs (Javed et al., 2010). 

Due to the complexity of the internal structure of a BHE, in recent years several researchers presented 

simplified methods to determine a BHE fluid-to-ground thermal response factor accurate for the 

short-time analysis. The methods can be either analytical or numerical and can be used only for short-

term evaluations or for both short and long time periods. Several review papers have been presented 

on the topic, e.g. by Javed et al. (2009), Javed et al. (2010), and Li and Lai (2015). 

In early studies (Austin, 1998; Yavuzturk and Spitler, 1999), transient finite volume models were 

proposed, in which the real internal structure of the BHE is modeled as pie sectors, subjected to a 

constant heat flux. Yavuzturk and Spitler (2001) provided a validation of their model (Yavuzturk and 

Spitler, 1999) through comparison with field data from an elementary school. The predicted and the 

actual temperature values of the fluid entering the heat pump were in good agreement. 

Young (2004) employed the buried electrical cable model (Carslaw and Jaeger, 1959), where the 

cable core represents the BHE fluid and the cable sheath the BHE grout. He introduced a grout 

allocation factor to assign part of the grout thermal capacity to an equivalent-diameter pipe. Since the 

evaluation of this grout allocation factor is difficult, the practical implementation of the method is 

limited. De Carli et al. (2010) developed a model, called CaRM (Capacity Resistance Model), that 



 

employs lumped capacities and thermal resistances, and can be used for single U-tube, double U-tube 

and coaxial BHEs. The temperature of the BHE fluid and of the ground can be evaluated at different 

depths and, for the ground, at different distances from the BHE axis, but the thermal capacity of the 

BHE is not considered in the model. Zarrella et al. (2011) improved the model by De Carli et al. 

(2010) to consider the thermal capacity of the filling material and that of the BHE fluid. Since only a 

limited portion of the ground can be modeled with a reasonable computational time, the model allows 

only a short-term analysis. Bauer et al. (2011) developed three two-dimensional thermal resistance 

and capacity models (TRCMs) that apply to either coaxial, or single U-tube, or double U-tube BHEs. 

The models consider the heat capacity of the grout and are validated with finite element simulations. 

Pasquier and Marcotte (2012) improved the TRCM for single U-tube BHEs by Bauer et al. (2011) by 

including the thermal capacities of the fluid and of the pipes. The model can be extended also to other 

BHE configurations, but neglects the finite length of the borehole. Ruiz-Calvo et al. (2015) proposed 

to separate the short-term and the long-term simulation to obtain lower computational times. The 

short-term model, based on the thermal network approach, simulates the BHE daily operation, and 

accounts for the heat transfer between the fluid, the borehole and the adjacent piece of ground. The 

long-term model evaluates the initial ground temperature of each day, by considering the thermal load 

of the previous day. The short-term model is developed starting from the work by Bauer et al. (2011) 

and introduces a vertical discretization of the BHE, by considering for each node a thermal network 

to simulate the radial heat transfer. The model is implemented in TRNSYS and validated against 

experimental measures. 

The short-term thermal response of a BHE has been analyzed by other authors by employing line-

source models. Li and Lai (2012) developed a 2D analytical model based on Jaeger’s instantaneous 

line source solution for composite media (Jaeger, 1944). The tubes are modeled as infinite line sources 

releasing a uniform and constant power per unit length, placed at a given distance from the BHE axis. 

Different properties of soil and piles/grout are considered. The model is validated by comparison with 

the usual infinite line-source model, in the case of uniform thermal properties. The same authors (Li 

and Lai, 2013) presented also a simplified form of the solution, validated by comparison with the 

experiment by Beier et al. (2011). To analyze the short-term performance of the composite-medium 

line-source model by Li and Lai (2012, 2013), Yang and Li (2014) implemented a two-dimensional 

numerical model based on the finite volume method. Although the circulating fluid is not included in 

the computational domain, its heat capacity is taken into account through a time dependent boundary 

condition between fluid and pipes. The model is validated by comparison with experimental results 

(Beier et al., 2011). Wei et al. (2016) employed the composite-medium line-source model developed 

by Li and Lai (2012) to determine the analytical expression of the fluid-to-ground response factor as 



 

mean temperature at an equivalent radius. The expression is simpler than those proposed by Li and 

Lai (2012, 2013). The model is validated by comparison with the experimental results of Beier et al. 

(2011). Zhang et al. (2016) developed a transient quasi-3D line source model, which introduces the 

concept of transient borehole thermal resistance and yields both the short-term and the long-term 

thermal response. The model considers the real BHE geometry and takes into account the thermal 

short circuiting between the tubes, but does not consider the heat capacity of the BHE fluid. 

Several authors developed cylindrical models of U-tube BHEs where the real internal geometry is 

replaced by a set of cylindrical layers coaxial with the BHE. 

Gu and O’Neal (1998) proposed a BHE model where the U-tube is replaced by a cylinder with an 

equivalent radius req, expressed as a function of the outer radius of the polyethylene pipes and of the 

shank spacing. The expression is derived under steady-state conditions and is not very accurate during 

the initial part of the transient heat transfer process. 

Shonder and Beck (1999) replaced the real U-tube with an equivalent cylinder. The latter is 

surrounded by a thin layer that accounts for the heat capacities of fluid and pipes, and by a grout layer 

with external radius equal to the BHE radius. The authors found a good agreement between their 

solution and experimental results. 

Xu and Spitler (2006) developed a numerical model that approximates the real BHE structure with 

several concentric cylinders. The internal fluid annulus is surrounded by an equivalent 

convective-resistance layer, a tube layer, and a grout layer, surrounded by the ground. Expressions to 

determine the geometry and the thermal properties of each layer are provided. A heat flux boundary 

condition is applied at the inner surface of the fluid annulus. The model is validated against finite 

volume simulations. 

Lamarche and Beauchamp (2007) modeled the BHE as a cylindrical layer with the same 

thermophysical properties as the grout, with external radius equal to that of the BHE, and internal 

radius req, surrounded by infinite homogeneous ground. They employed the value of req suggested by 

Sutton et al. (2002) and presented analytical solutions for the case of given uniform and time-constant 

heat flux and for the case of convective heat transfer with given value of the mean temperature of the 

BHE fluid. Since the model ignores the thermal capacity of the BHE fluid, it overestimates the fluid 

temperature rise for short times.  

Bandyopadhyay et al. (2008a) proposed to employ the BHE model and the analytical solution 

developed by Blackwell (1954) to evaluate the fluid-to-ground thermal response of single U-tube 

BHEs. In the model, the BHE fluid is represented by a virtual solid cylinder, with the same heat 

capacity as the real fluid, that generates heat uniformly. The grout is assumed to have the same 

thermal properties as the ground.  



 

Man et al. (2010) presented the analytical solutions for two BHE models. In both cases, the BHE is 

considered as a solid cylinder with the same thermal properties as the external ground, containing a 

cylindrical-surface source with negligible thickness, mass and heat capacity. This source represents 

the heat supplied by the fluid. The first model is 1-D axisymmetric, while the second is 2-D 

axisymmetric and takes into account the finite length of the BHE. The analytical solutions are 

validated by comparison with finite difference numerical computations. 

Beier and Smith (2003) developed an equivalent cylinder model of the BHE, where the cylinder is 

composed of a grout annulus with external radius equal to the BHE radius, and internal radius such 

that the thermal resistance of the grout annulus is equal to the BHE thermal resistance. An analytical 

solution of the heat conduction problem is obtained by employing the Laplace transform method. 

Bandyopadhyay et al. (2008b) improved the model of Bandyopadhyay et al. (2008a) by considering 

different properties of grout and ground, and developed an analytical solution for the new model. The 

solution is obtained in the Laplace transformed domain and inverted through the Gaver-Stehfest 

numerical algorithm. The solution is validated by comparison with finite element simulations. 

Javed and Claesson (2011) presented an analytical solution for the BHE equivalent-cylinder model 

employed by Bandyopadhyay et al. (2008b). The heat transfer problem is represented as a thermal 

network in the Laplace domain and the solution is given in the time domain in the form of an integral. 

The analytical model is validated through comparisons with a numerical model and with experimental 

results. Lamarche (2015) improved the model by Lamarche and Beauchamp (2007) and presented the 

analytical solution for the new model, that takes into account also the heat capacity of the BHE fluid. 

In the new model, the borehole is composed by a cylinder representing the fluid, with radius ri, 

surrounded by a thin cylindrical layer representing the polyethylene pipes, with external radius req, 

surrounded on turn by a cylindrical layer representing the grout, with external radius equal to that of 

the BHE. A given generation power per unit length is supplied to the fluid. The values of req and ri 

are adjusted to meet the real grout and pipe thermal resistances, and equivalent volumetric heat 

capacities are employed to meet the real heat capacities of grout, polyethylene and fluid. The author 

found a good agreement between his model and those proposed by Beier and Smith (2003) and by 

Javed and Claesson (2011). 

Claesson and Javed (2011) coupled the short-term model presented in Javed and Claesson (2011) to 

a long-term model based on the finite line-source solution, reduced to a single integral. Up to a certain 

breaking time (100 h is recommended), the short-term response is employed. After that, the long-

term response of the ground is used, shifted upwards to match the fluid temperature given by the 

short-term response at the breaking time. 



 

Hu et al. (2014) developed a composite cylindrical model for BHEs and energy piles, starting from 

the composite line-source model by Bixel and van Pollen (1967). The model superimposes the effects 

of cylindrical heat sources and takes into account the heat capacity of the BHE fluid and of the grout. 

The model is validated by comparison with results from 3D numerical models. Gordon et al. (2017) 

extended the model by Hu et al. (2014) to coaxial boreholes and validated the extended model through 

experimental results. 

Beier (2014) developed a U-tube BHE model that handles the fluid flow in each pipe separately and 

approximates the U-tube as two half pipes, and considers both the heat capacity of the fluid and that 

of the grout. The author presented an analytical solution for the vertical temperature distribution of 

the BHE circulating fluid, valid both for short-term and long-term periods. The explicit form of the 

solution is in the Laplace domain, and is inverted by using the Stehfest algorithm. The model is 

validated through comparison with a laboratory experiment (Beier et al., 2011). 

In this paper, we are interested in BHE models suitable to determine a full-time-scale thermal 

response of a BHE field, avoiding the problem of matching short-term and long-term thermal 

responses. In order to obtain a full-time-scale thermal response of a BHE field, one needs to consider 

the whole field, because the thermal interference between BHEs becomes important in the long term 

(Cimmino and Bernier, 2014; Lamarche, 2017; Monzó et al., 2015; Naldi and Zanchini, 2019). 

Indeed, since the BHEs are fed in parallel with the same inlet temperature, and are not subjected to a 

uniform heat flux per unit length, the long-term thermal response of the field cannot be obtained by 

the superposition of the effects of the single BHEs (Naldi and Zanchini, 2019). A method suitable to 

obtain an accurate full-time-scale thermal response of a BHE field is to perform a CFD simulation of 

the whole field, by employing a BHE model valid also in the short term. 

Therefore, we analyze the accuracy of some of the BHE models cited above, selected among those 

suitable for CFD simulations and valid both in the short and in the long term. Then, we present a new 

BHE model suitable for full-time-scale CFD simulations of BHE fields and applicable to any kind of 

BHE. The model represents the BHE as an equivalent cylinder made of a homogeneous material, 

having the same radius as the BHE, rb, and containing a heat-generating cylindrical surface, with an 

equivalent radius req, that reproduces the power supplied to the BHE fluid. The thermal conductivity 

and the volumetric heat capacity of the material of the equivalent cylinder are chosen so that the 

thermal resistance of the cylindrical annulus between req and rb is equal to the BHE thermal resistance, 

and the heat capacity per unit length of the equivalent cylinder is equal to that of the BHE. The optimal 

value of req is determined by repeated 2D short-time finite element simulations. A correlation that 

gives directly the optimal value of  req is provided, for single U-tube BHEs with usual pipes and shank 

spacing between 70 mm and 110 mm. 



 

2. Comparison of some existing models 

Among the existing models that represent a U-tube BHE by an equivalent cylinder and can be 

employed for CFD simulations, we selected those proposed by Xu and Spitler (2006), Lamarche and 

Beauchamp (2007), and Lamarche (2015). The first was developed specifically for CFD simulations, 

while the others were conceived to provide analytical solutions. However, since we are interested 

here in models that can be applied for the CFD simulation of a BHE field, we will consider CFD 

applications of all these models. 

The accuracy of these models is checked by comparison with the results of a simulation of the real 

BHE cross section. In this simulation, the fluid (water, in this paper) is modeled as a solid with a very 

high thermal conductivity, namely 1000 W/(m K), in which a uniform generation term is imposed. 

The high thermal conductivity is employed to obtain a nearly uniform temperature distribution in the 

fluid region, in analogy with Xu and Spitler (2006) and Lamarche (2015). The thermal conductivity 

of the polyethylene pipes is replaced by an effective one, kpeff, to take into account the convective 

thermal resistance. 

In the model by Xu and Spitler (2006), the equivalent cylinder is composed as follows: an equivalent 

grout layer with external radius equal to that of the BHE, rb, and internal radius equal to 2  times 

the outer radius of the polyethylene pipes, rpo; an equivalent tube layer with internal radius equal to 

the external one minus the actual U-tube wall thickness; a convection layer with internal radius equal 

to the external one minus 0.25 times the actual U-tube wall thickness; an equivalent fluid layer with 

extremely high thermal conductivity and internal radius equal to the external one minus 0.75 times 

the actual U-tube wall thickness. The equivalent grout and tube layers have the same thermal 

conductivity, determined so that the thermal resistance of their union is equal to the BHE thermal 

resistance, Rb, minus the convective one. The thermal conductivity of the convection layer is such 

that its thermal resistance equals the convective thermal resistance. The volumetric heat capacity of 

each layer is set to reproduce the heat capacity of the corresponding element of the BHE, except for 

the convective layer, that has a vanishing volumetric heat capacity. A uniform and constant heat flux 

is applied at the inner surface of the fluid. 

In the model by Lamarche and Beauchamp (2007), the equivalent cylinder is composed of a grout 

layer with the same thermal properties as the BHE grout, having external radius rb and internal radius 

chosen so that the thermal resistance of the layer equals Rb. A uniform and constant heat flux is 

applied at the inner surface of the grout. 

In the model by Lamarche (2015), the equivalent cylinder is composed of: an equivalent grout layer 

with the thermal conductivity of the BHE grout, having external radius rb and internal radius such 

that the thermal resistance of this layer is equal to that of the BHE grout; an equivalent tube layer 



 

with thermal conductivity kpeff, having internal radius such that its thermal resistance equals that of 

the pair of tubes of the BHE, including the convective resistance; an equivalent fluid core with 

extremely high thermal conductivity, where a uniform generation term corresponding to the given 

power per unit length takes place. The volumetric heat capacity of each element of the model is chosen 

to reproduce the heat capacity of the corresponding BHE element. 

The mean fluid temperature is evaluated as volume average in the fluid domain for the real BHE and 

for the model by Lamarche (2015), and as surface average on the inner boundary in the models by 

Xu and Spitler (2006) and by Lamarche and Beauchamp (2007). 

Sketches of the real BHE and of the three models are illustrated in Fig. 1. 

 

 

Fig. 1. Sketches of the cross section of the real BHE (a), and of the models by Xu and Spitler 

(2006) (b), Lamarche and Beauchamp (2007) (c), and Lamarche (2015) (d). 

 

Since the models are built to reproduce the same thermal resistance as the BHE, they are all very 

accurate in the long term, where only the BHE thermal resistance is relevant. To compare the accuracy 

of these models, we consider the simulation of a single U-tube BHE subjected to a uniform and 

constant heat flux per unit length equal to 50 W/m, for a period of 100 hours from the operation start, 

and we concentrate the analysis mainly on the first hours of operation. The BHE selected has a 

diameter of 150 mm, a shank spacing of 100 mm, and tubes with external diameter 40 mm and internal 

a b

c d



 

diameter 32.6 mm. The thermal conductivity of the grout is 1.6 W/(m K) and that of the ground is 1.8 

W/(m K). The volumetric heat capacity of the grout is 2.25 MJ/(m3 K) and that of the ground is 3.00 

MJ/(m3 K). The BHE fluid is water, with volume flow rate 14 liters per minute. The fluid properties 

are evaluated at 20 °C, through the NIST website https://webbook.nist.gov/chemistry/fluid/. The 

Reynolds number is 9082, and the convection coefficient, determined by the Churchill correlation at 

constant wall heat flux (Churchill, 1977), is 1472 W/(m2 K). The BHE thermal resistance is evaluated 

by a steady-state 2D finite element simulation of the BHE cross section, implemented in COMSOL 

Multiphysics, that includes a portion of the surrounding ground, as recommended by Lamarche et al. 

(2010) and by Zanchini and Jahanbin (2018). The result is Rb = 0.09466 m K/W. 

Transient 2D finite-element simulations are performed, through COMSOL Multiphysics, for the real 

BHE, for the model by Xu and Spitler, and for the numerical versions of the models by Lamarche 

and Beauchamp (2007) and by Lamarche (2015). A working time of 100 h is considered in each 

simulation, with steps equal to 0.05 in the logarithm of time in hours. A ground layer with external 

radius equal to 5 m and external adiabatic surface is considered around the BHE. The initial 

temperature is uniform and equal to the undisturbed ground temperature, Tg. A structured grid is built 

for each simulation, with about 6000 elements for the real BHE, about 2000 elements for the model 

by Xu and Spitler (2006) and for the numerical version of that by Lamarche and Beauchamp (2007), 

and about 3000 elements for the numerical version of the model by Lamarche (2015). Particulars of 

the grids employed in the simulations of the real BHE and of the numerical version of the model by 

Lamarche 2015 are shown in Fig. 2. The relative tolerance and the absolute tolerance are set equal to 

0.0001 for each simulation. 

 

  

Fig. 2. Particulars of the meshes employed for the simulations of the real BHE (left) and of the 

numerical version of the model by Lamarche (2015) (right). 

 

The independence of the results from the domain extension has been checked by replacing the 

adiabatic condition on the external boundary by the condition of uniform and constant temperature 

https://webbook.nist.gov/chemistry/fluid/


 

T = Tg. Indeed, the adiabatic boundary condition yields an overestimation of the fluid temperature 

rise, θ = Tf – Tg, while the isothermal condition yields an underestimation. Since identical values of θ 

have been obtained with the different boundary conditions, the independence of the results from the 

domain extension is ensured. The grid independence has been checked by repeating each simulation 

with a mesh regularly refined, with 4 times more elements. The values of θ obtained for each case 

with both meshes is illustrated in Table 1, for selected time instants. Since nearly identical results 

have been obtained by the refined grids, the mesh independence of the results is ensured. 

 

Table 1 – Values of θ in °C at selected time instants for each case, with coarse and fine mesh. 

  Time (h) 

  0.01 0.1 1 10 100 

Real coarse 0.231 1.664 5.255 9.682 14.591 

Real fine 0.231 1.664 5.255 9.682 14.591 

Xu-Spitler coarse 0.217 1.420 5.036 9.681 14.620 

Xu-Spitler fine 0.217 1.420 5.036 9.682 14.620 

Lamarche-Beauchamp coarse 0.912 2.517 5.701 9.845 14.648 

Lamarche-Beauchamp fine 0.912 2.517 5.701 9.845 14.648 

Lamarche coarse 0.230 1.641 5.255 9.681 14.592 

Lamarche fine 0.230 1.641 5.255 9.681 14.592 

 

The temperature rise obtained in each simulation is plotted versus the logarithm of time in hours in 

Fig. 3. The figure shows that all the methods are precise in the long term, whereas the model by 

Lamarche (2015) is much more precise in the first hour. In the figure, the curve for the real BHE does 

not appear because it is covered by that for the model by Lamarche (2015). The numerical version of 

the model by Lamarche and Beauchamp (2007) overestimates the temperature rise in the short term 

because it does not consider the heat capacity of the fluid. On the other hand, the model by Xu and 

Spitler (2006) underestimates the temperature rise in the short term because it concentrates the heat 

capacity of the fluid in a narrow cylindrical layer with a rather small average radius, as is shown in 

Fig.1. The weighted root mean square deviation from the values of θ obtained by the real BHE 

simulation, WRMSD, is determined as 
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where ( )m r i
 − is the difference between the temperature rise determined through the model and that 

determined by the simulation of the real BHE, at the i-th time instant τi, and 
i is half of the 

difference τi+1 – τi-1.   

The values of WRMSD obtained for the first hour are: 0.314 °C for the model by Xu and Spitler 

(2006), 0.604 °C for that by Lamarche and Beauchamp (2007), and 0.030 °C for that by Lamarche 

(2015). The corresponding values of WRMSD for the first 10 hours are: 0.115 °C, 0.309 °C and 

0.010 °C, respectively. 

 

 

 

Fig. 3. Plots of θ versus the logarithm of time in hours for the real BHE and for the models. 

 

3. The proposed model 

In the new model, the BHE is represented by a One-Material Equivalent Cylinder, OMEC, with radius 

equal to the BHE radius, rb. The cylinder contains a heat-generating cylindrical surface with an 

equivalent radius req, whose value is optimized by repeated simulations, as explained later. A sketch 

of the OMEC cross section is shown in Fig. 4, left. 

 

  

 

0

2

4

6

8

10

12

14

16

-4 -3 -2 -1 0 1 2

Real
Xu-Spitler
Lamarche-Beauchamp
Lamarche

θ ( C)

Log10(τ)



 

  

Fig. 4. Cross section of the OMEC (left) and particular of the structured grid employed (right). 

 

The OMEC is made of an equivalent material, whose thermal properties are determined as follows. 

The heat capacity of the OMEC is the same as that of the BHE, and is the sum of the heat capacities 

of the BHE fluid, polyethylene and grout. As a consequence, the volumetric heat capacity of the 

OMEC, (ρ c)eq, is given by 

 ( )
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where rpi and rpo are the inner radius and the outer radius of the polyethylene pipes, and (ρ c)f, (ρ c)p, 

(ρ c)gt are the volumetric heat capacities of the BHE fluid, polyethylene and grout, respectively. 

The value of the OMEC thermal conductivity, keq, is evaluated so that the thermal resistance per unit 

length of the cylindrical layer placed between req and rb is the same as that of the BHE, Rb: 
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For each case, the value of Rb is determined through a numerical steady-state simulation of the BHE 

cross section that includes a portion of the surrounding ground, and the convection coefficient is 

evaluated by the Churchill correlation with uniform wall heat flux. 

The set of equations to be solved is 
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 ( ,0) 0 for 0 =   gr r r , (9) 

where r is the radial coordinate, τ is time, rg is the radius of the computational domain, kg and (ρ c)g 

are the thermal conductivity and the volumetric heat capacity of the ground, and ql is the thermal 

power per unit length generated by the cylindrical surface of radius req. Equation (6) implies that, at 

the internal boundary r = req, the sum of the inward and outward heat fluxes per unit area is equal to 

the thermal power per unit area supplied by the heat-generating cylindrical surface. The value ql = 50 

W/m is employed. 

To determine the optimal value of req, finite-element simulations of transient heat conduction are 

performed with COMSOL Multiphysics, both for the cross section of the real BHE and for that of the 

OMEC, by employing trial values of req, accurate up to 0.1 mm. Iterations are repeated until the 

WRMSD during the first hour reaches its minimum value. The simulations of the real BHE are 

performed as explained in Section 2. The simulations of the OMEC are performed with the same time 

steps, relative and absolute tolerance as those of the real BHE. The mean fluid temperature is 

evaluated as average on the surface with radius req. A structured grid with about 3000 elements is 

employed. A particular of the grid for one of the cases studied is illustrated in Fig. 4, right. 

 

4. Optimal values of the equivalent radius 

The optimal values of the equivalent radius of the OMEC are determined for several single U-tube 

BHE configurations, and for different thermal properties of the ground and of the grout. Typical BHE 

diameters, namely Db = 140 mm, 150 mm and 160 mm, are considered. Two values of the shank 

spacing, s, are considered for each BHE diameter: s = 70 mm and 90 mm for Db = 140 mm; s = 80 

mm and 100 mm for Db = 150 mm; s = 90 mm and 110 mm for Db = 160 mm. The inner radius rpi 

and the outer radius rpo of the pipes are set equal to 16.3 mm and 20 mm, respectively. These are 

common values for single U-tube BHEs. The BHE fluid, that is water, has density 1000 kg/m3 and 

specific heat capacity 4.18 kJ/(kg K). The thermal conductivity and the volumetric heat capacity of 

polyethylene are set equal to 0.4 W/(m K) and 1.824 MJ/(m3 K). Three different values of the grout 

thermal conductivity, kgt, are considered, namely 1 W/(m K), 1.6 W/(m K) and 2.2 W/(m K). Typical 

values of the grout volumetric heat capacity, (ρ c)gt, are selected by referring to the experimental work 

by Kim et al. (2017): 1.50 MJ/(m3 K) and 2.25 MJ/(m3 K), for kgt = 1 W/(m K); 2.25 MJ/(m3 K) and 

3.00 MJ/(m3 K), for kgt = 1.6 W/(m K) and kgt = 2.2 W/(m K). Three different values of the ground 



 

thermal conductivity, kg, are considered, namely 1.4 W/(m K), 1.8 W/(m K) and 2.2 W/(m K). For 

each value of kg, two different values of the ground volumetric heat capacity, (ρ c)g, are selected, 

namely 1.50 MJ/(m3 K) and 2.25 MJ/(m3 K), for kgt = 1.4 W/(m K); 2.25 MJ/(m3 K) and 3.00 

MJ/(m3 K), for kg = 1.8 W/(m K) and kg = 2.2 W/(m K). These values of kg and (ρ c)g are selected by 

referring to ASHRAE (2015), Chapter 34. 

By combining the different values of the BHE geometric parameters with the different values of the 

grout and ground properties, 144 cases are selected and studied. For each case, the optimal value of 

req obtained by repeated simulations is reported in Table 2. 

 

Table 2 

Optimal value of req (mm) as a function of: kgt and kg (W/(m K)), (ρ c)gt and (ρ c)g (MJ/(m3 K)), Db 

and s (mm). 

kgt kg (ρ c)gt (ρ c)g 
Db=140 

s=70 

Db=140 

s=90 

Db=150 

s=80 

Db=150 

s=100 

Db=160 

s=90 

Db=160 

s=110 

1 

1.4 

1.50 
1.50 34.2 31.4 33.5 30.6 32.7 29.9 

2.25 34.3 31.9 33.7 31.1 32.9 30.4 

2.25 
1.50 28.2 25.3 27.5 24.5 26.7 23.8 

2.25 28.3 25.7 27.7 24.8 26.9 24.2 

1.8 

1.50 
2.25 34.3 31.9 33.6 31.1 32.9 30.3 

3.00 34.3 32.2 33.7 31.4 33.0 30.7 

2.25 
2.25 28.3 25.7 27.6 24.8 26.8 24.1 

3.00 28.4 26.0 27.7 25.1 26.9 24.4 

1.6 

1.8 

2.25 
2.25 25.6 23.4 25.0 22.6 24.3 21.7 

3.00 25.6 23.7 25.0 22.7 24.4 22.1 

3.00 
2.25 22.2 19.7 21.5 18.9 20.7 18.1 

3.00 22.3 20.0 21.6 19.2 20.9 18.4 

2.2 

2.25 
2.25 25.6 23.5 25.0 22.6 24.3 21.8 

3.00 25.7 23.8 25.0 22.7 24.4 22.1 

3.00 
2.25 22.2 19.8 21.5 18.9 20.7 18.1 

3.00 22.3 20.1 21.6 19.2 20.9 18.4 

2.2 

1.8 

2.25 
2.25 23.9 21.7 23.1 20.8 22.3 20.0 

3.00 24.0 22.0 23.3 21.2 22.5 20.4 

3.00 
2.25 20.4 18.1 19.6 17.2 18.9 16.4 

3.00 20.5 18.4 19.8 17.5 19.0 16.8 

2.2 

2.25 
2.25 23.9 21.8 23.2 20.9 22.4 20.1 

3.00 24.0 22.1 23.3 21.2 22.5 20.5 

3.00 
2.25 20.5 18.2 19.7 17.3 18.9 16.5 

3.00 20.5 18.5 19.8 17.5 19.0 16.8 

 

A correlation has been obtained, that gives directly the optimal value of the equivalent radius as a 

function of the BHE geometric parameters and of the thermal properties of the grout and of the 

ground: 
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, (10) 

where req, Db, and s are in m, kgt is in W/(m K), (ρ c)gt and (ρ c)g are in MJ/(m3 K). 

The correlation gives the optimal values of req reported in Table 2 with a maximum discrepancy of ± 

0.3 mm. 

 

5. Validation of the simulation codes 

The accuracy of the finite-element codes employed for the simulations of the OMEC has been 

checked by comparing the results obtained with those yielded by the analytical solution proposed by 

Man et al. (2010), for a BHE model that is a special case of the OMEC. Man et al. (2010) modeled 

the BHE as an infinite solid cylinder, with the same thermal properties as the ground, containing a 

heat-generating cylindrical surface of some radius r0. They presented an analytical expression of the 

fluid temperature rise, , as a function of the time, τ, and of the radial coordinate, r. For r = r0, the 

solution is 
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l

g g g

rq
Ei d

k k
, (11) 

where ql is the thermal power per unit length generated by the cylindrical surface and Ei is the 

exponential integral function. 

In order to check the accuracy of our simulation codes, we consider a BHE with Db = 150 mm and 

s = 100 mm, and with ql = 50 W/m, kgt = kg = 1.8 W/(m K), (ρ c)gt = (ρ c)g = 3.00 MJ/(m3 K). The 

equivalent radius determined by Eq. (10) is req = 18.5 mm. We perform in COMSOL Multiphysics a 

simulation of the OMEC with the method described in Section 3, by setting a power per unit area 

equal to 50/(2π req) W/m2 on the OMEC heat-generating cylindrical surface. The comparison between 

the values of θ obtained by this simulation and those obtained by applying Eq. (11) with r0 = req is 

illustrated in Fig. 5, where the values of θ are plotted versus the logarithm of time in hours, in the 

range -3 ≤ log10(τ) ≤ 2. The figure evidences an excellent agreement of our simulation results with 

those obtained through the analytical expression by Man et al. (2010). The root mean square deviation 

of the values of θ obtained by the simulation from those obtained by Eq. (11) is 0.0014 °C. 

 

 



 

 

Fig. 5. Values of θ as a function of the logarithm of time in hours, by the OMEC and by Man 

et al. (2010). 

 

6. Comparison between the OMEC and the model by Lamarche (2015) 

In this section, we compare the accuracy of the OMEC with that of the numerical version of the 

cylindrical model by Lamarche (2015), that is the most accurate of those examined. We perform the 

comparison for the most common BHE diameter, namely Db = 150 mm, and shank spacings s = 80 

mm and s = 100 mm. The other parameters have the same values as in Section 2, i.e.: kgt = 1.6 W/(m 

K), kg = 1.8 W/(m K), (ρ c)gt = 2.25 MJ/(m3 K), (ρ c)g = 3.00 MJ/(m3 K), water volume flow rate 14 

liters per minute. The values of req determined by Eq. (10) are considered for the OMEC, namely 25.2 

mm for s = 80 mm and 22.8 mm for s = 100 mm, so that the comparison takes into account the 

approximations due to the use of Eq. (10). 

The comparison for s = 80 mm is illustrated in Fig. 6, where  is plotted versus the logarithm of time 

in hours, for the real BHE, for the numerical version of the model by Lamarche (2015) and for the 

OMEC. Some differences between the results obtained by the three simulations can be seen only in 

the first hour. In the figure, the curve for the real BHE does not appear because it is covered by that 

for the model by Lamarche (2015) during the first 10 minutes, and by that for the OMEC after that 

time. The WRMSD of the values of  from those obtained by the simulation of the real BHE is 0.072 

°C for the numerical version of the model by Lamarche (2015) and 0.090 °C for the OMEC during 

the first hour, 0.043 °C for the model by Lamarche (2015) and 0.036 °C for the OMEC during the 

first 10 hours. 

The corresponding plots for s = 100 mm are illustrated in Fig. 7. Again, some differences can be 

appreciated only in the first hour. The curve for the real case is covered by that for the numerical 

version of the model by Lamarche (2015) during the first 10 minutes and by the curves of both models 

after that time. The WRMSD from the values of  obtained by the simulation of the real BHE is 0.030 
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°C for the model by Lamarche (2015) and 0.092 °C for the OMEC during the first hour, 0.010 °C for 

the model by Lamarche (2015) and 0.034 °C for the OMEC during the first 10 hours. 

 

 

Fig. 6. Plots of  versus the logarithm of time in hours for the real BHE, the numerical version of 

the model by Lamarche (2015), and the OMEC, BHE with s = 80 mm. 

 

 

 

Fig. 7. Plots of  versus the logarithm of time in hours for the real BHE, the numerical version of 

the model by Lamarche (2015), and the OMEC, BHE with s = 100 mm. 

 

The comparison shows that both models are very accurate, with that by Lamarche (2015) slightly 

more accurate during the first 10 minutes, especially in the case with s = 100 mm, which is an upper 

bound of the shank spacing for Db = 150 mm. 

An advantage of the OMEC is its simpler implementation in numerical simulations of BHE fields, 

where several BHEs must be modeled. Another advantage is the lower number of dimensionless 

parameters that it requires for the parametric study of the dimensionless fluid-to-ground thermal 
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response factors of BHE fields with a given layout, such as square fields with a given number of 

BHEs. 

 

7. Comparison between the 3D simulation of a 100 m long BHE and the simulation of the 

corresponding OMEC 

In this section we show, by an example, the saving in grid complexity and computational time that 

can be obtained by replacing the 3D simulation of a real BHE with the 2D axis-symmetric simulation 

of the corresponding OMEC. Computations are performed by a PC with Intel Core i7-6700K 4.0 

GHz, RAM 64 GB. 

A BHE with Db = 150 mm, s = 100 mm, length L = 100 m, buried depth b = 2 m, and water flow rate 

14 liters per minute is considered, with the following properties of grout and ground: kgt = 1.6 

W/(m K), kg = 1.8 W/(m K), (ρ c)gt = 2.25 MJ/(m3 K), (ρ c)g = 3.00 MJ/(m3 K). Simulations are 

performed for an operation time of 10000 h, with a uniform and constant power per unit length of 50 

W/m supplied to the BHE fluid. The simulation domain is a cylinder with external radius 20 m and 

high 122 m, whose upper surface is the ground surface, kept at the undisturbed ground temperature. 

The bottom and the lateral surfaces of the domain are considered as adiabatic. 

In order to compact the domain, the vertical coordinate z is replaced by the reduced coordinate 

z* = z/5, and the thermal conductivity of each material in the vertical direction is replaced by the 

reduced conductivity k* = k/25, according to the method used by Zanchini et al. (2010). Time steps 

in the logarithm of time in hours equal to 0.05 are employed from -5 to 4. The relative tolerance and 

the absolute tolerance are set equal to 0.0001. 

Two 3D simulations of the real BHE are performed: the first with an unstructured mesh having 

870 013 tetrahedral elements, the second with a mesh obtained by a regular refinement of the first, 

having 6 960 104 tetrahedral elements. In both 3D simulations, the symmetry of the computational 

domain is exploited and only half of the domain is simulated. Then, two 2D axis-symmetric 

simulations of the OMEC are performed: the first with an unstructured mesh having 7705 triangular 

elements, the second with a mesh obtained by a regular refinement of the first, having 30820 

triangular elements. Particulars of the grids employed in the second 3D simulation and in the first 2D 

axis-symmetric one are illustrated in Fig. 8. The computational time is about 50 minutes for the first 

3D simulation and about 14 h and 11 minutes for the second; it is 9 seconds for the first 2D axis-

symmetric simulation and 30 seconds for the latter.  

The simulation results are illustrated in Fig. 9, where diagrams of  versus the logarithm of time in 

hours are reported. The figure shows that the simulations of the OMEC yield a slight overestimation 

of  during the first 6 minutes, as already revealed by the 2D simulations of a cross section, and 



 

become very precise after that time. The zoom of the final part of the simulations shows a difference 

in  of about 0.167 °C between the 3D simulations, so that the refined grid can be considered as useful 

to achieve a very high accuracy. On the other hand, the difference in  between the 2D axis-symmetric 

simulations is extremely small, namely 0.011 °C, so that the grid with 7705 elements is sufficient for 

a very high accuracy. We can conclude that the use of the OMEC allows a reduction of the 

computational time from 14 h 11 min to 9 seconds, without a loss of accuracy. For a comparison, the 

time evolution of θ for the same BHE is computed also by employing the numerical version of the 

model by Lamarche (2015). In order to obtained accurate results, a grid with about 50000 elements 

is required and the computation time is about 60 seconds. The computation time is higher than that 

required by the OMEC, but still acceptable. The main advantage of the OMEC model is the lower 

number of dimensionless parameters required to reproduce the real BHE. Indeed, 5 dimensionless 

parameters are sufficient: the dimensionless BHE thermal resistance, Rb kg; the dimensionless BHE 

length, L/rb; the dimensionless BHE buried depth, b/rb; the dimensionless equivalent radius, req/rb; 

the dimensionless equivalent volumetric heat capacity, (ρ c)eq/(ρ c)g. Many more dimensionless 

parameters are required by the Lamarche (2015) model. Therefore, the OMEC model is preferable 

for the parametric study of the dimensionless fluid-to-ground thermal response factors of a single 

BHE or of BHE fields, while the numerical version of the model by Lamarche (2015) is very useful 

for a validation of the results. 

 

   

Fig. 8. Particulars of the grids at the BHE top, for the 3D simulation with the refined mesh (left) and 

for the 2D axis-symmetric simulation with the first mesh (right). 

 

 



 

 

Fig. 9. Plots of  versus the logarithm of time in hours for the 3D simulations of the BHE and for 

the 2D axis-symmetric simulations of the OMEC. 

 

8. Conclusions 

We have compared the accuracy of some existing cylindrical models of a single U-tube borehole heat 

exchanger (BHE), suitable for CFD simulations and valid both in the short and in the long term. The 

comparison has shown that the model by Lamarche (2015) is the most accurate. 

Then, we have proposed a new model, where the BHE is represented by an equivalent cylinder made 

of a homogeneous material, having the same radius as the BHE and containing a heat-generating 

cylindrical surface with a suitable equivalent radius, req. The thermal properties of the homogeneous 

material are such that the thermal resistance of the cylindrical annulus between req and the BHE radius 

is equal to the BHE thermal resistance, and the heat capacity of the equivalent cylinder is equal to 

that of the BHE. By means of repeated finite-element simulations, we have determined the optimal 

value of req for 144 cases, and we have provided a correlation that yields this value for single U-tube 

BHEs with usual pipes, BHE diameter between 140 and 160 mm, shank spacing between 70 and 110 

mm, thermal conductivity between 1 and 2.2 W/(m K) for grout and between 1.4 and 2.2 W/(m K) 

for ground, and volumetric heat capacity between 1.50 and 3.00 MJ/(m3 K) for both grout and ground. 

The new model is slightly less precise than that by Lamarche (2015) for the first 10 minutes, and has 

the same accuracy after that time. Advantages of the new model are an easier implementation in 

numerical simulations of BHE fields and a lower number of parameters necessary to characterize a 

BHE field with a given shape and number of BHEs. 

An application to the simulation of a finite-length BHE, with fluid replaced by a heat-generating 

solid, has shown that the new model allows reducing the computational time more than 5000 times, 

with respect to a 3D simulation of the real BHE with the same accuracy. 
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